The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?
There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reactio...
Uloženo v:
| Vydáno v: | Catalysis letters Ročník 151; číslo 7; s. 1843 - 1856 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2021
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1011-372X, 1572-879X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability.
Graphic Abstract |
|---|---|
| AbstractList | There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability.
Graphic Abstract There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability.Graphic Abstract There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. |
| Audience | Academic |
| Author | Zeradjanin, Aleksandar Spanos, Ioannis Masa, Justus Schlögl, Robert |
| Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0000-0001-5737-4992 surname: Spanos fullname: Spanos, Ioannis email: ioannis.spanos@cec.mpg.de organization: Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion – sequence: 2 givenname: Justus orcidid: 0000-0002-8555-5157 surname: Masa fullname: Masa, Justus organization: Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion – sequence: 3 givenname: Aleksandar orcidid: 0000-0002-0649-0544 surname: Zeradjanin fullname: Zeradjanin, Aleksandar organization: Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion – sequence: 4 givenname: Robert orcidid: 0000-0002-5163-1051 surname: Schlögl fullname: Schlögl, Robert organization: Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Department of Inorganic Chemistry, Fritz Haber Institut der Max-Planck-Gesselschaft |
| BookMark | eNp9kc9uEzEQxleoSLSFF-BkiROHLf6zu97lgqIoQKSiSm2QerOmu-PgsrGD7UTNq_C0TLNIqBwqS_Z4_P1mbH9nxYkPHovireAXgnP9IQleN7LkkpdcVbotqxfFqai1LFvd3Z5QzIUolZa3r4qzlO45550W3Wnxe_UD2cJa7DMLli1j8Gy52e6iyw4To90qgk-0o_AbZhjZHGg-pJyYDZFl4q8eDmv0bLEP4-4ovEboj4HzbDb-hNF56uL3jspv0OePbEbne5cPVHNwkEOkXnHKIrtxGdOn18VLC2PCN3_X8-L758Vq_rW8vPqynM8uy77SKpfQIAxNV9eaIwrb1XdVK-5a1LJWA4AeZEsZCVhpCZVqe-S2H5SyuoFWKqHOi3dT3W0Mv3aYsrkPu-ippZF1JYTiQnNSXUyqNYxonLchR-hpDLhxPblhHeVnTdPIjte8I-D9E4A0GR_yGnYpmeXN9VOtnLR9DClFtGYb3QbiwQhuHg02k8GGDDZHg01FUPsf1LsMj99ON3Pj86ia0ER9_Brjvyc_Q_0BCB-9cQ |
| CitedBy_id | crossref_primary_10_1016_j_isci_2023_108695 crossref_primary_10_1002_cssc_202200027 crossref_primary_10_1002_celc_202101278 crossref_primary_10_1021_acs_energyfuels_5c02712 crossref_primary_10_1002_celc_202200958 crossref_primary_10_1016_j_electacta_2025_145784 crossref_primary_10_1002_celc_202200479 crossref_primary_10_1002_ange_202423071 crossref_primary_10_1016_j_corsci_2022_110437 crossref_primary_10_1039_D3EE02809G crossref_primary_10_1016_j_coelec_2024_101568 crossref_primary_10_1016_j_jcat_2024_115675 crossref_primary_10_1016_j_ijhydene_2024_04_032 crossref_primary_10_1002_cssc_202400561 crossref_primary_10_1016_j_coelec_2024_101560 crossref_primary_10_1002_celc_202500067 crossref_primary_10_1016_j_apcatb_2024_124196 crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1016_j_electacta_2025_147333 crossref_primary_10_1016_j_ijhydene_2025_05_262 crossref_primary_10_1002_elsa_202400023 crossref_primary_10_1016_j_electacta_2023_143335 crossref_primary_10_1002_aenm_202400676 crossref_primary_10_3390_catal12050476 crossref_primary_10_1002_celc_202300432 crossref_primary_10_1016_j_ijhydene_2025_04_381 crossref_primary_10_1016_j_jelechem_2024_118515 crossref_primary_10_1016_j_electacta_2023_142295 crossref_primary_10_1039_D2SE00185C crossref_primary_10_1016_j_coche_2023_100981 crossref_primary_10_1016_j_electacta_2024_143988 crossref_primary_10_1002_celc_202400223 crossref_primary_10_1007_s10800_022_01817_4 crossref_primary_10_1016_j_jcat_2024_115771 crossref_primary_10_1016_j_checat_2022_07_016 crossref_primary_10_1039_D5SC01380A crossref_primary_10_1016_j_electacta_2024_144719 crossref_primary_10_1016_j_ijhydene_2024_04_333 crossref_primary_10_1002_anie_202306503 crossref_primary_10_1007_s10562_021_03720_7 crossref_primary_10_1088_2053_1583_acbfcb crossref_primary_10_1016_j_ijhydene_2024_02_354 crossref_primary_10_1002_admi_202100900 crossref_primary_10_1002_celc_202300853 crossref_primary_10_1016_j_jcat_2024_115487 crossref_primary_10_1002_anie_202423071 crossref_primary_10_1007_s10853_025_11436_x crossref_primary_10_1016_j_apcatb_2021_120752 crossref_primary_10_1002_ange_202306503 crossref_primary_10_1002_smtd_202500199 crossref_primary_10_1016_j_jelechem_2024_118613 crossref_primary_10_1039_D2NR05373J crossref_primary_10_1002_smll_202411211 |
| Cites_doi | 10.1016/0013-4686(84)85004-5 10.1021/acscatal.7b00632 10.1002/cctc.201200564 10.1021/cs3002644 10.1021/jacs.7b07117 10.1149/2.0131611jes 10.1002/celc.201700496 10.1039/C6SC04622C 10.1021/jp3007415 10.1021/acscatal.9b01940 10.1149/1.2096717 10.1149/1.2424104 10.1149/1.2115565 10.1021/ja405351s 10.1021/jz501061n 10.1149/1.2054936 10.1149/1.2115548 10.1021/ja3000084 10.1016/j.elecom.2013.05.032 10.1021/jp710675m 10.1016/0360-3199(93)90002-R 10.1016/S0254-0584(03)00316-X 10.1021/jacs.5b10699 10.1021/jacs.6b00332 10.1039/C9CC01593K 10.1021/ja511559d 10.1016/j.elecom.2013.03.040 10.1016/S0022-0728(80)80084-2 10.1002/asia.200800420 10.1149/1.2095818 10.1021/ja407115p 10.1149/1.2119829 10.1016/S1452-3981(23)15531-3 10.1021/cs200599g 10.1002/anie.201301470 10.1016/0013-4686(66)80045-2 10.1149/1.2100463 10.1021/ja4027715 10.1038/nchem.771 10.1021/acscatal.0c00304 10.1039/c2ee21234j 10.1016/0254-0584(86)90045-3 10.1021/ja307507a 10.1039/c3cp50649e 10.1021/acscatal.5b01638 10.1002/sia.5895 10.1016/S0022-0728(01)00499-5 10.1016/0079-6786(71)90018-5 10.1039/C4CP00692E 