Function-on-Function Linear Regression by Signal Compression
We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random vari...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 112; číslo 518; s. 690 - 705 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Alexandria
Taylor & Francis
01.06.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. Supplementary materials for this article are available online. |
| Author | Qi, Xin Luo, Ruiyan |
| Author_xml | – sequence: 1 givenname: Ruiyan surname: Luo fullname: Luo, Ruiyan email: rluo@gsu.edu organization: Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University – sequence: 2 givenname: Xin surname: Qi fullname: Qi, Xin organization: Department of Mathematics and Statistics, Georgia State University |
| BookMark | eNqFkE1LAzEQhoNUsK3-hMKCFy9bM7vZj6AHpVgVCoIf4C2k2aSkbJOa7CL992bZ1kMPmgQyzDzvTPKO0MBYIxGaAJ4CLvE1hjwBktFpEqIpQE5wlp6gIWRpEScF-RygYcfEHXSGRt6vcVhFWQ7R7bw1otHWxOEc4mihjeQuepUrJ73vMstd9KZXhtfRzG62--w5OlW89vJif4_Rx_zhffYUL14en2f3i1iQIm1iqpQUkkoFcinzigoMtMp5uaxoRouMECoxVCXlKRegJOZECBA5JJUSJC_ydIyu-r5bZ79a6Ru20V7IuuZG2tazJPyGFEkBNKCXR-jati68O1BlScOGrGuY9ZRw1nsnFds6veFuxwCzzlN28JR1nrK9p0F3c6QTuuGdZY3juv5XPenVa99Y9zuSZDgpCYZQv-vr2ijrNvzburpiDd_V1inHjdCepX-P-AHXUJq5 |
| CitedBy_id | crossref_primary_10_1002_qre_2786 crossref_primary_10_1016_j_jmva_2021_104769 crossref_primary_10_1007_s11119_021_09852_5 crossref_primary_10_1109_TFUZZ_2021_3050857 crossref_primary_10_1080_10618600_2018_1514310 crossref_primary_10_1007_s11749_023_00876_9 crossref_primary_10_1111_biom_13463 crossref_primary_10_1214_21_AOS2131 crossref_primary_10_1016_j_ins_2025_122442 crossref_primary_10_1080_00224065_2020_1805380 crossref_primary_10_1007_s00180_024_01572_4 crossref_primary_10_1080_00401706_2024_2333506 crossref_primary_10_1080_10618600_2020_1807994 crossref_primary_10_1080_00401706_2019_1708463 crossref_primary_10_1002_env_2852 crossref_primary_10_1109_TASE_2019_2941167 crossref_primary_10_1002_sta4_390 crossref_primary_10_1080_10618600_2022_2163652 crossref_primary_10_1016_j_jeconom_2023_01_007 crossref_primary_10_1002_wics_1627 crossref_primary_10_1007_s00180_022_01223_6 crossref_primary_10_1016_j_jmva_2017_10_002 crossref_primary_10_1002_sta4_286 crossref_primary_10_1111_rssb_12471 crossref_primary_10_1016_j_jspi_2020_02_007 crossref_primary_10_1080_10618600_2023_2252033 crossref_primary_10_1134_S102995992404009X crossref_primary_10_1002_sta4_245 crossref_primary_10_1016_j_csda_2019_106814 crossref_primary_10_1016_j_csda_2020_106912 crossref_primary_10_1080_00401706_2020_1753581 crossref_primary_10_1002_sim_70140 crossref_primary_10_1016_j_neucom_2025_130403 crossref_primary_10_1002_cjs_11511 |
