Fine costs for Euclid's algorithm on polynomials and Farey maps

This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in applied mathematics Ročník 54; s. 27 - 65
Hlavní autoři: Berthé, Valérie, Nakada, Hitoshi, Natsui, Rie, Vallée, Brigitte
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2014
Elsevier
Témata:
ISSN:0196-8858, 1090-2074
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law. We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field.
AbstractList This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field FqFq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law.We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field.
This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field FqFq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of 'fine' complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law.
This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law. We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field.
Author Natsui, Rie
Berthé, Valérie
Nakada, Hitoshi
Vallée, Brigitte
Author_xml – sequence: 1
  givenname: Valérie
  surname: Berthé
  fullname: Berthé, Valérie
  email: berthe@liafa.univ-paris-diderot.fr
  organization: LIAFA, Univ. Paris Diderot Paris 7 & CNRS, Case 7014, 75205 Paris Cedex 13, France
– sequence: 2
  givenname: Hitoshi
  surname: Nakada
  fullname: Nakada, Hitoshi
  email: nakada@math.keio.ac.jp
  organization: Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
– sequence: 3
  givenname: Rie
  surname: Natsui
  fullname: Natsui, Rie
  email: natsui@fc.jwu.ac.jp
  organization: Department of Mathematics, Japan Women's University, 2-8-1 Mejirodai, Bunkyou-ku, Tokyo 112-8681, Japan
– sequence: 4
  givenname: Brigitte
  surname: Vallée
  fullname: Vallée, Brigitte
  email: Brigitte.Vallee@unicaen.fr
  organization: GREYC, Université de Caen, Bd. Maréchal Juin, 14032 Caen Cedex, France
BackLink https://hal.science/hal-01086629$$DView record in HAL
BookMark eNp9kMFqGzEQhkVJIXbaB8htb2kPu51Z7UpaeijB2HXB0Et7Fqo8qmV2JUdaG_z2WePkkkNOA__83zB8c3YTYiDG7hEqBBTf9pUxQ1UD8gqxAsAPbIbQQVmDbG7YDLATpVKtumXznPcA0NWCz9iPlQ9U2JjHXLiYiuXR9n77kAvT_4_Jj7uhiKE4xP4c4uBNPy3CtliZROdiMIf8iX10U0qfX-Yd-7ta_lmsy83vn78Wj5vSNpKPZefcPy5QCVCtcbLpiBxBzbkFR6pRsm0bYRuk2qDh3NSdk9ZJdJa3EjvJ79jX692d6fUh-cGks47G6_XjRl8yQFBC1N0Jp-6Xa_eQ4tOR8qgHny31vQkUj1mjkNhIxfmlKq9Vm2LOiZy2fjSjj2FMxvcaQV_06r2e9OqLXo2oJ70TiW_I16_eY75fGZpMnTwlna2nYGnrE9lRb6N_h34GXYeSOg
CitedBy_id crossref_primary_10_1016_j_ffa_2014_05_007
crossref_primary_10_1017_S0963548321000274
crossref_primary_10_1016_j_ffa_2021_101849
Cites_doi 10.1090/S0002-9939-96-03394-1
10.1007/s00453-007-9009-6
10.1080/00029890.1971.11992763
10.1016/S0304-3975(02)00652-7
10.1016/0022-314X(70)90044-2
10.1137/0218042
10.4064/aa-81-2-101-144
10.1016/S0747-7171(08)80021-1
10.1112/S002557930001528X
10.1007/BF01019716
10.1006/jnth.1994.1088
10.1006/eujc.1997.0179
10.3934/dcds.2006.15.281
10.1016/j.jnt.2004.08.008
10.1070/IM2008v072n05ABEH002427
10.5802/jtnb.296
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.aam.2013.11.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1090-2074
EndPage 65
ExternalDocumentID oai:HAL:hal-01086629v1
10_1016_j_aam_2013_11_001
S0196885813001280
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 23740088
– fundername: Japan Society for the Promotion of Science
  grantid: 24340020
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c473t-9ffb36186085af749eefe0233c0fe84875546c41e2a1a33a29f7cf71fc3571973
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332427700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8858
IngestDate Tue Oct 14 20:45:20 EDT 2025
Thu Oct 02 06:04:01 EDT 2025
Tue Nov 18 22:32:59 EST 2025
Sat Nov 29 07:18:41 EST 2025
Fri Feb 23 02:34:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite field
68W40
Bit-complexity
Bivariate generating functions
Farey map
11J70
Continued fractions
11K50
11A05
Laurent formal power series
62E20
Cost function
11T55
Combinatorial analysis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-9ffb36186085af749eefe0233c0fe84875546c41e2a1a33a29f7cf71fc3571973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2794-6811
0000-0001-5561-7882
OpenAccessLink https://hal.science/hal-01086629
PQID 1671478331
PQPubID 23500
PageCount 39
ParticipantIDs hal_primary_oai_HAL_hal_01086629v1
proquest_miscellaneous_1671478331
crossref_citationtrail_10_1016_j_aam_2013_11_001
crossref_primary_10_1016_j_aam_2013_11_001
elsevier_sciencedirect_doi_10_1016_j_aam_2013_11_001
PublicationCentury 2000
PublicationDate March 2014
2014-03-00
20140301
2014-03
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationTitle Advances in applied mathematics
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Vallée (br0190) 2000; 12
Hensley (br0090) 1994; 49
Lhote, Vallée (br0130) 2008; 50
Vallée (br0180) 1997; 81
Ustinov (br0170) 2008; 72
Dixon (br0040) 1971; 78
Friesen, Hensley (br0070) 1996; 124
Schweiger (br0160) 1995
Ito (br0110) 1989; 26
Baladi, Vallée (br0010) 2005; 110
Feigenbaum (br0050) 1988; 52
Flajolet, Sedgewick (br0060) 2009
Knopfmacher, Knopfmacher (br0120) 1988; 35
Dixon (br0030) 1970; 2
Ma, von zur Gathen (br0140) 1990; 9
Hwang (br0100) 1998; 19
Norton (br0150) 1989; 18
Heilbronn (br0080) 1969
Vallée (br0200) 2003; 297
Vallée (br0210) 2006; 15
Berthé, Nakada (br0020) 2000; 18
Norton (10.1016/j.aam.2013.11.001_br0150) 1989; 18
Feigenbaum (10.1016/j.aam.2013.11.001_br0050) 1988; 52
Friesen (10.1016/j.aam.2013.11.001_br0070) 1996; 124
Lhote (10.1016/j.aam.2013.11.001_br0130) 2008; 50
Vallée (10.1016/j.aam.2013.11.001_br0180) 1997; 81
Vallée (10.1016/j.aam.2013.11.001_br0190) 2000; 12
Dixon (10.1016/j.aam.2013.11.001_br0040) 1971; 78
Heilbronn (10.1016/j.aam.2013.11.001_br0080) 1969
Ma (10.1016/j.aam.2013.11.001_br0140) 1990; 9
Vallée (10.1016/j.aam.2013.11.001_br0200) 2003; 297
Schweiger (10.1016/j.aam.2013.11.001_br0160) 1995
Berthé (10.1016/j.aam.2013.11.001_br0020) 2000; 18
Hensley (10.1016/j.aam.2013.11.001_br0090) 1994; 49
Knopfmacher (10.1016/j.aam.2013.11.001_br0120) 1988; 35
Ito (10.1016/j.aam.2013.11.001_br0110) 1989; 26
Dixon (10.1016/j.aam.2013.11.001_br0030) 1970; 2
Ustinov (10.1016/j.aam.2013.11.001_br0170) 2008; 72
Baladi (10.1016/j.aam.2013.11.001_br0010) 2005; 110
Vallée (10.1016/j.aam.2013.11.001_br0210) 2006; 15
Flajolet (10.1016/j.aam.2013.11.001_br0060) 2009
Hwang (10.1016/j.aam.2013.11.001_br0100) 1998; 19
References_xml – volume: 18
  start-page: 608
  year: 1989
  end-page: 624
  ident: br0150
  article-title: Precise analyses of the right- and left-shift greatest common divisor algorithms for
  publication-title: SIAM J. Comput.
– volume: 49
  start-page: 142
  year: 1994
  end-page: 182
  ident: br0090
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
– volume: 297
  start-page: 447
  year: 2003
  end-page: 486
  ident: br0200
  article-title: Dynamical analysis of a class of Euclidean algorithms
  publication-title: Theoret. Comput. Sci.
– year: 2009
  ident: br0060
  article-title: Analytic Combinatorics
– volume: 81
  start-page: 101
  year: 1997
  end-page: 144
  ident: br0180
  article-title: Opérateurs de Ruelle–Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss
  publication-title: Acta Arith.
– volume: 15
  start-page: 281
  year: 2006
  end-page: 352
  ident: br0210
  article-title: Euclidean dynamics
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 19
  start-page: 329
  year: 1998
  end-page: 343
  ident: br0100
  article-title: On convergence rates in the central limit theorems for combinatorial structures
  publication-title: European J. Combin.
– volume: 50
  start-page: 497
  year: 2008
  end-page: 554
  ident: br0130
  article-title: Gaussian laws for the main parameters of the Euclid algorithms
  publication-title: Algorithmica
– volume: 72
  start-page: 1023
  year: 2008
  end-page: 1059
  ident: br0170
  article-title: Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm
  publication-title: Izv. Math.