10.1016/j.electacta.2005.10.022 10.1021/jz201461p 10.1039/C4CC03099K 10.1073/pnas.1620787114 10.1007/978-1-4684-2607-6_27 10.1073/pnas.1722034115 10.1002/anie.200600033 10.1149/1.2131689 10.1039/C0CP00993H 10.1007/978-1-4684-2607-6_31 10.1016/0013-4686(94)85172-7 10.1149/1.1837437 10.1039/C4EE00370E 10.1149/1.2403399 10.1021/ja5110393 10.1007/s12274-019-2391-y 10.1149/1.2800752 10.1149/1.1837961 10.1149/2.0411409jes 10.1021/acs.jpclett.5b01650 10.1002/bbpc.19940981203 10.1002/cssc.201801975 10.1021/ja502379c 10.1002/anie.201208320 10.1016/0378-7753(82)80057-8 10.1021/acs.jpcc.5b00105 10.1038/s41560-020-0576-y 10.1149/1.2427525 10.1016/j.cattod.2015.08.014 10.1021/jacs.5b10977 10.1016/0013-4686(94)85135-2 10.1021/cs401245q |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2021 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10562-020-03478-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef ProQuest Materials Science Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1572-879X |
| EndPage | 1856 |
| ExternalDocumentID | A666290509 10_1007_s10562_020_03478_4 |
| GrantInformation_xml | – fundername: Projekt DEAL |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c473t-a6ead695570ee1f95b481b8e7253daa7d28b482ae472a438ce0fcd33f76a82313 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600090100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1011-372X |
| IngestDate | Sat Nov 08 14:44:09 EST 2025 Sat Nov 29 10:07:16 EST 2025 Wed Nov 26 09:51:37 EST 2025 Sat Nov 29 04:09:10 EST 2025 Tue Nov 18 21:54:31 EST 2025 Fri Feb 21 02:48:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Reaction mechanism Electrocatalysis Alkaline water electrolysis Fe impurities |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-a6ead695570ee1f95b481b8e7253daa7d28b482ae472a438ce0fcd33f76a82313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5737-4992 0000-0002-0649-0544 0000-0002-5163-1051 0000-0002-8555-5157 |
| OpenAccessLink | https://link.springer.com/10.1007/s10562-020-03478-4 |
| PQID | 2541130170 |
| PQPubID | 2043868 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2541130170 gale_infotracacademiconefile_A666290509 gale_incontextgauss_ISR_A666290509 crossref_primary_10_1007_s10562_020_03478_4 crossref_citationtrail_10_1007_s10562_020_03478_4 springer_journals_10_1007_s10562_020_03478_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Catalysis letters |
| PublicationTitleAbbrev | Catal Lett |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Kötz, Lewerenz, Stucki (CR14) 1983; 130 Pfeifer, Jones, Velasco Vélez (CR8) 2016; 48 Matsumoto, Sato (CR2) 1986; 14 Landon, Demeter, İnoğlu (CR68) 2012; 2 Stevens, Trang, Enman (CR74) 2017; 139 Pumera, Iwai (CR19) 2009; 4 Banks, Crossley, Salter, Compton (CR40) 2006; 45 Singh, Pandey, Anitha (CR65) 1993; 18 Michael, Lyons (CR55) 2008; 3 Bockris, Veziroğlu (CR3) 1975 Danilovic, Subbaraman, Chang (CR13) 2014; 5 Kostecki, Augustynski (CR31) 1994; 98 Godwin, Lyons (CR52) 2013; 32 Damjanovic, Dey, Bockris (CR7) 1966; 113 Kedzierzawski, Augustynski (CR30) 1994; 141 Yeo, Bell (CR59) 2012; 116 Meyer (CR62) 1960; 107 Spanos, Auer, Neugebauer (CR4) 2017; 7 Ullman, Liu, Huynh (CR20) 2014; 136 Kötz, Neff, Stucki (CR15) 1984; 131 Bockris, Otagawa (CR42) 1984; 131 Kostecki, McLarnon (CR50) 1997; 144 Ahn, Bard (CR48) 2016; 138 Zhou, López (CR77) 2020; 10 Zhang, Nellist, Enman (CR75) 2019; 12 Stevens, Enman, Korkus (CR82) 2019; 12 Mayrhofer, Wiberg, Arenz (CR17) 2008; 155 Pfeifer, Jones, Velasco Vélez (CR10) 2017; 8 Merrill, Dougherty (CR51) 2008; 112 Desilvestro, Corrigan, Weaver (CR54) 1988; 135 Kasian, Geiger, Stock (CR11) 2016; 163 Lu, Srinivasan (CR56) 1978; 125 Corrigan, Bendert (CR64) 1989; 136 Calle-Vallejo, Koper (CR27) 2013; 52 Schmidt, Paulus, Gasteiger (CR24) 2001; 508 Görlin, Chernev, Ferreira de Araújo (CR45) 2016; 138 Diaz-Morales, Ledezma-Yanez, Koper (CR80) 2015; 5 Bockris, McHardy (CR22) 1973; 120 Surendranath, Lutterman, Liu (CR21) 2012; 134 Cherevko, Geiger, Kasian (CR12) 2016; 262 Goodenough (CR16) 1971; 5 McCrory, Jung, Peters (CR71) 2013; 135 Oliva, Leonardi, Laurent (CR53) 1982; 8 Corrigan (CR41) 1987; 134 Chung, Lopes, Martins (CR83) 2020; 5 Kuhl, Cave, Abram (CR32) 2012; 5 Peterson, Nørskov (CR35) 2012; 3 Spanos, Tesch, Yu (CR61) 2019; 9 Wehrens-Dijksma, Notten (CR58) 2006; 51 Klaus, Cai, Louie (CR73) 2015; 119 Friebel, Louie, Bajdich (CR47) 2015; 137 Sreekanth, Phani (CR36) 2014; 50 Hu, Wu (CR66) 2003; 82 Miller, Rocheleau (CR69) 1997; 144 Katsounaros, Schneider, Meier (CR26) 2013; 15 Li, Bediako, Hadt (CR44) 2017; 114 Kwon, Birdja, Spanos (CR18) 2012; 2 Gong, Li, Wang (CR70) 2013; 135 Masa, Zhao, Xia (CR37) 2013; 34 Trasatti (CR43) 1984; 29 Krasil'shchikov (CR1) 1963; 37 Montoya, Peterson, Nørskov (CR33) 2013; 5 Nie, Esopi, Janik (CR34) 2013; 52 Burke, Zou, Enman (CR81) 2015; 6 Trasatti (CR6) 1980; 111 Morales, Masa, Andronescu (CR38) 2017; 4 Reier, Teschner, Lunkenbein (CR9) 2014; 161 Cappadonia, Divisek, von der Heyden (CR57) 1994; 39 Hori, Wakebe, Tsukamoto (CR29) 1994; 39 Bode, Dehmelt, Witte (CR49) 1966; 11 Xiao, Shin, Goddard (CR79) 2018; 115 Hatsukade, Kuhl, Cave (CR28) 2014; 16 CR63 Deng, Ren, Deng (CR39) 2014; 7 Strmcnik, Escudero-Escribano, Kodama (CR25) 2010; 2 Trotochaud, Young, Ranney (CR60) 2014; 136 Chen, Dang, Liang (CR78) 2015; 137 Nuttall, Fickett, Titterington, Veziroğlu (CR5) 1975 Li, Selloni (CR76) 2014; 4 Louie, Bell (CR46) 2013; 135 Shin, Kim, Park (CR23) 2019; 55 Li, Walsh, Pletcher (CR67) 2011; 13 Trotochaud, Ranney, Williams (CR72) 2012; 134 CE Banks (3478_CR40) 2006; 45 HS Ahn (3478_CR48) 2016; 138 N Sreekanth (3478_CR36) 2014; 50 Y Matsumoto (3478_CR2) 1986; 14 DA Corrigan (3478_CR41) 1987; 134 L Trotochaud (3478_CR60) 2014; 136 M Cappadonia (3478_CR57) 1994; 39 RN Singh (3478_CR65) 1993; 18 H Bode (3478_CR49) 1966; 11 I Spanos (3478_CR4) 2017; 7 BS Yeo (3478_CR59) 2012; 116 MW Louie (3478_CR46) 2013; 135 JB Goodenough (3478_CR16) 1971; 5 KJJ Mayrhofer (3478_CR17) 2008; 155 JH Montoya (3478_CR33) 2013; 5 KP Kuhl (3478_CR32) 2012; 5 I Spanos (3478_CR61) 2019; 9 S Klaus (3478_CR73) 2015; 119 Y Zhou (3478_CR77) 2020; 10 DA Corrigan (3478_CR64) 1989; 136 RE Meyer (3478_CR62) 1960; 107 J Landon (3478_CR68) 2012; 2 AA Peterson (3478_CR35) 2012; 3 P Oliva (3478_CR53) 1982; 8 R Kötz (3478_CR15) 1984; 131 IJ Godwin (3478_CR52) 2013; 32 R Kostecki (3478_CR31) 1994; 98 J Deng (3478_CR39) 2014; 7 JY Chen (3478_CR78) 2015; 137 S Trasatti (3478_CR6) 1980; 111 M Wehrens-Dijksma (3478_CR58) 2006; 51 CCL McCrory (3478_CR71) 2013; 135 TJ Schmidt (3478_CR24) 2001; 508 AM Ullman (3478_CR20) 2014; 136 F Calle-Vallejo (3478_CR27) 2013; 52 DY Chung (3478_CR83) 2020; 5 Y Kwon (3478_CR18) 2012; 2 S Shin (3478_CR23) 2019; 55 X Li (3478_CR67) 2011; 13 O Kasian (3478_CR11) 2016; 163 L Trotochaud (3478_CR72) 2012; 134 3478_CR63 MS Burke (3478_CR81) 2015; 6 JOM Bockris (3478_CR42) 1984; 131 R Kötz (3478_CR14) 1983; 130 Y-F Li (3478_CR76) 2014; 4 D Friebel (3478_CR47) 2015; 137 T Hatsukade (3478_CR28) 2014; 16 C-C Hu (3478_CR66) 2003; 82 T Reier (3478_CR9) 2014; 161 PWT Lu (3478_CR56) 1978; 125 H Xiao (3478_CR79) 2018; 115 V Pfeifer (3478_CR10) 2017; 8 MB Stevens (3478_CR74) 2017; 139 Y Hori (3478_CR29) 1994; 39 N Li (3478_CR44) 2017; 114 DM Morales (3478_CR38) 2017; 4 T Zhang (3478_CR75) 2019; 12 JOM Bockris (3478_CR22) 1973; 120 AN Krasil'shchikov (3478_CR1) 1963; 37 LJ Nuttall (3478_CR5) 1975 D Strmcnik (3478_CR25) 2010; 2 MB Stevens (3478_CR82) 2019; 12 S Cherevko (3478_CR12) 2016; 262 M Gong (3478_CR70) 2013; 135 X Nie (3478_CR34) 2013; 52 MD Merrill (3478_CR51) 2008; 112 V Pfeifer (3478_CR8) 2016; 48 J Masa (3478_CR37) 2013; 34 EG Michael (3478_CR55) 2008; 3 S Trasatti (3478_CR43) 1984; 29 EL Miller (3478_CR69) 1997; 144 JOM Bockris (3478_CR3) 1975 M Pumera (3478_CR19) 2009; 4 A Damjanovic (3478_CR7) 1966; 113 Y Surendranath (3478_CR21) 2012; 134 I Katsounaros (3478_CR26) 2013; 15 P Kedzierzawski (3478_CR30) 1994; 141 N Danilovic (3478_CR13) 2014; 5 R Kostecki (3478_CR50) 1997; 144 M Görlin (3478_CR45) 2016; 138 O Diaz-Morales (3478_CR80) 2015; 5 J Desilvestro (3478_CR54) 1988; 135 |
| References_xml | – volume: 82 start-page: 588 issue: 3 year: 2003 end-page: 596 ident: CR66 article-title: Bipolar performance of the electroplated iron–nickel deposits for water electrolysis publication-title: Mater Chem Phys – volume: 138 start-page: 313 issue: 1 year: 2016 end-page: 318 ident: CR48 article-title: Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the “fast” iron sites publication-title: J Am Chem Soc – volume: 115 start-page: 5872 issue: 23 year: 2018 ident: CR79 article-title: Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction publication-title: Proc Natl Acad Sci – volume: 7 start-page: 3768 issue: 6 year: 2017 end-page: 3778 ident: CR4 article-title: Standardized benchmarking of water splitting catalysts in a combined electrochemical flow cell/inductively coupled plasma–optical emission spectrometry (ICP-OES) setup publication-title: ACS Catal – volume: 7 start-page: 1919 issue: 6 year: 2014 end-page: 1923 ident: CR39 article-title: Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 14 start-page: 397 issue: 5 year: 1986 end-page: 426 ident: CR2 article-title: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction publication-title: Mater Chem Phys – volume: 16 start-page: 13814 issue: 27 year: 2014 end-page: 13819 ident: CR28 article-title: Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces publication-title: Phys Chem Chem Phys – volume: 13 start-page: 1162 issue: 3 year: 2011 end-page: 1167 ident: CR67 article-title: Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers publication-title: Phys Chemy Chem Phys – volume: 120 start-page: 61 issue: 1 year: 1973 ident: CR22 article-title: Electrocatalysis of oxygen reduction by sodium tungsten bronze publication-title: J Electrochem Soc – volume: 34 start-page: 113 year: 2013 end-page: 116 ident: CR37 article-title: Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction publication-title: Electrochem Commun – volume: 135 start-page: 12329 issue: 33 year: 2013 end-page: 12337 ident: CR46 article-title: An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J Am Chem Soc – volume: 163 start-page: F3099 issue: 11 year: 2016 end-page: F3104 ident: CR11 article-title: On the origin of the improved ruthenium stability in RuO2–IrO2 mixed oxides publication-title: J Electrochem Soc – start-page: 371 year: 1975 end-page: 403 ident: CR3 article-title: On methods for the large-scale production of hydrogen from water publication-title: Hydrogen energy: part A – volume: 32 start-page: 39 year: 2013 end-page: 42 ident: CR52 article-title: Short communication publication-title: Electrochem Commun – volume: 3 start-page: 251 issue: 2 year: 2012 end-page: 258 ident: CR35 article-title: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts publication-title: J Phys Chem Lett – volume: 137 start-page: 1305 issue: 3 year: 2015 end-page: 1313 ident: CR47 article-title: Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting publication-title: J Am Chem Soc – volume: 51 start-page: 3609 issue: 18 year: 2006 end-page: 