Function-on-Function Linear Regression by Signal Compression

We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random vari...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 112; číslo 518; s. 690 - 705
Hlavní autoři: Luo, Ruiyan, Qi, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 01.06.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. Supplementary materials for this article are available online.
AbstractList We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient.
We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. Supplementary materials for this article are available online.
Author Qi, Xin
Luo, Ruiyan
Author_xml – sequence: 1
  givenname: Ruiyan
  surname: Luo
  fullname: Luo, Ruiyan
  email: rluo@gsu.edu
  organization: Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University
– sequence: 2
  givenname: Xin
  surname: Qi
  fullname: Qi, Xin
  organization: Department of Mathematics and Statistics, Georgia State University
BookMark eNqFkE1LAzEQhoNUsK3-hMKCFy9bM7vZj6AHpVgVCoIf4C2k2aSkbJOa7CL992bZ1kMPmgQyzDzvTPKO0MBYIxGaAJ4CLvE1hjwBktFpEqIpQE5wlp6gIWRpEScF-RygYcfEHXSGRt6vcVhFWQ7R7bw1otHWxOEc4mihjeQuepUrJ73vMstd9KZXhtfRzG62--w5OlW89vJif4_Rx_zhffYUL14en2f3i1iQIm1iqpQUkkoFcinzigoMtMp5uaxoRouMECoxVCXlKRegJOZECBA5JJUSJC_ydIyu-r5bZ79a6Ru20V7IuuZG2tazJPyGFEkBNKCXR-jati68O1BlScOGrGuY9ZRw1nsnFds6veFuxwCzzlN28JR1nrK9p0F3c6QTuuGdZY3juv5XPenVa99Y9zuSZDgpCYZQv-vr2ijrNvzburpiDd_V1inHjdCepX-P-AHXUJq5
CitedBy_id crossref_primary_10_1002_qre_2786
crossref_primary_10_1016_j_jmva_2021_104769
crossref_primary_10_1007_s11119_021_09852_5
crossref_primary_10_1109_TFUZZ_2021_3050857
crossref_primary_10_1080_10618600_2018_1514310
crossref_primary_10_1007_s11749_023_00876_9
crossref_primary_10_1111_biom_13463
crossref_primary_10_1214_21_AOS2131
crossref_primary_10_1016_j_ins_2025_122442
crossref_primary_10_1080_00224065_2020_1805380
crossref_primary_10_1007_s00180_024_01572_4
crossref_primary_10_1080_00401706_2024_2333506
crossref_primary_10_1080_10618600_2020_1807994
crossref_primary_10_1080_00401706_2019_1708463
crossref_primary_10_1002_env_2852
crossref_primary_10_1109_TASE_2019_2941167
crossref_primary_10_1002_sta4_390
crossref_primary_10_1080_10618600_2022_2163652
crossref_primary_10_1016_j_jeconom_2023_01_007
crossref_primary_10_1002_wics_1627
crossref_primary_10_1007_s00180_022_01223_6
crossref_primary_10_1016_j_jmva_2017_10_002
crossref_primary_10_1002_sta4_286
crossref_primary_10_1111_rssb_12471
crossref_primary_10_1016_j_jspi_2020_02_007
crossref_primary_10_1080_10618600_2023_2252033
crossref_primary_10_1134_S102995992404009X
crossref_primary_10_1002_sta4_245
crossref_primary_10_1016_j_csda_2019_106814
crossref_primary_10_1016_j_csda_2020_106912
crossref_primary_10_1080_00401706_2020_1753581
crossref_primary_10_1002_sim_70140
crossref_primary_10_1016_j_neucom_2025_130403
crossref_primary_10_1002_cjs_11511
Cites_doi 10.1111/1467-9868.00342
10.1214/16-EJS1123
10.1093/biomet/91.1.177
10.1080/10618600.2012.729985
10.1111/j.1467-9868.2006.00539.x
10.1214/009053605000000660
10.1198/016214501753168118
10.1515/9783110942002-015
10.1080/01621459.1986.10478377
10.1093/biomet/asp069
10.1214/11-AOS958
