The Emerging Role of Wearable Technologies in Detection of Arrhythmia
Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devi...
Saved in:
| Published in: | Canadian journal of cardiology Vol. 34; no. 8; pp. 1083 - 1087 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Inc
01.08.2018
|
| Subjects: | |
| ISSN: | 0828-282X, 1916-7075, 1916-7075 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.
Au cours de la dernière décennie, il y a eu explosion des dispositifs grand public dans le but de suivre la santé et la condition physique. Le marché de la technologie portable, composé d’appareils qui surveillent les paramètres physiologiques tels que la fréquence cardiaque et la structure du sommeil, vont atteindre jusqu’à 929 millions d’appareils connectés en 2021. Ces appareils englobent les bracelets, les lunettes, les moniteurs intra-auriculaires ou les vêtements électroniques dont la capacité à surveiller la fréquence cardiaque, le rythme cardiaque, la pression artérielle, l’activité physique, la fréquence respiratoire, la glycémie et les cycles du sommeil varie. En ce qui concerne la surveillance de la fréquence cardiaque, les appareils les plus portables utilisent la photopléthysmographie (PPG); ils sont donc intrinsèquement moins précis que les techniques d’électrocardiographie traditionnelles (étalon de référence). Toutefois, de plus en plus de données probantes montrent que ces technologies peuvent être utilisées pour faciliter la détection de l’arythmie dans un contexte approprié. Les études visant à évaluer les portables qui utilisent la PPG conjointement avec les algorithmes d’apprentissage automatique se sont révélées prometteuses dans la détection de certaines arythmies comme la fibrillation auriculaire. Malgré cela, les technologies portables constituent une frontière importante dans l’évaluation de la santé. Les futurs portables bénéficieront d’une fiabilité et d’une précision accrue, permettront de collecter d’autres paramètres sur la santé et la condition physique, favoriseront la prise en charge des maladies chroniques et fourniront une connectivité et une rétroaction en temps réel qui pourraient supplanter la surveillance médicale traditionnelle. Les portables risquent de véritablement perturber notre secteur des soins de santé puisque bientôt de larges segments de la population auront des données sur la santé facilement accessibles que le médecin devra interpréter. |
|---|---|
| AbstractList | Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.
Au cours de la dernière décennie, il y a eu explosion des dispositifs grand public dans le but de suivre la santé et la condition physique. Le marché de la technologie portable, composé d’appareils qui surveillent les paramètres physiologiques tels que la fréquence cardiaque et la structure du sommeil, vont atteindre jusqu’à 929 millions d’appareils connectés en 2021. Ces appareils englobent les bracelets, les lunettes, les moniteurs intra-auriculaires ou les vêtements électroniques dont la capacité à surveiller la fréquence cardiaque, le rythme cardiaque, la pression artérielle, l’activité physique, la fréquence respiratoire, la glycémie et les cycles du sommeil varie. En ce qui concerne la surveillance de la fréquence cardiaque, les appareils les plus portables utilisent la photopléthysmographie (PPG); ils sont donc intrinsèquement moins précis que les techniques d’électrocardiographie traditionnelles (étalon de référence). Toutefois, de plus en plus de données probantes montrent que ces technologies peuvent être utilisées pour faciliter la détection de l’arythmie dans un contexte approprié. Les études visant à évaluer les portables qui utilisent la PPG conjointement avec les algorithmes d’apprentissage automatique se sont révélées prometteuses dans la détection de certaines arythmies comme la fibrillation auriculaire. Malgré cela, les technologies portables constituent une frontière importante dans l’évaluation de la santé. Les futurs portables bénéficieront d’une fiabilité et d’une précision accrue, permettront de collecter d’autres paramètres sur la santé et la condition physique, favoriseront la prise en charge des maladies chroniques et fourniront une connectivité et une rétroaction en temps réel qui pourraient supplanter la surveillance médicale traditionnelle. Les portables risquent de véritablement perturber notre secteur des soins de santé puisque bientôt de larges segments de la population auront des données sur la santé facilement accessibles que le médecin devra interpréter. Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret.Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret. Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed of devices that monitor physiological parameters, such as heart rate and sleep pattern, is anticipated to grow to 929 million connected devices in 2021. These devices encompass wristbands, glasses, in-ear monitors, or electronic shirts, with varying capacity to monitor heart rate, heart rhythm, blood pressure, physical activity, respiratory rate, blood glucose, and sleep patterns. For heart-rate monitoring, most wearable devices use photoplethysmography (PPG) technology, meaning they are inherently less accurate than conventional electrocardiography monitoring techniques (reference standard). However, a growing body of evidence suggests that these technologies can be harnessed to facilitate arrhythmia detection in the appropriate context. Studies evaluating PPG-based wearables in conjunction with machine-learning algorithms have shown promise in detection of such arrhythmias, as atrial fibrillation. Limitations of wearable technologies include their accuracy and accessibility and the clinical implications of wearable-detected arrhythmias. Despite this, wearable technologies represent an important frontier in health evaluation. Future wearables will benefit from improved reliability and accuracy, collect additional health and fitness parameters, support management of chronic disease, and provide real-time connectivity and feedback that may supplant conventional medical monitoring. Wearables have the potential to become truly disruptive in our health care sector, with large segments of the population soon to have readily available health data that the physician must interpret. |
| Author | Cheung, Christopher C. Andrade, Jason G. Krahn, Andrew D. |
| Author_xml | – sequence: 1 givenname: Christopher C. orcidid: 0000-0003-0459-3897 surname: Cheung fullname: Cheung, Christopher C. – sequence: 2 givenname: Andrew D. orcidid: 0000-0002-7982-1586 surname: Krahn fullname: Krahn, Andrew D. – sequence: 3 givenname: Jason G. orcidid: 0000-0002-8493-5123 surname: Andrade fullname: Andrade, Jason G. email: Jason.andrade@vch.ca |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30049358$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkLtOwzAUQC1URMvjBxhQRpYEP5LYQSwIykNCQkJFsFmOc9O6JHaxU6T-PYkKSweY7h3OudI9h2hknQWETglOCCb5xTLRS60SiolIcJZgzPbQhBQkjznm2QhNsKAipoK-j9FhCEuMU8J5foDGrF8LlokJms4WEE1b8HNj59GLayBydfQGyquy32egF9Y1bm4gRMZGt9CB7oyzA3Xt_WLTLVqjjtF-rZoAJz_zCL3eTWc3D_HT8_3jzfVTrFPOurhOeQ2qqGoFTIGoGQimMSYVzaiuS1HkORWiSqlSpSg1ZwWkhJVZzlNSUlyxI3S-vbvy7nMNoZOtCRqaRllw6yAp5iITnDPWo2c_6LpsoZIrb1rlN_L39R4QW0B7F4KHWmrTqeG3zivTSILlUFku5VBZDpUlzmRfuVfpjvp7_U_paitBH-jLgJdBG7AaKuP7prJy5m_9ckfXjbFGq-YDNv_J3_mZqF4 |
| CitedBy_id | crossref_primary_10_3390_healthcare9030343 crossref_primary_10_1017_S1047951122002244 crossref_primary_10_2196_14857 crossref_primary_10_1016_j_cmpb_2022_106899 crossref_primary_10_1002_jbio_202200187 crossref_primary_10_31893_multirev_2025218 crossref_primary_10_2196_54630 crossref_primary_10_1080_10810730_2021_1983893 crossref_primary_10_1080_17434440_2021_2013198 crossref_primary_10_38079_igusabder_1326830 crossref_primary_10_2147_PPA_S444633 crossref_primary_10_2196_13641 crossref_primary_10_1016_j_eswa_2022_118540 crossref_primary_10_1016_j_hlc_2022_08_001 crossref_primary_10_1080_17425247_2019_1563070 crossref_primary_10_1007_s11596_021_2485_0 crossref_primary_10_1093_cvr_cvab168 crossref_primary_10_1016_j_cvdhj_2021_07_001 crossref_primary_10_1016_j_hrthm_2020_05_004 crossref_primary_10_3390_app13074351 crossref_primary_10_1109_TAI_2022_3184656 crossref_primary_10_1213_ANE_0000000000005916 crossref_primary_10_1016_j_cmpb_2020_105753 crossref_primary_10_3390_s21082828 crossref_primary_10_1089_tmj_2022_0182 crossref_primary_10_1159_000515576 crossref_primary_10_1016_j_cjca_2019_06_034 crossref_primary_10_3390_healthcare7030096 crossref_primary_10_1109_ACCESS_2023_3317900 crossref_primary_10_1109_JSTQE_2020_3002084 crossref_primary_10_1007_s12471_018_1208_z crossref_primary_10_7759_cureus_50952 crossref_primary_10_3390_ijerph16132390 crossref_primary_10_3390_s23229208 crossref_primary_10_1055_a_2376_6332 crossref_primary_10_1002_joa3_12338 crossref_primary_10_1080_14779072_2022_2045196 crossref_primary_10_3390_bioengineering12050488 crossref_primary_10_3390_s23020615 crossref_primary_10_1016_j_anclin_2023_03_002 crossref_primary_10_1016_j_hrthm_2019_04_042 crossref_primary_10_3390_s25092848 crossref_primary_10_1177_1357633X19878330 crossref_primary_10_1109_TETC_2020_3014847 crossref_primary_10_1016_j_bspc_2021_102421 crossref_primary_10_1093_omcr_omz143 crossref_primary_10_1109_LSENS_2025_3528305 crossref_primary_10_3390_bios12050292 crossref_primary_10_3390_s24248204 crossref_primary_10_3389_fmed_2021_685999 crossref_primary_10_1109_LCOMM_2019_2937782 crossref_primary_10_2217_pme_2019_0113 crossref_primary_10_1016_j_cjca_2020_09_001 crossref_primary_10_3389_fnbeh_2022_856544 crossref_primary_10_5604_01_3001_0014_7475 crossref_primary_10_1002_admt_202100572 crossref_primary_10_1111_jocn_16434 crossref_primary_10_1089_heq_2023_0034 crossref_primary_10_3390_s23177521 crossref_primary_10_1002_adsr_202300118 crossref_primary_10_1016_j_measurement_2020_108168 crossref_primary_10_3390_ijerph17144975 crossref_primary_10_17925_EJAE_2022_8_1_7 crossref_primary_10_1007_s10557_021_07246_3 crossref_primary_10_1136_bmjopen_2021_056480 crossref_primary_10_1016_j_tvjl_2020_105590 crossref_primary_10_1080_17434440_2018_1557046 crossref_primary_10_1109_TBCAS_2023_3299084 crossref_primary_10_1016_j_cjca_2019_03_024 |
| Cites_doi | 10.1001/jama.2014.14781 10.1016/j.jacc.2018.03.003 10.1016/j.jacc.2011.07.026 10.1249/MSS.0000000000001284 10.1001/jamacardio.2016.3340 |
| ContentType | Journal Article |
| Copyright | 2018 Canadian Cardiovascular Society Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 Canadian Cardiovascular Society – notice: Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cjca.2018.05.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1916-7075 |
| EndPage | 1087 |
| ExternalDocumentID | 30049358 10_1016_j_cjca_2018_05_003 S0828282X18303714 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1P~ 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACJTP ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV E3Z EBS EFJIC EFKBS EFLBG EJD F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HX~ HYE HZ~ J1W KOM M41 MO0 O-L O9- OAUVE OA~ OK1 OL0 P-8 P-9 P2P PC. Q38 ROL RPM SDF SEL SES SJN SNG SPCBC SSH SSZ T5K TR2 Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW LCYCR NAHTW AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c473t-f47fea9dfae3ae8f3e83c001d252cfb8966288d42aab8bc739e413b56741b20d3 |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439561200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0828-282X 1916-7075 |
| IngestDate | Sat Sep 27 23:00:45 EDT 2025 Wed Feb 19 02:36:27 EST 2025 Sat Nov 29 05:53:44 EST 2025 Tue Nov 18 22:22:08 EST 2025 Fri Feb 23 02:12:54 EST 2024 Tue Oct 14 19:31:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c473t-f47fea9dfae3ae8f3e83c001d252cfb8966288d42aab8bc739e413b56741b20d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0459-3897 0000-0002-8493-5123 0000-0002-7982-1586 |
| PMID | 30049358 |
| PQID | 2078587733 |
| PQPubID | 23479 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2078587733 pubmed_primary_30049358 crossref_citationtrail_10_1016_j_cjca_2018_05_003 crossref_primary_10_1016_j_cjca_2018_05_003 elsevier_sciencedirect_doi_10_1016_j_cjca_2018_05_003 elsevier_clinicalkey_doi_10_1016_j_cjca_2018_05_003 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Canadian journal of cardiology |
| PublicationTitleAlternate | Can J Cardiol |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Gillinov, Etiwy, Wang (bib4) 2017; 49 Bumgarner, Lambert, Hussein (bib5) 2018; 71 Patel, Asch, Volpp (bib1) 2015; 313 Mittal, Movsowitz, Steinberg (bib2) 2011; 58 Wang, Blackburn, Desai (bib3) 2017; 2 Wang (10.1016/j.cjca.2018.05.003_bib3) 2017; 2 Bumgarner (10.1016/j.cjca.2018.05.003_bib5) 2018; 71 Patel (10.1016/j.cjca.2018.05.003_bib1) 2015; 313 Mittal (10.1016/j.cjca.2018.05.003_bib2) 2011; 58 Gillinov (10.1016/j.cjca.2018.05.003_bib4) 2017; 49 |
| References_xml | – volume: 313 start-page: 459 year: 2015 end-page: 460 ident: bib1 article-title: Wearable devices as facilitators, not drivers, of health behavior change publication-title: JAMA – volume: 2 start-page: 104 year: 2017 end-page: 106 ident: bib3 article-title: Accuracy of wrist-worn heart rate monitors publication-title: JAMA Cardiol – volume: 49 start-page: 1697 year: 2017 end-page: 1703 ident: bib4 article-title: Variable accuracy of wearable heart rate monitors during aerobic exercise publication-title: Med Sci Sports Exerc – volume: 58 start-page: 1741 year: 2011 end-page: 1749 ident: bib2 article-title: Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation publication-title: J Am Coll Cardiol – volume: 71 start-page: 2381 year: 2018 end-page: 2388 ident: bib5 article-title: Automated atrial fibrillation detection algorithm using smartwatch technology publication-title: J Am Coll Cardiol – volume: 313 start-page: 459 year: 2015 ident: 10.1016/j.cjca.2018.05.003_bib1 article-title: Wearable devices as facilitators, not drivers, of health behavior change publication-title: JAMA doi: 10.1001/jama.2014.14781 – volume: 71 start-page: 2381 year: 2018 ident: 10.1016/j.cjca.2018.05.003_bib5 article-title: Automated atrial fibrillation detection algorithm using smartwatch technology publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.03.003 – volume: 58 start-page: 1741 year: 2011 ident: 10.1016/j.cjca.2018.05.003_bib2 article-title: Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2011.07.026 – volume: 49 start-page: 1697 year: 2017 ident: 10.1016/j.cjca.2018.05.003_bib4 article-title: Variable accuracy of wearable heart rate monitors during aerobic exercise publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0000000000001284 – volume: 2 start-page: 104 year: 2017 ident: 10.1016/j.cjca.2018.05.003_bib3 article-title: Accuracy of wrist-worn heart rate monitors publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2016.3340 |
| SSID | ssj0041776 |
| Score | 2.481052 |
| SecondaryResourceType | review_article |
| Snippet | Over the past decade, there has been an explosion of consumer devices for the purposes of health and fitness tracking. The wearable technology market, composed... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1083 |
| SubjectTerms | Algorithms Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - physiopathology Equipment Design Heart Rate - physiology Humans Monitoring, Physiologic - instrumentation Wearable Electronic Devices |
| Title | The Emerging Role of Wearable Technologies in Detection of Arrhythmia |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0828282X18303714 https://dx.doi.org/10.1016/j.cjca.2018.05.003 https://www.ncbi.nlm.nih.gov/pubmed/30049358 https://www.proquest.com/docview/2078587733 |
| Volume | 34 |
| WOSCitedRecordID | wos000439561200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1916-7075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041776 issn: 0828-282X databaseCode: AIEXJ dateStart: 20171101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbYhtBe0Pi5wZiMhHhBmZLYiZ3HauqAMQpCncib5biO2oqlXZuh8d9zduwkAjbGAy9RatlN4vt8Pp_P9yH0itlFAycBZUQGlFIZ8CSJA6oog9FEjMlqySbYaMTzPPvsXNlrSyfAqopfXWXL_ypqKANhm6Oz_yDu9k-hAO5B6HAFscP11oI3ribLPvTFBQ9-ha-0h6RaV_rMRmKBvqm18lbjYLWa_qin5zPZt1nbBAa9LBPKhrH2PfJHU-30Ri9fQeeD_QBKreoiKLtAY_Pb5f49kYYO8W3fERHxNgzO606wNAMWNkQoh_oPZU7hOu9lAyze055R2JDa_KbWGw_D_FDNlckVFXGbbTUk3STmN-5Hn8Tx2empGA_z8evlRWDoxcw2vONa2UBbMUsyUH9bg_fD_MRP2jRiloewfV93vqoJBfz1sdfZMNetUaytMt5B990iAw8acDxAd3T1EN376MIoHqEhYAR7jGCDEbwosccI7mMEzyrcYsTU6jDyGJ0dD8dH7wLHpxHAwCN1UFJWaplNSqmJ1LwkmhMFZsokTmJVFhxWvjHnExpLWfBCMZJpMHGKJAWrs4jDCXmCNqtFpXcRLlOlU9DdMuaawhJehmkBNcs4KtIMJtg9FPkeEsolmzecJ9-EjyqcC9OrwvSqCBOTonYPvWnbLJtUKzfWJr7jhT9EDNOeAMjc2CppWzkTszEd_9rupZetAP1rNtVkpReXa6jEeMIZI1DnaSP09u1NNjsTZ_DsFq2fo-1uUO2jzXp1qV-gu-p7PVuvDtAGy_mBA-1PVoitSA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Emerging+Role+of+Wearable+Technologies+in+Detection+of+Arrhythmia&rft.jtitle=Canadian+journal+of+cardiology&rft.au=Cheung%2C+Christopher+C&rft.au=Krahn%2C+Andrew+D&rft.au=Andrade%2C+Jason+G&rft.date=2018-08-01&rft.issn=1916-7075&rft.eissn=1916-7075&rft.volume=34&rft.issue=8&rft.spage=1083&rft_id=info:doi/10.1016%2Fj.cjca.2018.05.003&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0828-282X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0828-282X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0828-282X&client=summon |