3621 ident: CR58 article-title: Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes publication-title: Electrochim Acta – volume: 2 start-page: 759 issue: 5 year: 2012 end-page: 764 ident: CR18 article-title: Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth publication-title: ACS Catal – volume: 4 start-page: 1148 issue: 4 year: 2014 end-page: 1153 ident: CR76 article-title: Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx publication-title: ACS Catal – volume: 4 start-page: 554 issue: 4 year: 2009 end-page: 560 ident: CR19 article-title: Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for “electrocatalytic” effect of carbon nanotubes publication-title: Chem Asian J – volume: 2 start-page: 1793 issue: 8 year: 2012 end-page: 1801 ident: CR68 article-title: Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes publication-title: ACS Catal – volume: 10 start-page: 6254 issue: 11 year: 2020 end-page: 6261 ident: CR77 article-title: The role of Fe species on NiOOH in oxygen evolution reactions publication-title: ACS Catal – volume: 107 start-page: 847 issue: 10 year: 1960 ident: CR62 article-title: Cathodic processes on passive zirconium publication-title: J Electrochem Soc – volume: 125 start-page: 1416 issue: 9 year: 1978 end-page: 1422 ident: CR56 article-title: Electrochemical-ellipsometric studies of oxide film formed on nickel during oxygen evolution publication-title: J Electrochem Soc – volume: 12 start-page: 2288 issue: 9 year: 2019 end-page: 2295 ident: CR82 article-title: Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure publication-title: Nano Res – volume: 134 start-page: 377 issue: 2 year: 1987 end-page: 384 ident: CR41 article-title: The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes publication-title: J Electrochem Soc – volume: 134 start-page: 17253 issue: 41 year: 2012 end-page: 17261 ident: CR72 article-title: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution publication-title: J Am Chem Soc – volume: 6 start-page: 3737 issue: 18 year: 2015 end-page: 3742 ident: CR81 article-title: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media publication-title: J Phys Chem Lett – volume: 8 start-page: 2143 issue: 3 year: 2017 end-page: 2149 ident: CR10 article-title: In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces publication-title: Chem Sci – volume: 139 start-page: 11361 issue: 33 year: 2017 end-page: 11364 ident: CR74 article-title: Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity publication-title: J Am Chem Soc – volume: 131 start-page: 72 issue: 1 year: 1984 end-page: 77 ident: CR15 article-title: Anodic iridium oxide films: XPS-studies of oxidation state changes and publication-title: J Electrochem Soc – volume: 508 start-page: 41 issue: 1 year: 2001 end-page: 47 ident: CR24 article-title: The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions publication-title: J Electroanal Chem – volume: 52 start-page: 2459 issue: 9 year: 2013 end-page: 2462 ident: CR34 article-title: Selectivity of CO2 Reduction on copper electrodes: the role of the kinetics of elementary steps publication-title: Angew Chem Int Ed – volume: 135 start-page: 16977 issue: 45 year: 2013 end-page: 16987 ident: CR71 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J Am Chem Soc – volume: 15 start-page: 8058 issue: 21 year: 2013 end-page: 8068 ident: CR26 article-title: The impact of spectator species on the interaction of H2O2 with platinum – implications for the oxygen reduction reaction pathways publication-title: Phys Chem Chem Phys – volume: 12 start-page: 2015 issue: 9 year: 2019 end-page: 2021 ident: CR75 article-title: Modes of Fe incorporation in Co–Fe (Oxy)hydroxide oxygen evolution electrocatalysts publication-title: Chemsuschem – volume: 144 start-page: 3072 issue: 9 year: 1997 end-page: 3077 ident: CR69 article-title: Electrochemical behavior of reactively sputtered iron-doped nickel oxide publication-title: J Electrochem Soc – volume: 119 start-page: 7243 issue: 13 year: 2015 end-page: 7254 ident: CR73 article-title: Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity publication-title: J Phys Chem C – volume: 4 start-page: 2835 issue: 11 year: 2017 end-page: 2841 ident: CR38 article-title: Promotional effect of Fe impurities in graphene precursors on the activity of MnOX/graphene electrocatalysts for the oxygen evolution and oxygen reduction reactions publication-title: ChemElectroChem – volume: 2 start-page: 880 issue: 10 year: 2010 end-page: 885 ident: CR25 article-title: Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide publication-title: Nat Chem – volume: 135 start-page: 8452 issue: 23 year: 2013 end-page: 8455 ident: CR70 article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation publication-title: J Am Chem Soc – volume: 262 start-page: 170 year: 2016 end-page: 180 ident: CR12 article-title: Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability publication-title: Catal Today – volume: 55 start-page: 6389 issue: 45 year: 2019 end-page: 6392 ident: CR23 article-title: Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions publication-title: Chem Commun – volume: 18 start-page: 467 issue: 6 year: 1993 end-page: 473 ident: CR65 article-title: Preparation of electrodeposited thin films of nickel-iron alloys on mild steel for alkaline water electrolysis. Part I: studies on oxygen evolution publication-title: Int J Hydrogen Energy – volume: 134 start-page: 6326 issue: 14 year: 2012 end-page: 6336 ident: CR21 article-title: Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst publication-title: J Am Chem Soc – volume: 50 start-page: 11143 issue: 76 year: 2014 end-page: 11146 ident: CR36 article-title: Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM publication-title: Chem Commun – volume: 5 start-page: 5380 issue: 9 year: 2015 end-page: 5387 ident: CR80 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal – volume: 136 start-page: 6744 issue: 18 year: 2014 end-page: 6753 ident: CR60 article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation publication-title: J Am Chem Soc – volume: 136 start-page: 17681 issue: 50 year: 2014 end-page: 17688 ident: CR20 article-title: Water oxidation catalysis by Co(II) impurities in Co(III)4O4 cubanes publication-title: J Am Chem Soc – volume: 137 start-page: 15090 issue: 48 year: 2015 end-page: 15093 ident: CR78 article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy publication-title: J Am Chem Soc – volume: 45 start-page: 2533 issue: 16 year: 2006 end-page: 2537 ident: CR40 article-title: Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes publication-title: Angew Chem Int Ed – volume: 39 start-page: 1833 issue: 11 year: 1994 end-page: 1839 ident: CR29 article-title: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media publication-title: Electrochim Acta – start-page: 441 year: 1975 end-page: 455 ident: CR5 article-title: Hydrogen generation by solid polymer electrolyte water electrolysis publication-title: Hydrogen energy: part A – volume: 144 start-page: 485 issue: 2 year: 1997 end-page: 493 ident: CR50 article-title: Electrochemical and in situ Raman spectroscopic characterization of Nickel Hydroxide Electrodes: I. Pure Nickel Hydroxide publication-title: J Electrochem Soc – volume: 9 start-page: 8165 issue: 9 year: 2019 end-page: 8170 ident: CR61 article-title: Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction publication-title: ACS Catal – volume: 113 start-page: 739 issue: 7 year: 1966 ident: CR7 article-title: Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt-Rh alloy electrodes publication-title: J Electrochem Soc – volume: 29 start-page: 1503 issue: 11 year: 1984 end-page: 1512 ident: CR43 article-title: Electrocatalysis in the anodic evolution of oxygen and chlorine publication-title: Electrochim Acta – volume: 37 start-page: 531 issue: 531 year: 1963 end-page: 537 ident: CR1 article-title: Intermediate stages in the anodic evolution of oxygen publication-title: Zh Fiz Khim – volume: 138 start-page: 5603 issue: 17 year: 2016 end-page: 5614 ident: CR45 article-title: Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts publication-title: J Am Chem Soc. – ident: CR63 – volume: 131 start-page: 290 issue: 2 year: 1984 end-page: 302 ident: CR42 article-title: The electrocatalysis of oxygen evolution on perovskites publication-title: J Electrochem Soc – volume: 98 start-page: 1510 issue: 12 year: 1994 end-page: 1515 ident: CR31 article-title: Electrochemical reduction of CO2 at an activated silver electrode publication-title: Berichte der Bunsengesellschaft für physikalische Chemie – volume: 5 start-page: 7050 issue: 5 year: 2012 end-page: 7059 ident: CR32 article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces publication-title: Energy Environ Sci – volume: 3 start-page: 1386 year: 2008 end-page: 1424 ident: CR55 article-title: The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution Part 1-Nickel publication-title: Int J Electrochem Sci – volume: 114 start-page: 1486 issue: 7 year: 2017 ident: CR44 article-title: Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films publication-title: Proc Natl Acad Sci – volume: 5 start-page: 145 year: 1971 end-page: 399 ident: CR16 article-title: Metallic oxides publication-title: Prog Solid State Chem – volume: 111 start-page: 125 issue: 1 year: 1980 end-page: 131 ident: CR6 article-title: Electrocatalysis by oxides — Attempt at a unifying approach publication-title: J Electroanal Chem Interfacial Electrochem – volume: 161 start-page: F876 issue: 9 year: 2014 end-page: F882 ident: CR9 article-title: Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst-substrate interactions and active iridium oxide species publication-title: J Electrochem Soc – volume: 11 start-page: 1079 issue: 8 year: 1966 end-page: 1087 ident: CR49 article-title: Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat publication-title: Electrochim Acta – volume: 112 start-page: 3655 issue: 10 year: 2008 end-page: 3666 ident: CR51 article-title: Metal oxide catalysts for the evolution of O2 from H2O publication-title: J Phys Chem C – volume: 130 start-page: 825 issue: 4 year: 1983 end-page: 829 ident: CR14 article-title: XPS studies of oxygen evolution on Ru and RuO2 anodes publication-title: J Electrochem Soc – volume: 39 start-page: 1559 issue: 11 year: 1994 end-page: 1564 ident: CR57 article-title: Oxygen evolution at nickel anodes in concentrated alkaline solution publication-title: Electrochim Acta – volume: 5 start-page: 737 issue: 3 year: 2013 end-page: 742 ident: CR33 article-title: Insights into C-C coupling in CO2 electroreduction on copper Eeectrodes publication-title: ChemCatChem – volume: 8 start-page: 229 issue: 2 year: 1982 end-page: 255 ident: CR53 article-title: Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides publication-title: J Power Sour – volume: 135 start-page: 885 issue: 4 year: 1988 end-page: 892 ident: CR54 article-title: Characterization of redox states of nickel hydroxide film electrodes by in situ surface Raman spectroscopy publication-title: J Electrochem Soc – volume: 5 start-page: 2474 issue: 14 