10.7551/mitpress/3206.001.0001
10.1198/016214504000001556
10.1006/nimg.2002.1267
10.1007/978-1-4614-3655-3
10.1002/sim.1068
10.1016/S0167-7152(99)00036-X
10.1111/j.1467-9876.2011.01031.x
10.1007/b98888
10.1002/9781118762547
10.1198/016214507000000527
10.1111/j.1541-0420.2010.01518.x
10.1214/009053604000001156
10.1080/10618600.2014.901914
10.1016/0047-259X(82)90088-4
10.1080/00401706.1997.10485118
10.1111/j.2517-6161.1991.tb01821.x
10.1214/aos/1033066196
10.1177/1471082X0800800403
10.1198/jcgs.2010.10007
10.1198/016214503000000549
10.1007/s00180-014-0548-4
10.1080/00401706.1999.10485591
10.1111/j.2517-6161.1991.tb01844.x
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2016.1164053
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 705
ExternalDocumentID 10_1080_01621459_2016_1164053
45028401
1164053
Genre Research Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c473t-9ffece9ef1ebe6d9c019d6a8bd95975449e01d89a3ac1fe0a4cc1c612dfc46763
IEDL.DBID TFW
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411424400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Thu Oct 02 23:52:57 EDT 2025
Sun Nov 16 01:10:46 EST 2025
Sat Nov 29 03:56:42 EST 2025
Tue Nov 18 22:31:18 EST 2025
Thu May 29 09:14:51 EDT 2025
Mon Oct 20 23:45:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 518
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-9ffece9ef1ebe6d9c019d6a8bd95975449e01d89a3ac1fe0a4cc1c612dfc46763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Function_on_function_linear_regression_by_signal_compression/3159889
PQID 2889898156
PQPubID 41715
PageCount 16
ParticipantIDs crossref_citationtrail_10_1080_01621459_2016_1164053
crossref_primary_10_1080_01621459_2016_1164053
proquest_journals_2889898156
proquest_miscellaneous_2000472719
informaworld_taylorfrancis_310_1080_01621459_2016_1164053
jstor_primary_45028401
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References Hämmerlin G. (e_1_3_3_15_1) 2012
R Core Team (e_1_3_3_35_1) 2015
e_1_3_3_18_1
Rice J. A. (e_1_3_3_38_1) 1991; 53
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_10_1
e_1_3_3_33_1
Dunford N. (e_1_3_3_9_1) 1988
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
Reiss P. T. (e_1_3_3_36_1) 2010
e_1_3_3_32_1
e_1_3_3_40_1
Ferraty F. (e_1_3_3_11_1) 2006
e_1_3_3_41_1
Ramsay J. O. (e_1_3_3_30_1) 1991; 53
Loève M. (e_1_3_3_25_1) 1978
The MathWorks (e_1_3_3_43_1) 2011
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
Chiou J.-M. (e_1_3_3_5_1) 2004; 14
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_47_1
Bosq D. (e_1_3_3_2_1) 2012
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
Tievsky A. L. (e_1_3_3_44_1) 1999; 20
References_xml – volume-title: Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2
  year: 1988
  ident: e_1_3_3_9_1
– ident: e_1_3_3_21_1
  doi: 10.1111/1467-9868.00342
– ident: e_1_3_3_39_1
  doi: 10.1214/16-EJS1123
– volume-title: Numerical Mathematics
  year: 2012
  ident: e_1_3_3_15_1
– ident: e_1_3_3_24_1
  doi: 10.1093/biomet/91.1.177
– volume: 20
  start-page: 1491
  year: 1999
  ident: e_1_3_3_44_1
  article-title: Investigation of Apparent Diffusion Coefficient and Diffusion Tensor Anisotropy in Acute and Chronic Multiple Sclerosis Lesions
  publication-title: American Journal of Neuroradiology
– ident: e_1_3_3_27_1
  doi: 10.1080/10618600.2012.729985
– volume-title: MATLAB and Statistics Toolbox Release 2011
  year: 2011
  ident: e_1_3_3_43_1
– ident: e_1_3_3_28_1
  doi: 10.1111/j.1467-9868.2006.00539.x
– ident: e_1_3_3_47_1
  doi: 10.1214/009053605000000660
– ident: e_1_3_3_3_1
  doi: 10.1198/016214501753168118
– ident: e_1_3_3_17_1
  doi: 10.1515/9783110942002-015
– ident: e_1_3_3_16_1
  doi: 10.1080/01621459.1986.10478377
– ident: e_1_3_3_46_1
  doi: 10.1093/biomet/asp069
– ident: e_1_3_3_8_1
  doi: 10.1214/11-AOS958
– start-page: 6
  year: 2010
  ident: e_1_3_3_36_1
  article-title: Fast Function-on-Scalar Regression With Penalized Basis Expansions,
  publication-title: The International Journal of Biostatistics
– ident: e_1_3_3_33_1
  doi: 10.7551/mitpress/3206.001.0001
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_3_3_35_1
– ident: e_1_3_3_22_1
  doi: 10.1198/016214504000001556
– volume-title: Probability Theory
  year: 1978
  ident: e_1_3_3_25_1
– ident: e_1_3_3_42_1
  doi: 10.1006/nimg.2002.1267
– volume-title: Linear Processes in Function Spaces: Theory and Applications
  year: 2012
  ident: e_1_3_3_2_1
– ident: e_1_3_3_18_1
  doi: 10.1007/978-1-4614-3655-3
– ident: e_1_3_3_34_1
  doi: 10.1002/sim.1068
– ident: e_1_3_3_4_1
  doi: 10.1016/S0167-7152(99)00036-X
– ident: e_1_3_3_13_1
  doi: 10.1111/j.1467-9876.2011.01031.x
– ident: e_1_3_3_32_1
  doi: 10.1007/b98888
– volume-title: Nonparametric Functional Data Analysis: Theory and Practice
  year: 2006
  ident: e_1_3_3_11_1
– ident: e_1_3_3_19_1
  doi: 10.1002/9781118762547
– ident: e_1_3_3_37_1
  doi: 10.1198/016214507000000527
– ident: e_1_3_3_45_1
  doi: 10.1111/j.1541-0420.2010.01518.x
– ident: e_1_3_3_31_1
– ident: e_1_3_3_29_1
  doi: 10.1214/009053604000001156
– ident: e_1_3_3_6_1
– volume: 14
  start-page: 675
  year: 2004
  ident: e_1_3_3_5_1
  article-title: Functional Response Models
  publication-title: Statistica Sinica
– ident: e_1_3_3_40_1
  doi: 10.1080/10618600.2014.901914
– ident: e_1_3_3_7_1
  doi: 10.1016/0047-259X(82)90088-4
– ident: e_1_3_3_10_1
  doi: 10.1080/00401706.1997.10485118
– volume: 53
  start-page: 233
  year: 1991
  ident: e_1_3_3_38_1
  article-title: Estimating the Mean and Covariance Structure Nonparametrically Where the Data Are Curves,
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1991.tb01821.x
– ident: e_1_3_3_41_1
  doi: 10.1214/aos/1033066196
– ident: e_1_3_3_23_1
  doi: 10.1177/1471082X0800800403
– ident: e_1_3_3_12_1
  doi: 10.1198/jcgs.2010.10007
– ident: e_1_3_3_14_1
  doi: 10.1198/016214503000000549
– ident: e_1_3_3_20_1
  doi: 10.1007/s00180-014-0548-4
– ident: e_1_3_3_26_1
  doi: 10.1080/00401706.1999.10485591
– volume: 53
  start-page: 539
  year: 1991
  ident: e_1_3_3_30_1
  article-title: Some Tools for Functional Data Analysis,
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1991.tb01844.x
SSID ssj0000788
Score 2.4231687
Snippet We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 690
SubjectTerms Americans
Compression
Convergence
Correlation coefficients
Eigenvalues