| Cites_doi | 10.1111/1467-9868.00342 10.1214/16-EJS1123 10.1093/biomet/91.1.177 10.1080/10618600.2012.729985 10.1111/j.1467-9868.2006.00539.x 10.1214/009053605000000660 10.1198/016214501753168118 10.1515/9783110942002-015 10.1080/01621459.1986.10478377 10.1093/biomet/asp069 10.1214/11-AOS958 10.7551/mitpress/3206.001.0001 10.1198/016214504000001556 10.1006/nimg.2002.1267 10.1007/978-1-4614-3655-3 10.1002/sim.1068 10.1016/S0167-7152(99)00036-X 10.1111/j.1467-9876.2011.01031.x 10.1007/b98888 10.1002/9781118762547 10.1198/016214507000000527 10.1111/j.1541-0420.2010.01518.x 10.1214/009053604000001156 10.1080/10618600.2014.901914 10.1016/0047-259X(82)90088-4 10.1080/00401706.1997.10485118 10.1111/j.2517-6161.1991.tb01821.x 10.1214/aos/1033066196 10.1177/1471082X0800800403 10.1198/jcgs.2010.10007 10.1198/016214503000000549 10.1007/s00180-014-0548-4 10.1080/00401706.1999.10485591 10.1111/j.2517-6161.1991.tb01844.x |
| ContentType | Journal Article |
| Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
| Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2016.1164053 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 705 |
| ExternalDocumentID | 10_1080_01621459_2016_1164053 45028401 1164053 |
| Genre | Research Article |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c473t-9ffece9ef1ebe6d9c019d6a8bd95975449e01d89a3ac1fe0a4cc1c612dfc46763 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411424400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Thu Oct 02 23:52:57 EDT 2025 Sun Nov 16 01:10:46 EST 2025 Sat Nov 29 03:56:42 EST 2025 Tue Nov 18 22:31:18 EST 2025 Thu May 29 09:14:51 EDT 2025 Mon Oct 20 23:45:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 518 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-9ffece9ef1ebe6d9c019d6a8bd95975449e01d89a3ac1fe0a4cc1c612dfc46763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Function_on_function_linear_regression_by_signal_compression/3159889 |
| PQID | 2889898156 |
| PQPubID | 41715 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1080_01621459_2016_1164053 crossref_primary_10_1080_01621459_2016_1164053 proquest_journals_2889898156 proquest_miscellaneous_2000472719 informaworld_taylorfrancis_310_1080_01621459_2016_1164053 jstor_primary_45028401 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | Hämmerlin G. (e_1_3_3_15_1) 2012 R Core Team (e_1_3_3_35_1) 2015 e_1_3_3_18_1 Rice J. A. (e_1_3_3_38_1) 1991; 53 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_10_1 e_1_3_3_33_1 Dunford N. (e_1_3_3_9_1) 1988 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 Reiss P. T. (e_1_3_3_36_1) 2010 e_1_3_3_32_1 e_1_3_3_40_1 Ferraty F. (e_1_3_3_11_1) 2006 e_1_3_3_41_1 Ramsay J. O. (e_1_3_3_30_1) 1991; 53 Loève M. (e_1_3_3_25_1) 1978 The MathWorks (e_1_3_3_43_1) 2011 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 Chiou J.-M. (e_1_3_3_5_1) 2004; 14 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_47_1 Bosq D. (e_1_3_3_2_1) 2012 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 Tievsky A. L. (e_1_3_3_44_1) 1999; 20 |
| References_xml | – volume-title: Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2 year: 1988 ident: e_1_3_3_9_1 – ident: e_1_3_3_21_1 doi: 10.1111/1467-9868.00342 – ident: e_1_3_3_39_1 doi: 10.1214/16-EJS1123 – volume-title: Numerical Mathematics year: 2012 ident: e_1_3_3_15_1 – ident: e_1_3_3_24_1 doi: 10.1093/biomet/91.1.177 – volume: 20 start-page: 1491 year: 1999 ident: e_1_3_3_44_1 article-title: Investigation of Apparent Diffusion Coefficient and Diffusion Tensor Anisotropy in Acute and Chronic Multiple Sclerosis Lesions publication-title: American Journal of Neuroradiology – ident: e_1_3_3_27_1 doi: 10.1080/10618600.2012.729985 – volume-title: MATLAB and Statistics Toolbox Release 2011 year: 2011 ident: e_1_3_3_43_1 – ident: e_1_3_3_28_1 doi: 10.1111/j.1467-9868.2006.00539.x – ident: e_1_3_3_47_1 doi: 10.1214/009053605000000660 – ident: e_1_3_3_3_1 doi: 10.1198/016214501753168118 – ident: e_1_3_3_17_1 doi: 10.1515/9783110942002-015 – ident: e_1_3_3_16_1 doi: 10.1080/01621459.1986.10478377 – ident: e_1_3_3_46_1 doi: 10.1093/biomet/asp069 – ident: e_1_3_3_8_1 doi: 10.1214/11-AOS958 – start-page: 6 year: 2010 ident: e_1_3_3_36_1 article-title: Fast Function-on-Scalar Regression With Penalized Basis Expansions, publication-title: The International Journal of Biostatistics – ident: e_1_3_3_33_1 doi: 10.7551/mitpress/3206.001.0001 – volume-title: R: A Language and Environment for Statistical Computing year: 2015 ident: e_1_3_3_35_1 – ident: e_1_3_3_22_1 doi: 10.1198/016214504000001556 – volume-title: Probability Theory year: 1978 ident: e_1_3_3_25_1 – ident: e_1_3_3_42_1 doi: 10.1006/nimg.2002.1267 – volume-title: Linear Processes in Function Spaces: Theory and Applications year: 2012 ident: e_1_3_3_2_1 – ident: e_1_3_3_18_1 doi: 10.1007/978-1-4614-3655-3 – ident: e_1_3_3_34_1 doi: 10.1002/sim.1068 – ident: e_1_3_3_4_1 doi: 10.1016/S0167-7152(99)00036-X – ident: e_1_3_3_13_1 doi: 10.1111/j.1467-9876.2011.01031.x – ident: e_1_3_3_32_1 doi: 10.1007/b98888 – volume-title: Nonparametric Functional Data Analysis: Theory and Practice year: 2006 ident: e_1_3_3_11_1 – ident: e_1_3_3_19_1 doi: 10.1002/9781118762547 – ident: e_1_3_3_37_1 doi: 10.1198/016214507000000527 – ident: e_1_3_3_45_1 doi: 10.1111/j.1541-0420.2010.01518.x – ident: e_1_3_3_31_1 – ident: e_1_3_3_29_1 doi: 10.1214/009053604000001156 – ident: e_1_3_3_6_1 – volume: 14 start-page: 675 year: 2004 ident: e_1_3_3_5_1 article-title: Functional Response Models publication-title: Statistica Sinica – ident: e_1_3_3_40_1 doi: 10.1080/10618600.2014.901914 – ident: e_1_3_3_7_1 doi: 10.1016/0047-259X(82)90088-4 – ident: e_1_3_3_10_1 doi: 10.1080/00401706.1997.10485118 – volume: 53 start-page: 233 year: 1991 ident: e_1_3_3_38_1 article-title: Estimating the Mean and Covariance Structure Nonparametrically Where the Data Are Curves, publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1991.tb01821.x – ident: e_1_3_3_41_1 doi: 10.1214/aos/1033066196 – ident: e_1_3_3_23_1 doi: 10.1177/1471082X0800800403 – ident: e_1_3_3_12_1 doi: 10.1198/jcgs.2010.10007 – ident: e_1_3_3_14_1 doi: 10.1198/016214503000000549 – ident: e_1_3_3_20_1 doi: 10.1007/s00180-014-0548-4 – ident: e_1_3_3_26_1 doi: 10.1080/00401706.1999.10485591 – volume: 53 start-page: 539 year: 1991 ident: e_1_3_3_30_1 article-title: Some Tools for Functional Data Analysis, publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1991.tb01844.x |
| SSID | ssj0000788 |
| Score | 2.4231687 |
| Snippet | We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 690 |
| SubjectTerms | Americans Compression Convergence Correlation coefficients Eigenvalues Finite-dimensional approximation to coefficient kernel function Function Function-on-function linear regression functional response models Integrated squared correlation coefficient Integrated squared covariance least squares linear models objectives Penalized generalized functional eigenvalue problem Performance prediction Projections Random variables Regression analysis Regression models Response functions Scalarity (Semantics) Signal compression Simulation Statistics Theory and Methods |
| Title | Function-on-Function Linear Regression by Signal Compression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1164053 https://www.jstor.org/stable/45028401 https://www.proquest.com/docview/2889898156 https://www.proquest.com/docview/2000472719 |
| Volume | 112 |
| WOSCitedRecordID | wos000411424400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yfNiLv4fVKRV8jS5t2ibgi4jFpyE6cW8hTdMhSCfrJvjfe9em0yGyB4U-lJZL21zu8l16-Y6QcyYMHxSBpklmAspzJqkQllOhZW6NTmCQibrYRDIcivFY3rtswsqlVWIMXTREEbWvRuPWWdVmxF0CSkF-bdxmwmKw-RhAB_J9wtSPpjlKn798cVJXnkQJiiLtHp7fWlmZnVa4S9t8xR8-u56I0u1_-IQdsuVQqH_dDJtdsmHLPdJF4NnwNu-TqxQmPFQahaM99yFyBcvwH-ykSZ8t_ezDf3yZYGPoWdzVA_KU3o5u7qirtEANT8I5lZg7YqUtGOg0zqUB4JfHWmS5hIAj4lzaAcuF1KE2rLADzY1hBsBRXhjwtHHYI51yWtpD4nMTCRnkUpuMc8siCIBtwDTAvITLwIYe4W0PK-NoyLEaxqtiLVup6xuFfaNc33jkYin21vBwrBOQ39Wn5vUCSNFUK1HhGtlerevlk3gEMAwiUY_0W-UrZ-uVCgSW4ETWHY-cLW-DleKvF13a6aLCYp9Iy5kwefSH9zom3QBRRb0I1Ced-WxhT8imeYfBMTutR_4nV1P77Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXvxLdZnBa_RTZu2CXgRcVlx3YOu6C1k03QRpMq6Cv57Z_pYXUT2oNBDaZm0zWQm36STbwCOuLSimQWGJX0bMJFyxaR0gkmjUmdNgoNMFsUmkm5XPjyo73thKK2SYuisJIoofDUZNy1G1ylxJwhTiGCb9pnwGI0-RtQRzsJ8hHMt8ef3Wvdf3jgpak-SCCOZehfPb81MzE8T7KV1xuIPr11MRa3l__iIFViqgKh_Vo6cVZhx-Ro0CHuW1M3rcNrCOY_0xvCoz30MXtE4_Bs3KDNoc7__4d8-Dqgxci7V1Q24a130ztusKrbArEjCEVOUPuKUyziqNU6VReyXxkb2U4UxRySEck2eSmVCY3nmmkZYyy3iozSz6GzjcBPm8ufcbYEvbCRVkCpj-0I4HmEM7AJuEOklQgUu9EDUXaxtxUROBTGeNK8JS6u-0dQ3uuobD47HYi8lFcc0AfVdf3pUrIFkZcESHU6R3SyUPX6SiBCJYTDqwW6tfV2Z-6sOJFXhJOIdDw7Ht9FQ6e-Lyd3z2yvV-yRmzoSr7T-81wEstnvXHd257F7tQCMgkFGsCe3C3Gj45vZgwb7jQBnuF2bwCVpaACY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV58i-uzgtfops22CXgRtSjKIj7QW8gmqQhSxV0F_70zbboqIh4Ueigtk7aZzOSbdPINwDaXVrSL2LCsZ2MmHFdMSi-YNMp5azIcZLIqNpF1u_L2Vp2HbMJ-SKukGLqoiSIqX03G_eSKJiNuF1EK8WvTNhOeos2nCDqSURhH6JzSIL_Kbz6ccVaVniQRRjLNJp6fmvkyPX0hL20SFr857Womymf-4RtmYTrA0Gi_HjdzMOLLeZgi5FkTNy_AXo4zHmmN4dGcRxi6omlEF_6uzp8to95bdHl_R42RawlXF-E6P7o6OGah1AKzIksGTFHyiFe-4KjU1CmLyM-lRvacwoijI4Tybe6kMomxvPBtI6zlFtGRKyy62jRZgrHysfTLEAnbkSp2ytieEJ53MAL2MTeI8zKhYp-0QDQ9rG3gIadyGA-aN3SloW809Y0OfdOCnaHYU03E8ZuA-qw-PahWQIq6XIlOfpFdqnQ9fJLoIA7DULQFa43ydTD2vo4l1eAk2p0WbA1vo5nSvxdT-seXPlX7JF7OjKuVP7zXJkyeH-b67KR7ugpTMSGMakFoDcYGzy9-HSbsK46T543KCN4BSKr-yQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Function-on-Function+Linear+Regression+by+Signal+Compression&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Luo%2C+Ruiyan&rft.au=Qi%2C+Xin&rft.date=2017-06-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=518&rft.spage=690&rft.epage=705&rft_id=info:doi/10.1080%2F01621459.2016.1164053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2016_1164053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |