The Emerging Role of Wearable Technologies in Detection of Arrhythmia

Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devi...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of cardiology Vol. 34; no. 8; pp. 1083 - 1087
Main Authors: Cheung, Christopher C., Krahn, Andrew D., Andrade, Jason G.
Format: Journal Article
Language:English
Published: England Elsevier Inc 01.08.2018
Subjects:
ISSN:0828-282X, 1916-7075, 1916-7075
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret. Au cours de la dernière décennie, il y a eu explosion des dispositifs grand public dans le but de suivre la santé et la condition physique. Le marché de la technologie portable, composé d’appareils qui surveillent les paramètres physiologiques tels que la fréquence cardiaque et la structure du sommeil, vont atteindre jusqu’à 929 millions d’appareils connectés en 2021. Ces appareils englobent les bracelets, les lunettes, les moniteurs intra-auriculaires ou les vêtements électroniques dont la capacité à surveiller la fréquence cardiaque, le rythme cardiaque, la pression artérielle, l’activité physique, la fréquence respiratoire, la glycémie et les cycles du sommeil varie. En ce qui concerne la surveillance de la fréquence cardiaque, les appareils les plus portables utilisent la photopléthysmographie (PPG); ils sont donc intrinsèquement moins précis que les techniques d’électrocardiographie traditionnelles (étalon de référence). Toutefois, de plus en plus de données probantes montrent que ces technologies peuvent être utilisées pour faciliter la détection de l’arythmie dans un contexte approprié. Les études visant à évaluer les portables qui utilisent la PPG conjointement avec les algorithmes d’apprentissage automatique se sont révélées prometteuses dans la détection de certaines arythmies comme la fibrillation auriculaire. Malgré cela, les technologies portables constituent une frontière importante dans l’évaluation de la santé. Les futurs portables bénéficieront d’une fiabilité et d’une précision accrue, permettront de collecter d’autres paramètres sur la santé et la condition physique, favoriseront la prise en charge des maladies chroniques et fourniront une connectivité et une rétroaction en temps réel qui pourraient supplanter la surveillance médicale traditionnelle. Les portables risquent de véritablement perturber notre secteur des soins de santé puisque bientôt de larges segments de la population auront des données sur la santé facilement accessibles que le médecin devra interpréter.
AbstractList Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret. Au cours de la dernière décennie, il y a eu explosion des dispositifs grand public dans le but de suivre la santé et la condition physique. Le marché de la technologie portable, composé d’appareils qui surveillent les paramètres physiologiques tels que la fréquence cardiaque et la structure du sommeil, vont atteindre jusqu’à 929 millions d’appareils connectés en 2021. Ces appareils englobent les bracelets, les lunettes, les moniteurs intra-auriculaires ou les vêtements électroniques dont la capacité à surveiller la fréquence cardiaque, le rythme cardiaque, la pression artérielle, l’activité physique, la fréquence respiratoire, la glycémie et les cycles du sommeil varie. En ce qui concerne la surveillance de la fréquence cardiaque, les appareils les plus portables utilisent la photopléthysmographie (PPG); ils sont donc intrinsèquement moins précis que les techniques d’électrocardiographie traditionnelles (étalon de référence). Toutefois, de plus en plus de données probantes montrent que ces technologies peuvent être utilisées pour faciliter la détection de l’arythmie dans un contexte approprié. Les études visant à évaluer les portables qui utilisent la PPG conjointement avec les algorithmes d’apprentissage automatique se sont révélées prometteuses dans la détection de certaines arythmies comme la fibrillation auriculaire. Malgré cela, les technologies portables constituent une frontière importante dans l’évaluation de la santé. Les futurs portables bénéficieront d’une fiabilité et d’une précision accrue, permettront de collecter d’autres paramètres sur la santé et la condition physique, favoriseront la prise en charge des maladies chroniques et fourniront une connectivité et une rétroaction en temps réel qui pourraient supplanter la surveillance médicale traditionnelle. Les portables risquent de véritablement perturber notre secteur des soins de santé puisque bientôt de larges segments de la population auront des données sur la santé facilement accessibles que le médecin devra interpréter.
Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.
Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.
Author Cheung, Christopher C.
Andrade, Jason G.
Krahn, Andrew D.
Author_xml – sequence: 1
  givenname: Christopher C.
  orcidid: 0000-0003-0459-3897
  surname: Cheung
  fullname: Cheung, Christopher C.
– sequence: 2
  givenname: Andrew D.
  orcidid: 0000-0002-7982-1586
  surname: Krahn
  fullname: Krahn, Andrew D.
– sequence: 3
  givenname: Jason G.
  orcidid: 0000-0002-8493-5123
  surname: Andrade
  fullname: Andrade, Jason G.
  email: Jason.andrade@vch.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30049358$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQC1URMvjBxhQRpYEP5LYQSwIykNCQkJFsFmOc9O6JHaxU6T-PYkKSweY7h3OudI9h2hknQWETglOCCb5xTLRS60SiolIcJZgzPbQhBQkjznm2QhNsKAipoK-j9FhCEuMU8J5foDGrF8LlokJms4WEE1b8HNj59GLayBydfQGyquy32egF9Y1bm4gRMZGt9CB7oyzA3Xt_WLTLVqjjtF-rZoAJz_zCL3eTWc3D_HT8_3jzfVTrFPOurhOeQ2qqGoFTIGoGQimMSYVzaiuS1HkORWiSqlSpSg1ZwWkhJVZzlNSUlyxI3S-vbvy7nMNoZOtCRqaRllw6yAp5iITnDPWo2c_6LpsoZIrb1rlN_L39R4QW0B7F4KHWmrTqeG3zivTSILlUFku5VBZDpUlzmRfuVfpjvp7_U_paitBH-jLgJdBG7AaKuP7prJy5m_9ckfXjbFGq-YDNv_J3_mZqF4
CitedBy_id crossref_primary_10_3390_healthcare9030343
crossref_primary_10_1017_S1047951122002244
crossref_primary_10_2196_14857
crossref_primary_10_1016_j_cmpb_2022_106899
crossref_primary_10_1002_jbio_202200187
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_2196_54630
crossref_primary_10_1080_10810730_2021_1983893
crossref_primary_10_1080_17434440_2021_2013198
crossref_primary_10_38079_igusabder_1326830
crossref_primary_10_2147_PPA_S444633
crossref_primary_10_2196_13641
crossref_primary_10_1016_j_eswa_2022_118540
crossref_primary_10_1016_j_hlc_2022_08_001
crossref_primary_10_1080_17425247_2019_1563070
crossref_primary_10_1007_s11596_021_2485_0
crossref_primary_10_1093_cvr_cvab168
crossref_primary_10_1016_j_cvdhj_2021_07_001
crossref_primary_10_1016_j_hrthm_2020_05_004
crossref_primary_10_3390_app13074351
crossref_primary_10_1109_TAI_2022_3184656
crossref_primary_10_1213_ANE_0000000000005916
crossref_primary_10_1016_j_cmpb_2020_105753
crossref_primary_10_3390_s21082828
crossref_primary_10_1089_tmj_2022_0182
crossref_primary_10_1159_000515576
crossref_primary_10_1016_j_cjca_2019_06_034
crossref_primary_10_3390_healthcare7030096
crossref_primary_10_1109_ACCESS_2023_3317900
crossref_primary_10_1109_JSTQE_2020_3002084
crossref_primary_10_1007_s12471_018_1208_z
crossref_primary_10_7759_cureus_50952
crossref_primary_10_3390_ijerph16132390
crossref_primary_10_3390_s23229208
crossref_primary_10_1055_a_2376_6332
crossref_primary_10_1002_joa3_12338
crossref_primary_10_1080_14779072_2022_2045196
crossref_primary_10_3390_bioengineering12050488
crossref_primary_10_3390_s23020615
crossref_primary_10_1016_j_anclin_2023_03_002
crossref_primary_10_1016_j_hrthm_2019_04_042
crossref_primary_10_3390_s25092848
crossref_primary_10_1177_1357633X19878330
crossref_primary_10_1109_TETC_2020_3014847
crossref_primary_10_1016_j_bspc_2021_102421
crossref_primary_10_1093_omcr_omz143
crossref_primary_10_1109_LSENS_2025_3528305
crossref_primary_10_3390_bios12050292
crossref_primary_10_3390_s24248204
crossref_primary_10_3389_fmed_2021_685999
crossref_primary_10_1109_LCOMM_2019_2937782
crossref_primary_10_2217_pme_2019_0113
crossref_primary_10_1016_j_cjca_2020_09_001
crossref_primary_10_3389_fnbeh_2022_856544
crossref_primary_10_5604_01_3001_0014_7475
crossref_primary_10_1002_admt_202100572
crossref_primary_10_1111_jocn_16434
crossref_primary_10_1089_heq_2023_0034
crossref_primary_10_3390_s23177521
crossref_primary_10_1002_adsr_202300118
crossref_primary_10_1016_j_measurement_2020_108168
crossref_primary_10_3390_ijerph17144975
crossref_primary_10_17925_EJAE_2022_8_1_7
crossref_primary_10_1007_s10557_021_07246_3
crossref_primary_10_1136_bmjopen_2021_056480
crossref_primary_10_1016_j_tvjl_2020_105590
crossref_primary_10_1080_17434440_2018_1557046
crossref_primary_10_1109_TBCAS_2023_3299084
crossref_primary_10_1016_j_cjca_2019_03_024
Cites_doi 10.1001/jama.2014.14781
10.1016/j.jacc.2018.03.003
10.1016/j.jacc.2011.07.026
10.1249/MSS.0000000000001284
10.1001/jamacardio.2016.3340
ContentType Journal Article
Copyright 2018 Canadian Cardiovascular Society
Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Canadian Cardiovascular Society
– notice: Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cjca.2018.05.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1916-7075
EndPage 1087
ExternalDocumentID 30049358
10_1016_j_cjca_2018_05_003
S0828282X18303714
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1P~
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACJTP
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
E3Z
EBS
EFJIC
EFKBS
EFLBG
EJD
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HX~
HYE
HZ~
J1W
KOM
M41
MO0
O-L
O9-
OAUVE
OA~
OK1
OL0
P-8
P-9
P2P
PC.
Q38
ROL
RPM
SDF
SEL
SES
SJN
SNG
SPCBC
SSH
SSZ
T5K
TR2
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AISVY
AJBFU
AJOXV
AMFUW
LCYCR
NAHTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c473t-f47fea9dfae3ae8f3e83c001d252cfb8966288d42aab8bc739e413b56741b20d3
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439561200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0828-282X
1916-7075
IngestDate Sat Sep 27 23:00:45 EDT 2025
Wed Feb 19 02:36:27 EST 2025
Sat Nov 29 05:53:44 EST 2025
Tue Nov 18 22:22:08 EST 2025
Fri Feb 23 02:12:54 EST 2024
Tue Oct 14 19:31:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-f47fea9dfae3ae8f3e83c001d252cfb8966288d42aab8bc739e413b56741b20d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0459-3897
0000-0002-8493-5123
0000-0002-7982-1586
PMID 30049358
PQID 2078587733
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2078587733
pubmed_primary_30049358
crossref_citationtrail_10_1016_j_cjca_2018_05_003
crossref_primary_10_1016_j_cjca_2018_05_003
elsevier_sciencedirect_doi_10_1016_j_cjca_2018_05_003
elsevier_clinicalkey_doi_10_1016_j_cjca_2018_05_003
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Canadian journal of cardiology
PublicationTitleAlternate Can J Cardiol
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gillinov, Etiwy, Wang (bib4) 2017; 49
Bumgarner, Lambert, Hussein (bib5) 2018; 71
Patel, Asch, Volpp (bib1) 2015; 313
Mittal, Movsowitz, Steinberg (bib2) 2011; 58
Wang, Blackburn, Desai (bib3) 2017; 2
Wang (10.1016/j.cjca.2018.05.003_bib3) 2017; 2
Bumgarner (10.1016/j.cjca.2018.05.003_bib5) 2018; 71
Patel (10.1016/j.cjca.2018.05.003_bib1) 2015; 313
Mittal (10.1016/j.cjca.2018.05.003_bib2) 2011; 58
Gillinov (10.1016/j.cjca.2018.05.003_bib4) 2017; 49
References_xml – volume: 313
  start-page: 459
  year: 2015
  end-page: 460
  ident: bib1
  article-title: Wearable devices as facilitators, not drivers, of health behavior change
  publication-title: JAMA
– volume: 2
  start-page: 104
  year: 2017
  end-page: 106
  ident: bib3
  article-title: Accuracy of wrist-worn heart rate monitors
  publication-title: JAMA Cardiol
– volume: 49
  start-page: 1697
  year: 2017
  end-page: 1703
  ident: bib4
  article-title: Variable accuracy of wearable heart rate monitors during aerobic exercise
  publication-title: Med Sci Sports Exerc
– volume: 58
  start-page: 1741
  year: 2011
  end-page: 1749
  ident: bib2
  article-title: Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation
  publication-title: J Am Coll Cardiol
– volume: 71
  start-page: 2381
  year: 2018
  end-page: 2388
  ident: bib5
  article-title: Automated atrial fibrillation detection algorithm using smartwatch technology
  publication-title: J Am Coll Cardiol
– volume: 313
  start-page: 459
  year: 2015
  ident: 10.1016/j.cjca.2018.05.003_bib1
  article-title: Wearable devices as facilitators, not drivers, of health behavior change
  publication-title: JAMA
  doi: 10.1001/jama.2014.14781
– volume: 71
  start-page: 2381
  year: 2018
  ident: 10.1016/j.cjca.2018.05.003_bib5
  article-title: Automated atrial fibrillation detection algorithm using smartwatch technology
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.03.003
– volume: 58
  start-page: 1741
  year: 2011
  ident: 10.1016/j.cjca.2018.05.003_bib2
  article-title: Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2011.07.026
– volume: 49
  start-page: 1697
  year: 2017
  ident: 10.1016/j.cjca.2018.05.003_bib4
  article-title: Variable accuracy of wearable heart rate monitors during aerobic exercise
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000001284
– volume: 2
  start-page: 104
  year: 2017
  ident: 10.1016/j.cjca.2018.05.003_bib3
  article-title: Accuracy of wrist-worn heart rate monitors
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.3340
SSID ssj0041776
Score 2.481052
SecondaryResourceType review_article
Snippet Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Algorithms
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Equipment Design
Heart Rate - physiology
Humans
Monitoring, Physiologic - instrumentation
Wearable Electronic Devices
Title The Emerging Role of Wearable Technologies in Detection of Arrhythmia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0828282X18303714
https://dx.doi.org/10.1016/j.cjca.2018.05.003
https://www.ncbi.nlm.nih.gov/pubmed/30049358
https://www.proquest.com/docview/2078587733
Volume 34
WOSCitedRecordID wos000439561200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1916-7075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041776
  issn: 0828-282X
  databaseCode: AIEXJ
  dateStart: 20171101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbYhtBe0Pi5wZiMhHhBmZLYiZ3HauqAMQpCncib5biO2oqlXZuh8d9zduwkAjbGAy9RatlN4vt8Pp_P9yH0itlFAycBZUQGlFIZ8CSJA6oog9FEjMlqySbYaMTzPPvsXNlrSyfAqopfXWXL_ypqKANhm6Oz_yDu9k-hAO5B6HAFscP11oI3ribLPvTFBQ9-ha-0h6RaV_rMRmKBvqm18lbjYLWa_qin5zPZt1nbBAa9LBPKhrH2PfJHU-30Ri9fQeeD_QBKreoiKLtAY_Pb5f49kYYO8W3fERHxNgzO606wNAMWNkQoh_oPZU7hOu9lAyze055R2JDa_KbWGw_D_FDNlckVFXGbbTUk3STmN-5Hn8Tx2empGA_z8evlRWDoxcw2vONa2UBbMUsyUH9bg_fD_MRP2jRiloewfV93vqoJBfz1sdfZMNetUaytMt5B990iAw8acDxAd3T1EN376MIoHqEhYAR7jGCDEbwosccI7mMEzyrcYsTU6jDyGJ0dD8dH7wLHpxHAwCN1UFJWaplNSqmJ1LwkmhMFZsokTmJVFhxWvjHnExpLWfBCMZJpMHGKJAWrs4jDCXmCNqtFpXcRLlOlU9DdMuaawhJehmkBNcs4KtIMJtg9FPkeEsolmzecJ9-EjyqcC9OrwvSqCBOTonYPvWnbLJtUKzfWJr7jhT9EDNOeAMjc2CppWzkTszEd_9rupZetAP1rNtVkpReXa6jEeMIZI1DnaSP09u1NNjsTZ_DsFq2fo-1uUO2jzXp1qV-gu-p7PVuvDtAGy_mBA-1PVoitSA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Emerging+Role+of+Wearable+Technologies+in+Detection+of+Arrhythmia&rft.jtitle=Canadian+journal+of+cardiology&rft.au=Cheung%2C+Christopher+C&rft.au=Krahn%2C+Andrew+D&rft.au=Andrade%2C+Jason+G&rft.date=2018-08-01&rft.issn=1916-7075&rft.eissn=1916-7075&rft.volume=34&rft.issue=8&rft.spage=1083&rft_id=info:doi/10.1016%2Fj.cjca.2018.05.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0828-282X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0828-282X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0828-282X&client=summon