Finite-dimensional approximation to coefficient kernel function
Function
Function-on-function linear regression
functional response models
Integrated squared correlation coefficient
Integrated squared covariance
least squares
linear models
objectives
Penalized generalized functional eigenvalue problem
Performance prediction
Projections
Random variables
Regression analysis
Regression models
Response functions
Scalarity (Semantics)
Signal compression
Simulation
Statistics
Theory and Methods
Title Function-on-Function Linear Regression by Signal Compression
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1164053
https://www.jstor.org/stable/45028401
https://www.proquest.com/docview/2889898156
https://www.proquest.com/docview/2000472719
Volume 112
WOSCitedRecordID wos000411424400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yfNiLv4fVKRV8jS5t2ibgi4jFpyE6cW8hTdMhSCfrJvjfe9em0yGyB4U-lJZL21zu8l16-Y6QcyYMHxSBpklmAspzJqkQllOhZW6NTmCQibrYRDIcivFY3rtswsqlVWIMXTREEbWvRuPWWdVmxF0CSkF-bdxmwmKw-RhAB_J9wtSPpjlKn798cVJXnkQJiiLtHp7fWlmZnVa4S9t8xR8-u56I0u1_-IQdsuVQqH_dDJtdsmHLPdJF4NnwNu-TqxQmPFQahaM99yFyBcvwH-ykSZ8t_ezDf3yZYGPoWdzVA_KU3o5u7qirtEANT8I5lZg7YqUtGOg0zqUB4JfHWmS5hIAj4lzaAcuF1KE2rLADzY1hBsBRXhjwtHHYI51yWtpD4nMTCRnkUpuMc8siCIBtwDTAvITLwIYe4W0PK-NoyLEaxqtiLVup6xuFfaNc33jkYin21vBwrBOQ39Wn5vUCSNFUK1HhGtlerevlk3gEMAwiUY_0W-UrZ-uVCgSW4ETWHY-cLW-DleKvF13a6aLCYp9Iy5kwefSH9zom3QBRRb0I1Ced-WxhT8imeYfBMTutR_4nV1P77Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXvxLdZnBa_RTZu2CXgRcVlx3YOu6C1k03QRpMq6Cv57Z_pYXUT2oNBDaZm0zWQm36STbwCOuLSimQWGJX0bMJFyxaR0gkmjUmdNgoNMFsUmkm5XPjyo73thKK2SYuisJIoofDUZNy1G1ylxJwhTiGCb9pnwGI0-RtQRzsJ8hHMt8ef3Wvdf3jgpak-SCCOZehfPb81MzE8T7KV1xuIPr11MRa3l__iIFViqgKh_Vo6cVZhx-Ro0CHuW1M3rcNrCOY_0xvCoz30MXtE4_Bs3KDNoc7__4d8-Dqgxci7V1Q24a130ztusKrbArEjCEVOUPuKUyziqNU6VReyXxkb2U4UxRySEck2eSmVCY3nmmkZYyy3iozSz6GzjcBPm8ufcbYEvbCRVkCpj-0I4HmEM7AJuEOklQgUu9EDUXaxtxUROBTGeNK8JS6u-0dQ3uuobD47HYi8lFcc0AfVdf3pUrIFkZcESHU6R3SyUPX6SiBCJYTDqwW6tfV2Z-6sOJFXhJOIdDw7Ht9FQ6e-Lyd3z2yvV-yRmzoSr7T-81wEstnvXHd257F7tQCMgkFGsCe3C3Gj45vZgwb7jQBnuF2bwCVpaACY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV58i-uzgtfops22CXgRtSjKIj7QW8gmqQhSxV0F_70zbboqIh4Ueigtk7aZzOSbdPINwDaXVrSL2LCsZ2MmHFdMSi-YNMp5azIcZLIqNpF1u_L2Vp2HbMJ-SKukGLqoiSIqX03G_eSKJiNuF1EK8WvTNhOeos2nCDqSURhH6JzSIL_Kbz6ccVaVniQRRjLNJp6fmvkyPX0hL20SFr857Womymf-4RtmYTrA0Gi_HjdzMOLLeZgi5FkTNy_AXo4zHmmN4dGcRxi6omlEF_6uzp8to95bdHl_R42RawlXF-E6P7o6OGah1AKzIksGTFHyiFe-4KjU1CmLyM-lRvacwoijI4Tybe6kMomxvPBtI6zlFtGRKyy62jRZgrHysfTLEAnbkSp2ytieEJ53MAL2MTeI8zKhYp-0QDQ9rG3gIadyGA-aN3SloW809Y0OfdOCnaHYU03E8ZuA-qw-PahWQIq6XIlOfpFdqnQ9fJLoIA7DULQFa43ydTD2vo4l1eAk2p0WbA1vo5nSvxdT-seXPlX7JF7OjKuVP7zXJkyeH-b67KR7ugpTMSGMakFoDcYGzy9-HSbsK46T543KCN4BSKr-yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Function-on-Function+Linear+Regression+by+Signal+Compression&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Luo%2C+Ruiyan&rft.au=Qi%2C+Xin&rft.date=2017-06-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=518&rft.spage=690&rft.epage=705&rft_id=info:doi/10.1080%2F01621459.2016.1164053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2016_1164053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon