Proximal-gradient algorithms for fractional programming

In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 66; číslo 8; s. 1383 - 1396
Hlavní autoři: Boţ, Radu Ioan, Csetnek, Ernö Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 03.08.2017
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a proximal step with respect to the nonsmooth numerator and a gradient step with respect to the smooth denominator. The algorithm in case of a concave denominator has the particularity that it generates sequences which approach both the (global) optimal solutions set and the optimal objective value of the underlying fractional programming problem. In case of a convex denominator the numerical scheme approaches the set of critical points of the objective function, provided the latter satisfies the Kurdyka-ᴌojasiewicz property.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0233-1934
1029-4945
1029-4945
DOI:10.1080/02331934.2017.1294592