– volume: 110
  start-page: 331
  year: 2005
  end-page: 386
  ident: br0010
  article-title: Euclidean algorithms are Gaussian
  publication-title: J. Number Theory
– volume: 124
  start-page: 2661
  year: 1996
  end-page: 2673
  ident: br0070
  article-title: The statistics of continued fractions for polynomials over a finite field
  publication-title: Proc. Amer. Math. Soc.
– volume: 2
  start-page: 414
  year: 1970
  end-page: 422
  ident: br0030
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
– volume: 18
  start-page: 257
  year: 2000
  end-page: 284
  ident: br0020
  article-title: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties
  publication-title: Expo. Math.
– start-page: 87
  year: 1969
  end-page: 96
  ident: br0080
  article-title: On the average length of a class of finite continued fractions
  publication-title: Number Theory and Analysis
– volume: 52
  start-page: 527
  year: 1988
  end-page: 569
  ident: br0050
  article-title: Presentation functions, fixed points, and a theory of scaling function dynamics
  publication-title: J. Stat. Phys.
– volume: 78
  start-page: 374
  year: 1971
  end-page: 376
  ident: br0040
  article-title: A simple estimate for the number of steps in the Euclidean algorithm
  publication-title: Amer. Math. Monthly
– volume: 9
  start-page: 429
  year: 1990
  end-page: 455
  ident: br0140
  article-title: Analysis of Euclidean algorithms for polynomials over finite fields
  publication-title: J. Symbolic Comput.
– year: 1995
  ident: br0160
  article-title: Ergodic Theory of Fibred Systems and Metric Number Theory
  publication-title: Oxford Sci. Publ.
– volume: 12
  start-page: 519
  year: 2000
  end-page: 558
  ident: br0190
  article-title: Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems
  publication-title: J. Theor. Nombres Bordeaux
– volume: 26
  start-page: 557
  year: 1989
  end-page: 578
  ident: br0110
  article-title: Algorithms with mediant convergents and their metrical theory
  publication-title: Osaka J. Math.
– volume: 35
  start-page: 297
  year: 1988
  end-page: 304
  ident: br0120
  article-title: The exact length of the Euclidean algorithm in
  publication-title: Mathematika
– volume: 124
  start-page: 2661
  year: 1996
  ident: 10.1016/j.aam.2013.11.001_br0070
  article-title: The statistics of continued fractions for polynomials over a finite field
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-96-03394-1
– volume: 50
  start-page: 497
  year: 2008
  ident: 10.1016/j.aam.2013.11.001_br0130
  article-title: Gaussian laws for the main parameters of the Euclid algorithms
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9009-6
– start-page: 87
  year: 1969
  ident: 10.1016/j.aam.2013.11.001_br0080
  article-title: On the average length of a class of finite continued fractions
– volume: 78
  start-page: 374
  year: 1971
  ident: 10.1016/j.aam.2013.11.001_br0040
  article-title: A simple estimate for the number of steps in the Euclidean algorithm
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1971.11992763
– volume: 297
  start-page: 447
  year: 2003
  ident: 10.1016/j.aam.2013.11.001_br0200
  article-title: Dynamical analysis of a class of Euclidean algorithms
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00652-7
– volume: 2
  start-page: 414
  year: 1970
  ident: 10.1016/j.aam.2013.11.001_br0030
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(70)90044-2
– year: 1995
  ident: 10.1016/j.aam.2013.11.001_br0160
  article-title: Ergodic Theory of Fibred Systems and Metric Number Theory
– volume: 18
  start-page: 608
  year: 1989
  ident: 10.1016/j.aam.2013.11.001_br0150
  article-title: Precise analyses of the right- and left-shift greatest common divisor algorithms for GF(q)[x]
  publication-title: SIAM J. Comput.
  doi: 10.1137/0218042
– volume: 81
  start-page: 101
  year: 1997
  ident: 10.1016/j.aam.2013.11.001_br0180
  article-title: Opérateurs de Ruelle–Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss
  publication-title: Acta Arith.
  doi: 10.4064/aa-81-2-101-144
– volume: 26
  start-page: 557
  year: 1989
  ident: 10.1016/j.aam.2013.11.001_br0110
  article-title: Algorithms with mediant convergents and their metrical theory
  publication-title: Osaka J. Math.
– volume: 9
  start-page: 429
  year: 1990
  ident: 10.1016/j.aam.2013.11.001_br0140
  article-title: Analysis of Euclidean algorithms for polynomials over finite fields
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(08)80021-1
– volume: 18
  start-page: 257
  year: 2000
  ident: 10.1016/j.aam.2013.11.001_br0020
  article-title: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties
  publication-title: Expo. Math.
– year: 2009
  ident: 10.1016/j.aam.2013.11.001_br0060
– volume: 35
  start-page: 297
  year: 1988
  ident: 10.1016/j.aam.2013.11.001_br0120
  article-title: The exact length of the Euclidean algorithm in Fq[X]
  publication-title: Mathematika
  doi: 10.1112/S002557930001528X
– volume: 52
  start-page: 527
  year: 1988
  ident: 10.1016/j.aam.2013.11.001_br0050
  article-title: Presentation functions, fixed points, and a theory of scaling function dynamics
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01019716
– volume: 49
  start-page: 142
  year: 1994
  ident: 10.1016/j.aam.2013.11.001_br0090
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1994.1088
– volume: 19
  start-page: 329
  year: 1998
  ident: 10.1016/j.aam.2013.11.001_br0100
  article-title: On convergence rates in the central limit theorems for combinatorial structures
  publication-title: European J. Combin.
  doi: 10.1006/eujc.1997.0179
– volume: 15
  start-page: 281
  year: 2006
  ident: 10.1016/j.aam.2013.11.001_br0210
  article-title: Euclidean dynamics
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.281
– volume: 110
  start-page: 331
  year: 2005
  ident: 10.1016/j.aam.2013.11.001_br0010
  article-title: Euclidean algorithms are Gaussian
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2004.08.008
– volume: 72
  start-page: 1023
  year: 2008
  ident: 10.1016/j.aam.2013.11.001_br0170
  article-title: Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm
  publication-title: Izv. Math.
  doi: 10.1070/IM2008v072n05ABEH002427
– volume: 12
  start-page: 519
  year: 2000
  ident: 10.1016/j.aam.2013.11.001_br0190
  article-title: Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems
  publication-title: J. Theor. Nombres Bordeaux
  doi: 10.5802/jtnb.296
SSID ssj0009263
Score 1.988113
Snippet This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Algorithms
Asymptotic properties
Bit-complexity
Bivariate generating functions
Combinatorial analysis
Computational Complexity
Computer Science
Continued fractions
Cost function
Costs
Data Structures and Algorithms
Ergodic processes
Farey map
Finite field
Functions (mathematics)
Laurent formal power series
Mathematical analysis
Polynomials
Title Fine costs for Euclid's algorithm on polynomials and Farey maps
URI https://dx.doi.org/10.1016/j.aam.2013.11.001
https://www.proquest.com/docview/1671478331
https://hal.science/hal-01086629
Volume 54
WOSCitedRecordID wos000332427700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1090-2074
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0009263
  issn: 0196-8858
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYxgM8IK5i3BQQAokqUxI7sf2EKtSqoFJ46FDfIi-114w2KU06jX_POXEuZYhpPPASRY5zkc-X48_28XcIeQ19qIF-A5ibUIELDNy40pPa5WESUi68SMxFlWyCTyZiNpNf61DeokonwLNMXFzI9X81NZSBsXHr7D-Yu30oFMA5GB2OYHY4XsvwQ-SNSV6UldJCb7BNlvgNvOip5Wm-ScvFClcI1vnyJ25JRvlknDwfKjBqb6XWxS5f7dsQgSpoVtWEddUqvXZT7HoDZVXMLHQ4m7RFy0R9V_OKn47AdRSLtLtQFtvUbu1va3_DxC7aQi49TZsgpHpSwmddVFYzTykjVwiryt442pDtekq-0-fadBF_eHM7sXB2pBRqBvj0CPVW69f8ppw9-RIPj8fjeDqYTd-sf7iYVAwX3-sMK3vkIOChBKd30P84mH3qVJkDm2qv-dpm2bsKALz01r8Rl70FRtBe6sgrdjK9S-7Uwwqnb-Fwj9zQ2X1y-3NnqQfkPQLDqYDhADAcC4y3hdPCwskzZwcWDsDCqWDhICwekuPhYPph5NbpM9yEcVq60pgTiukQgFUrw5nU2migaDTxjBY4UA1ZlDBfB8pXlKpAGtSo8k1CQ-5LTh-R_SzP9GPicKOjCFrLM1wzKriYS3bC5tIzoTEwpj0kXtM2cVJry2OKk2XcBBGexdCcMTYnjDkxkPKQvGtvWVthlasqs6bB45oZWsYXA1Suuu0VGKd9PCqpj_rjGMs8zDAWBfIcKr1sbBeDa8X1MpXpfFvEfsR9xgWl_pNr1HlKbnV_wjOyX262-jm5mZyXabF5USPvFxBpl8I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+costs+for+Euclid%27s+algorithm+on+polynomials+and+Farey+maps&rft.jtitle=Advances+in+applied+mathematics&rft.au=Berthe%2C+Valerie&rft.au=Nakada%2C+Hitoshi&rft.au=Natsui%2C+Rie&rft.au=Vallee%2C+Brigitte&rft.date=2014-03-01&rft.issn=0196-8858&rft.volume=54&rft.spage=27&rft.epage=65&rft_id=info:doi/10.1016%2Fj.aam.2013.11.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8858&client=summon