year: 2014 end-page: 2478 ident: CR13 article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments publication-title: J Phys Chem Lett – volume: 141 start-page: L58 issue: 5 year: 1994 end-page: L60 ident: CR30 article-title: Poisoning and activation of the gold cathode during electroreduction of CO 2 publication-title: J Electrochem Soc – volume: 116 start-page: 8394 issue: 15 year: 2012 end-page: 8400 ident: CR59 article-title: In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen publication-title: J Phys Chem C – volume: 48 start-page: 261 issue: 5 year: 2016 end-page: 273 ident: CR8 article-title: The electronic structure of iridium and its oxides publication-title: Surf Interface Anal – volume: 5 start-page: 222 issue: 3 year: 2020 end-page: 230 ident: CR83 article-title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction publication-title: Nat Energy – volume: 52 start-page: 7282 issue: 28 year: 2013 end-page: 7285 ident: CR27 article-title: Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes publication-title: Angew Chem Int Ed – volume: 155 start-page: P1 issue: 1 year: 2008 ident: CR17 article-title: Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte publication-title: J Electrochem Soc – volume: 136 start-page: 723 issue: 3 year: 1989 end-page: 728 ident: CR64 article-title: Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1M KOH publication-title: J Electrochem Soc – volume: 29 start-page: 1503 issue: 11 year: 1984 ident: 3478_CR43 publication-title: Electrochim Acta doi: 10.1016/0013-4686(84)85004-5 – volume: 7 start-page: 3768 issue: 6 year: 2017 ident: 3478_CR4 publication-title: ACS Catal doi: 10.1021/acscatal.7b00632 – volume: 5 start-page: 737 issue: 3 year: 2013 ident: 3478_CR33 publication-title: ChemCatChem doi: 10.1002/cctc.201200564 – volume: 2 start-page: 1793 issue: 8 year: 2012 ident: 3478_CR68 publication-title: ACS Catal doi: 10.1021/cs3002644 – volume: 139 start-page: 11361 issue: 33 year: 2017 ident: 3478_CR74 publication-title: J Am Chem Soc doi: 10.1021/jacs.7b07117 – volume: 163 start-page: F3099 issue: 11 year: 2016 ident: 3478_CR11 publication-title: J Electrochem Soc doi: 10.1149/2.0131611jes – volume: 4 start-page: 2835 issue: 11 year: 2017 ident: 3478_CR38 publication-title: ChemElectroChem doi: 10.1002/celc.201700496 – volume: 8 start-page: 2143 issue: 3 year: 2017 ident: 3478_CR10 publication-title: Chem Sci doi: 10.1039/C6SC04622C – volume: 116 start-page: 8394 issue: 15 year: 2012 ident: 3478_CR59 publication-title: J Phys Chem C doi: 10.1021/jp3007415 – volume: 9 start-page: 8165 issue: 9 year: 2019 ident: 3478_CR61 publication-title: ACS Catal doi: 10.1021/acscatal.9b01940 – volume: 136 start-page: 723 issue: 3 year: 1989 ident: 3478_CR64 publication-title: J Electrochem Soc doi: 10.1149/1.2096717 – volume: 113 start-page: 739 issue: 7 year: 1966 ident: 3478_CR7 publication-title: J Electrochem Soc doi: 10.1149/1.2424104 – volume: 131 start-page: 290 issue: 2 year: 1984 ident: 3478_CR42 publication-title: J Electrochem Soc doi: 10.1149/1.2115565 – volume: 135 start-page: 12329 issue: 33 year: 2013 ident: 3478_CR46 publication-title: J Am Chem Soc doi: 10.1021/ja405351s – volume: 5 start-page: 2474 issue: 14 year: 2014 ident: 3478_CR13 publication-title: J Phys Chem Lett doi: 10.1021/jz501061n – volume: 141 start-page: L58 issue: 5 year: 1994 ident: 3478_CR30 publication-title: J Electrochem Soc doi: 10.1149/1.2054936 – volume: 131 start-page: 72 issue: 1 year: 1984 ident: 3478_CR15 publication-title: J Electrochem Soc doi: 10.1149/1.2115548 – volume: 134 start-page: 6326 issue: 14 year: 2012 ident: 3478_CR21 publication-title: J Am Chem Soc doi: 10.1021/ja3000084 – volume: 34 start-page: 113 year: 2013 ident: 3478_CR37 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2013.05.032 – volume: 112 start-page: 3655 issue: 10 year: 2008 ident: 3478_CR51 publication-title: J Phys Chem C doi: 10.1021/jp710675m – volume: 18 start-page: 467 issue: 6 year: 1993 ident: 3478_CR65 publication-title: Int J Hydrogen Energy doi: 10.1016/0360-3199(93)90002-R – volume: 82 start-page: 588 issue: 3 year: 2003 ident: 3478_CR66 publication-title: Mater Chem Phys doi: 10.1016/S0254-0584(03)00316-X – volume: 137 start-page: 15090 issue: 48 year: 2015 ident: 3478_CR78 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b10699 – volume: 138 start-page: 5603 issue: 17 year: 2016 ident: 3478_CR45 publication-title: J Am Chem Soc. doi: 10.1021/jacs.6b00332 – volume: 55 start-page: 6389 issue: 45 year: 2019 ident: 3478_CR23 publication-title: Chem Commun doi: 10.1039/C9CC01593K – volume: 137 start-page: 1305 issue: 3 year: 2015 ident: 3478_CR47 publication-title: J Am Chem Soc doi: 10.1021/ja511559d – volume: 32 start-page: 39 year: 2013 ident: 3478_CR52 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2013.03.040 – volume: 111 start-page: 125 issue: 1 year: 1980 ident: 3478_CR6 publication-title: J Electroanal Chem Interfacial Electrochem doi: 10.1016/S0022-0728(80)80084-2 – volume: 4 start-page: 554 issue: 4 year: 2009 ident: 3478_CR19 publication-title: Chem Asian J doi: 10.1002/asia.200800420 – volume: 135 start-page: 885 issue: 4 year: 1988 ident: 3478_CR54 publication-title: J Electrochem Soc doi: 10.1149/1.2095818 – volume: 135 start-page: 16977 issue: 45 year: 2013 ident: 3478_CR71 publication-title: J Am Chem Soc doi: 10.1021/ja407115p – volume: 130 start-page: 825 issue: 4 year: 1983 ident: 3478_CR14 publication-title: J Electrochem Soc doi: 10.1149/1.2119829 – volume: 3 start-page: 1386 year: 2008 ident: 3478_CR55 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)15531-3 – volume: 2 start-page: 759 issue: 5 year: 2012 ident: 3478_CR18 publication-title: ACS Catal doi: 10.1021/cs200599g – volume: 52 start-page: 7282 issue: 28 year: 2013 ident: 3478_CR27 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201301470 – volume: 11 start-page: 1079 issue: 8 year: 1966 ident: 3478_CR49 publication-title: Electrochim Acta doi: 10.1016/0013-4686(66)80045-2 – ident: 3478_CR63 – volume: 134 start-page: 377 issue: 2 year: 1987 ident: 3478_CR41 publication-title: J Electrochem Soc doi: 10.1149/1.2100463 – volume: 135 start-page: 8452 issue: 23 year: 2013 ident: 3478_CR70 publication-title: J Am Chem Soc doi: 10.1021/ja4027715 – volume: 2 start-page: 880 issue: 10 year: 2010 ident: 3478_CR25 publication-title: Nat Chem doi: 10.1038/nchem.771 – volume: 10 start-page: 6254 issue: 11 year: 2020 ident: 3478_CR77 publication-title: ACS Catal doi: 10.1021/acscatal.0c00304 – volume: 37 start-page: 531 issue: 531 year: 1963 ident: 3478_CR1 publication-title: Zh Fiz Khim – volume: 5 start-page: 7050 issue: 5 year: 2012 ident: 3478_CR32 publication-title: Energy Environ Sci doi: 10.1039/c2ee21234j – volume: 14 start-page: 397 issue: 5 year: 1986 ident: 3478_CR2 publication-title: Mater Chem Phys doi: 10.1016/0254-0584(86)90045-3 – volume: 134 start-page: 17253 issue: 41 year: 2012 ident: 3478_CR72 publication-title: J Am Chem Soc doi: 10.1021/ja307507a – volume: 15 start-page: 8058 issue: 21 year: 2013 ident: 3478_CR26 publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp50649e – volume: 5 start-page: 5380 issue: 9 year: 2015 ident: 3478_CR80 publication-title: ACS Catal doi: 10.1021/acscatal.5b01638 – volume: 48 start-page: 261 issue: 5 year: 2016 ident: 3478_CR8 publication-title: Surf Interface Anal doi: 10.1002/sia.5895 – volume: 508 start-page: 41 issue: 1 year: 2001 ident: 3478_CR24 publication-title: J Electroanal Chem doi: 10.1016/S0022-0728(01)00499-5 – volume: 5 start-page: 145 year: 1971 ident: 3478_CR16 publication-title: Prog Solid State Chem doi: 10.1016/0079-6786(71)90018-5 – volume: 16 start-page: 13814 issue: 27 year: 2014 ident: 3478_CR28 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP00692E – volume: 51 start-page: 3609 issue: 18 year: 2006 ident: 3478_CR58 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.10.022 – volume: 3 start-page: 251 issue: 2 year: 2012 ident: 3478_CR35 publication-title: J Phys Chem Lett doi: 10.1021/jz201461p – volume: 50 start-page: 11143 issue: 76 year: 2014 ident: 3478_CR36 publication-title: Chem Commun doi: 10.1039/C4CC03099K – volume: 114 start-page: 1486 issue: 7 year: 2017 ident: 3478_CR44 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1620787114 – start-page: 371 volume-title: Hydrogen energy: part A year: 1975 ident: 3478_CR3 doi: 10.1007/978-1-4684-2607-6_27 – volume: 115 start-page: 5872 issue: 23 year: 2018 ident: 3478_CR79 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1722034115 – volume: 45 start-page: 2533 issue: 16 year: 2006 ident: 3478_CR40 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200600033 – volume: 125 start-page: 1416 issue: 9 year: 1978 ident: 3478_CR56 publication-title: J Electrochem Soc doi: 10.1149/1.2131689 – volume: 13 start-page: 1162 issue: 3 year: 2011 ident: 3478_CR67 publication-title: Phys Chemy Chem Phys doi: 10.1039/C0CP00993H – start-page: 441 volume-title: Hydrogen energy: part A year: 1975 ident: 3478_CR5 doi: 10.1007/978-1-4684-2607-6_31 – volume: 39 start-page: 1833 issue: 11 year: 1994 ident: 3478_CR29 publication-title: Electrochim Acta doi: 10.1016/0013-4686(94)85172-7 – volume: 144 start-page: 485 issue: 2 year: 1997 ident: 3478_CR50 publication-title: J Electrochem Soc doi: 10.1149/1.1837437 – volume: 7 start-page: 1919 issue: 6 year: 2014 ident: 3478_CR39 publication-title: Energy Environ Sci doi: 10.1039/C4EE00370E – volume: 120 start-page: 61 issue: 1 year: 1973 ident: 3478_CR22 publication-title: J Electrochem Soc doi: 10.1149/1.2403399 – volume: 136 start-page: 17681 issue: 50 year: 2014 ident: 3478_CR20 publication-title: J Am Chem Soc doi: 10.1021/ja5110393 – volume: 12 start-page: 2288 issue: 9 year: 2019 ident: 3478_CR82 publication-title: Nano Res doi: 10.1007/s12274-019-2391-y – volume: 155 start-page: P1 issue: 1 year: 2008 ident: 3478_CR17 publication-title: J Electrochem Soc doi: 10.1149/1.2800752 – volume: 144 start-page: 3072 issue: 9 year: 1997 ident: 3478_CR69 publication-title: J Electrochem Soc doi: 10.1149/1.1837961 – volume: 161 start-page: F876 issue: 9 year: 2014 ident: 3478_CR9 publication-title: J Electrochem Soc doi: 10.1149/2.0411409jes – volume: 6 start-page: 3737 issue: 18 year: 2015 ident: 3478_CR81 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b01650 – volume: 98 start-page: 1510 issue: 12 year: 1994 ident: 3478_CR31 publication-title: Berichte der Bunsengesellschaft für physikalische Chemie doi: 10.1002/bbpc.19940981203 – volume: 12 start-page: 2015 issue: 9 year: 2019 ident: 3478_CR75 publication-title: Chemsuschem doi: 10.1002/cssc.201801975 – volume: 136 start-page: 6744 issue: 18 year: 2014 ident: 3478_CR60 publication-title: J Am Chem Soc doi: 10.1021/ja502379c – volume: 52 start-page: 2459 issue: 9 year: 2013 ident: 3478_CR34 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201208320 – volume: 8 start-page: 229 issue: 2 year: 1982 ident: 3478_CR53 publication-title: J Power Sour doi: 10.1016/0378-7753(82)80057-8 – volume: 119 start-page: 7243 issue: 13 year: 2015 ident: 3478_CR73 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b00105 – volume: 5 start-page: 222 issue: 3 year: 2020 ident: 3478_CR83 publication-title: Nat Energy doi: 10.1038/s41560-020-0576-y – volume: 107 start-page: 847 issue: 10 year: 1960 ident: 3478_CR62 publication-title: J Electrochem Soc doi: 10.1149/1.2427525 – volume: 262 start-page: 170 year: 2016 ident: 3478_CR12 publication-title: Catal Today doi: 10.1016/j.cattod.2015.08.014 – volume: 138 start-page: 313 issue: 1 year: 2016 ident: 3478_CR48 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b10977 – volume: 39 start-page: 1559 issue: 11 year: 1994 ident: 3478_CR57 publication-title: Electrochim Acta doi: 10.1016/0013-4686(94)85135-2 – volume: 4 start-page: 1148 issue: 4 year: 2014 ident: 3478_CR76 publication-title: ACS Catal doi: 10.1021/cs401245q |
| SSID | ssj0009719 |
| Score | 2.5783806 |
| Snippet | There is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1843 |
| SubjectTerms | Catalysis Catalysts Chemical properties Chemical reaction, Rate of Chemistry Chemistry and Materials Science Electrolysis Electrolytes Energy minerals Force and energy Fossil fuels Hydrogen as fuel Impurities Industrial Chemistry/Chemical Engineering Iron Metal catalysts Nickel Organometallic Chemistry Oxides Oxygen evolution reactions Perspective Physical Chemistry Reaction kinetics Transition metal compounds Transition metals |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWgQ2I88DFAFAa6Qkg8QLQkduuEl6lUnejDytSB1DfLsR00sSUl6Sb2V_i13Js4hIHYC29t6jSJfHI_7HvPYewVOgmtbZIF3KQSExT8pIWUgTVhpNEfmVAnjdiEXCyS1So98gtutS-r7GxiY6htaWiNfA8TmQjtbSTD_fW3gFSjaHfVS2jcZFvEVCYGbOv9bHG07Gl3ZSPtEdFCIJfxyrfN-OY59P0BpU8hF5hLiSuu6U8D_ddOaeOADu79763fZ3d96AmTFisP2A1X7LDb007xbYfd-Y2c8CH7gQiCltwYyhzmVVnA_GxNaneYXQN-a_xcU_IFhw6DeJjSWtBlvakBQ2HA0BI-fr9EhMLswiMclq7tpICTAianXzVFuTDru-3ewcS0ghZw2KiIlBVeq2qPOjjGR6r3H7HPB7NP0w-BV3IIjJB8E-gxAnacEt2Xc1GejjKB4XLiZDziVmtp4wSPxNoJGWvBE-PC3FjOcznWtE_JH7NBURbuCYMky8I0sYnI85FwmC7KbGTHPLOOuoSzdMiibhKV8TTnpLZxqnqCZpp4hROvmolXYsje_Dpn3ZJ8XDv6JWFDEXtGQeU5X_R5Xav58VJNMBmMU6LUGbLXflBe4uWN9t0O-BBEuHVl5G6HGuXtR616yAzZ2w53_c__vrmn1__bM7YdU1FOU2-8ywab6tw9Z7fMxeakrl74t-cnZ9ogCA priority: 102 providerName: ProQuest |
| Title | The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites? |
| URI | https://link.springer.com/article/10.1007/s10562-020-03478-4 https://www.proquest.com/docview/2541130170 |
| Volume | 151 |
| WOSCitedRecordID | wos000600090100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1572-879X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: KB. dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-879X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-879X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDYnxwMcAURjVCSHxAEFJ7NYJL6irOlGhlakF1DfLcRw0bSRT0k3sX-Gv5ew4dONLgrfEucSO7uy7s-9-B_CMlIRSeZIFTKeCHBS6UlyIINdhpEgf6VAlrtiEmM2S5TI99ElhTRft3h1JupX6UrIb6erAujsh4-T78A3YInWX2Ok4X3xaQ-0KV84jspt_TMRLnyrz-29cUUc_L8q_nI46pbN_-_-GewdueSMTR61U3IVrptyBG-OuttsO3LwEQ3gPvpGsYAtjjFWB07oqcfrl1Na1Iz8a6c5pNBfchQeGzHUc212fi2bVIBm9SEYkvv96QbKIk3Mvyzg3bc4EHpU4OjlW1p7FyTqv7jWOdFu6Ag9cvZCqpr7qttXggmzh5s19-Lg_-TB-G_iaDYHmgq0CNSTRHKYW2MuYqEgHGSfDODEiHrBcKZHHCbXEynARK84SbcJC54wVYqjsiSR7AJtlVZqHgEmWEXfzhBfFgBtyDEU2yIcsy43NB87SHkQd66T2gOa2rsaJXEMxWx5I4oF0PJC8By9-vHPawnn8lfqplQhpcTJKG4jzWZ01jZwu5nJEbl-cWvCcHjz3REVF3Wvl8xroJyy01hXK3U6ypF8pGkkOekR2RCTCHrzsJGn9-M-De_Rv5I9hO7bhOC7SeBc2V_WZeQLX9fnqqKn7sLU3mR3O-7Dxbu9V382n7xUeF1o |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NDmnwwJ8BojDghEA8QET-tU6Q0FRKp0Vby9QNqW_GcRxUMZKSdIN-FT4En5Fz4hAGYm974K1NHDt173x39t3vB_CEjIQQSRBbngwZBSj0SfiMWYm0HUH2SNoiqMgm2GQSzGbhwRr8aGphdFplsyZWC3WSS71H_pICGYfWW4fZ24svlmaN0qerDYVGLRZ7avWVQrbydfSW_t-nrrszOhruWoZVwJI-85aW6NPk9UMNPaWUk4a92CfXLVDM7XmJECxxA7riCuUzV_heIJWdysTzUtYX-szMo34vwbrvUW8dWH8zmhxMW5hfVlGJOHrj0WPuzJTpmGI98jUsHa7Z9Gxg-WdM4Z8G4a-T2crg7Vz_36bqBlwzrjUOal24CWsq24SNYcNotwlXfwNfvAXfSUOwBm_GPMWoyDOMPi80m99clUjfKjtepbThWFGQgkO917UqlyWSq4_kOuO7byvSQBydGg3GqaorRXCe4eD4k9BePI7aasJXOJA1YQeOK5aUvKCxivqqwkOawnL7Nry_kIm6A50sz9RdwCCO7TBIAj9Ne76icJjFvaTvxYnSVdBx2AWnERouDYy7ZhM55i0AtRY0ToLGK0Hjfhee_3pmUYOYnNv6sZZFrtFBMp1-9FGclCWPDqd8QMGuG2rIoC48M43SnIaXwlRz0I_QgGJnWm41UsrN-ljyVkS78KKR8_b2v1_u3vm9PYKN3aPxPt-PJnv34YqrE5Cq3Oot6CyLE_UALsvT5bwsHhrNRfhw0RrwE35HfUo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIGAPfAzQOgacEBIPEC2J3TrhBVWlFRWsTCugvlmO46CJLamSbGL_Cn8td05CO74kxFs-LrEjX3x39t3vx9hTNBJap1HicRNLDFDwSAspvdT4gUZ7ZHwdObIJOZtFi0V8sFbF77Lduy3JpqaBUJryem-ZZntrhW9otz0KfXwuMA4Sl9kVQaRBFK_PP61gd6Wj9ghoIZDLcNGWzfz-HRdM088T9C87pc4ATW79f9dvs5ut8wnDRlvusEs232LXRx3n2xbbXIMnvMu-oQ5BA28MRQbTsshherIkvjuMrwHPnKVzSV-wb9GNhxGtBp1XdQXoDAM6l_D-6znqKIzPWh2HQ9vUUsBRDsPjL5r8XBiv6u1ewtA0lBaw73hEihLbKpurFuboI1ev7rGPk_GH0Ruv5XLwjJC89vQAVXYQE-CXtUEW9xOBDnNkZdjnqdYyDSO8EmorZKgFj4z1M5NynsmBpp1Kfp9t5EVutxlESeLHURqJLOsLiwGjTPrpgCeppTrhJO6xoBtGZVqgc-LbOFYriGYaA4VjoNwYKNFjz388s2xgPv4q_YS0QxF-Rk4JOp_1aVWp6fxQDTEcDGMC1emxZ61QVmDzRrf1DvgRBLl1QXK30zLVziCVwsA9QP8ikH6Pvei0anX7z53b-Tfxx-zaweuJejedvX3AboSUseOSkXfZRl2e2ofsqjmrj6rykfuxvgMNMCCs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Iron+Impurities+on+Transition+Metal+Catalysts+for+the+Oxygen+Evolution+Reaction+in+Alkaline+Environment%3A+Activity+Mediators+or+Active+Sites%3F&rft.jtitle=Catalysis+letters&rft.au=Spanos%2C+Ioannis&rft.au=Masa%2C+Justus&rft.au=Zeradjanin%2C+Aleksandar&rft.au=Schl%C3%B6gl%2C+Robert&rft.date=2021-07-01&rft.pub=Springer&rft.issn=1011-372X&rft.volume=151&rft.issue=7&rft.spage=1843&rft_id=info:doi/10.1007%2Fs10562-020-03478-4&rft.externalDBID=ISR&rft.externalDocID=A666290509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon |