Fine costs for Euclid's algorithm on polynomials and Farey maps
This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘f...
Uloženo v:
| Vydáno v: | Advances in applied mathematics Ročník 54; s. 27 - 65 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2014
Elsevier |
| Témata: | |
| ISSN: | 0196-8858, 1090-2074 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law.
We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field. |
|---|---|
| AbstractList | This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field FqFq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law.We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field. This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field FqFq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of 'fine' complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law. This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations performed on the finite field Fq. The usual bit-complexity is defined with respect to the degree of the quotients; we focus here on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding costs for truncated trajectories under the action of the Gauss map acting on the set of formal power series with coefficients in a finite field. The present paper is thus mainly interested in the study of the probabilistic behavior of the corresponding random variables: average estimates (expectation and variance) are obtained in a purely combinatorial way thanks to classical methods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs are even proved to satisfy an asymptotic Gaussian law. We also relate this study with a Farey algorithm which is a refinement of the continued fraction algorithm for the set of formal power series with coefficients in a finite field: this algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of steps is closely related to the number of non-zero coefficients. In particular, this map is shown to admit a finite invariant measure in contrast with the real case. This version of the Farey map also produces mediant convergents in the continued fraction expansion of formal power series with coefficients in a finite field. |
| Author | Natsui, Rie Berthé, Valérie Nakada, Hitoshi Vallée, Brigitte |
| Author_xml | – sequence: 1 givenname: Valérie surname: Berthé fullname: Berthé, Valérie email: berthe@liafa.univ-paris-diderot.fr organization: LIAFA, Univ. Paris Diderot Paris 7 & CNRS, Case 7014, 75205 Paris Cedex 13, France – sequence: 2 givenname: Hitoshi surname: Nakada fullname: Nakada, Hitoshi email: nakada@math.keio.ac.jp organization: Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan – sequence: 3 givenname: Rie surname: Natsui fullname: Natsui, Rie email: natsui@fc.jwu.ac.jp organization: Department of Mathematics, Japan Women's University, 2-8-1 Mejirodai, Bunkyou-ku, Tokyo 112-8681, Japan – sequence: 4 givenname: Brigitte surname: Vallée fullname: Vallée, Brigitte email: Brigitte.Vallee@unicaen.fr organization: GREYC, Université de Caen, Bd. Maréchal Juin, 14032 Caen Cedex, France |
| BackLink | https://hal.science/hal-01086629$$DView record in HAL |
| BookMark | eNp9kMFqGzEQhkVJIXbaB8htb2kPu51Z7UpaeijB2HXB0Et7Fqo8qmV2JUdaG_z2WePkkkNOA__83zB8c3YTYiDG7hEqBBTf9pUxQ1UD8gqxAsAPbIbQQVmDbG7YDLATpVKtumXznPcA0NWCz9iPlQ9U2JjHXLiYiuXR9n77kAvT_4_Jj7uhiKE4xP4c4uBNPy3CtliZROdiMIf8iX10U0qfX-Yd-7ta_lmsy83vn78Wj5vSNpKPZefcPy5QCVCtcbLpiBxBzbkFR6pRsm0bYRuk2qDh3NSdk9ZJdJa3EjvJ79jX692d6fUh-cGks47G6_XjRl8yQFBC1N0Jp-6Xa_eQ4tOR8qgHny31vQkUj1mjkNhIxfmlKq9Vm2LOiZy2fjSjj2FMxvcaQV_06r2e9OqLXo2oJ70TiW_I16_eY75fGZpMnTwlna2nYGnrE9lRb6N_h34GXYeSOg |
| CitedBy_id | crossref_primary_10_1016_j_ffa_2014_05_007 crossref_primary_10_1017_S0963548321000274 crossref_primary_10_1016_j_ffa_2021_101849 |
| Cites_doi | 10.1090/S0002-9939-96-03394-1 10.1007/s00453-007-9009-6 10.1080/00029890.1971.11992763 10.1016/S0304-3975(02)00652-7 10.1016/0022-314X(70)90044-2 10.1137/0218042 10.4064/aa-81-2-101-144 10.1016/S0747-7171(08)80021-1 10.1112/S002557930001528X 10.1007/BF01019716 10.1006/jnth.1994.1088 10.1006/eujc.1997.0179 10.3934/dcds.2006.15.281 10.1016/j.jnt.2004.08.008 10.1070/IM2008v072n05ABEH002427 10.5802/jtnb.296 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.aam.2013.11.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1090-2074 |
| EndPage | 65 |
| ExternalDocumentID | oai:HAL:hal-01086629v1 10_1016_j_aam_2013_11_001 S0196885813001280 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 23740088 – fundername: Japan Society for the Promotion of Science grantid: 24340020 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c473t-9ffb36186085af749eefe0233c0fe84875546c41e2a1a33a29f7cf71fc3571973 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332427700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8858 |
| IngestDate | Tue Oct 14 20:45:20 EDT 2025 Thu Oct 02 06:04:01 EDT 2025 Tue Nov 18 22:32:59 EST 2025 Sat Nov 29 07:18:41 EST 2025 Fri Feb 23 02:34:45 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite field 68W40 Bit-complexity Bivariate generating functions Farey map 11J70 Continued fractions 11K50 11A05 Laurent formal power series 62E20 Cost function 11T55 Combinatorial analysis |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c473t-9ffb36186085af749eefe0233c0fe84875546c41e2a1a33a29f7cf71fc3571973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2794-6811 0000-0001-5561-7882 |
| OpenAccessLink | https://hal.science/hal-01086629 |
| PQID | 1671478331 |
| PQPubID | 23500 |
| PageCount | 39 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01086629v1 proquest_miscellaneous_1671478331 crossref_citationtrail_10_1016_j_aam_2013_11_001 crossref_primary_10_1016_j_aam_2013_11_001 elsevier_sciencedirect_doi_10_1016_j_aam_2013_11_001 |
| PublicationCentury | 2000 |
| PublicationDate | March 2014 2014-03-00 20140301 2014-03 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Advances in applied mathematics |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Vallée (br0190) 2000; 12 Hensley (br0090) 1994; 49 Lhote, Vallée (br0130) 2008; 50 Vallée (br0180) 1997; 81 Ustinov (br0170) 2008; 72 Dixon (br0040) 1971; 78 Friesen, Hensley (br0070) 1996; 124 Schweiger (br0160) 1995 Ito (br0110) 1989; 26 Baladi, Vallée (br0010) 2005; 110 Feigenbaum (br0050) 1988; 52 Flajolet, Sedgewick (br0060) 2009 Knopfmacher, Knopfmacher (br0120) 1988; 35 Dixon (br0030) 1970; 2 Ma, von zur Gathen (br0140) 1990; 9 Hwang (br0100) 1998; 19 Norton (br0150) 1989; 18 Heilbronn (br0080) 1969 Vallée (br0200) 2003; 297 Vallée (br0210) 2006; 15 Berthé, Nakada (br0020) 2000; 18 Norton (10.1016/j.aam.2013.11.001_br0150) 1989; 18 Feigenbaum (10.1016/j.aam.2013.11.001_br0050) 1988; 52 Friesen (10.1016/j.aam.2013.11.001_br0070) 1996; 124 Lhote (10.1016/j.aam.2013.11.001_br0130) 2008; 50 Vallée (10.1016/j.aam.2013.11.001_br0180) 1997; 81 Vallée (10.1016/j.aam.2013.11.001_br0190) 2000; 12 Dixon (10.1016/j.aam.2013.11.001_br0040) 1971; 78 Heilbronn (10.1016/j.aam.2013.11.001_br0080) 1969 Ma (10.1016/j.aam.2013.11.001_br0140) 1990; 9 Vallée (10.1016/j.aam.2013.11.001_br0200) 2003; 297 Schweiger (10.1016/j.aam.2013.11.001_br0160) 1995 Berthé (10.1016/j.aam.2013.11.001_br0020) 2000; 18 Hensley (10.1016/j.aam.2013.11.001_br0090) 1994; 49 Knopfmacher (10.1016/j.aam.2013.11.001_br0120) 1988; 35 Ito (10.1016/j.aam.2013.11.001_br0110) 1989; 26 Dixon (10.1016/j.aam.2013.11.001_br0030) 1970; 2 Ustinov (10.1016/j.aam.2013.11.001_br0170) 2008; 72 Baladi (10.1016/j.aam.2013.11.001_br0010) 2005; 110 Vallée (10.1016/j.aam.2013.11.001_br0210) 2006; 15 Flajolet (10.1016/j.aam.2013.11.001_br0060) 2009 Hwang (10.1016/j.aam.2013.11.001_br0100) 1998; 19 |
| References_xml | – volume: 18 start-page: 608 year: 1989 end-page: 624 ident: br0150 article-title: Precise analyses of the right- and left-shift greatest common divisor algorithms for publication-title: SIAM J. Comput. – volume: 49 start-page: 142 year: 1994 end-page: 182 ident: br0090 article-title: The number of steps in the Euclidean algorithm publication-title: J. Number Theory – volume: 297 start-page: 447 year: 2003 end-page: 486 ident: br0200 article-title: Dynamical analysis of a class of Euclidean algorithms publication-title: Theoret. Comput. Sci. – year: 2009 ident: br0060 article-title: Analytic Combinatorics – volume: 81 start-page: 101 year: 1997 end-page: 144 ident: br0180 article-title: Opérateurs de Ruelle–Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss publication-title: Acta Arith. – volume: 15 start-page: 281 year: 2006 end-page: 352 ident: br0210 article-title: Euclidean dynamics publication-title: Discrete Contin. Dyn. Syst. – volume: 19 start-page: 329 year: 1998 end-page: 343 ident: br0100 article-title: On convergence rates in the central limit theorems for combinatorial structures publication-title: European J. Combin. – volume: 50 start-page: 497 year: 2008 end-page: 554 ident: br0130 article-title: Gaussian laws for the main parameters of the Euclid algorithms publication-title: Algorithmica – volume: 72 start-page: 1023 year: 2008 end-page: 1059 ident: br0170 article-title: Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm publication-title: Izv. Math. – volume: 110 start-page: 331 year: 2005 end-page: 386 ident: br0010 article-title: Euclidean algorithms are Gaussian publication-title: J. Number Theory – volume: 124 start-page: 2661 year: 1996 end-page: 2673 ident: br0070 article-title: The statistics of continued fractions for polynomials over a finite field publication-title: Proc. Amer. Math. Soc. – volume: 2 start-page: 414 year: 1970 end-page: 422 ident: br0030 article-title: The number of steps in the Euclidean algorithm publication-title: J. Number Theory – volume: 18 start-page: 257 year: 2000 end-page: 284 ident: br0020 article-title: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties publication-title: Expo. Math. – start-page: 87 year: 1969 end-page: 96 ident: br0080 article-title: On the average length of a class of finite continued fractions publication-title: Number Theory and Analysis – volume: 52 start-page: 527 year: 1988 end-page: 569 ident: br0050 article-title: Presentation functions, fixed points, and a theory of scaling function dynamics publication-title: J. Stat. Phys. – volume: 78 start-page: 374 year: 1971 end-page: 376 ident: br0040 article-title: A simple estimate for the number of steps in the Euclidean algorithm publication-title: Amer. Math. Monthly – volume: 9 start-page: 429 year: 1990 end-page: 455 ident: br0140 article-title: Analysis of Euclidean algorithms for polynomials over finite fields publication-title: J. Symbolic Comput. – year: 1995 ident: br0160 article-title: Ergodic Theory of Fibred Systems and Metric Number Theory publication-title: Oxford Sci. Publ. – volume: 12 start-page: 519 year: 2000 end-page: 558 ident: br0190 article-title: Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems publication-title: J. Theor. Nombres Bordeaux – volume: 26 start-page: 557 year: 1989 end-page: 578 ident: br0110 article-title: Algorithms with mediant convergents and their metrical theory publication-title: Osaka J. Math. – volume: 35 start-page: 297 year: 1988 end-page: 304 ident: br0120 article-title: The exact length of the Euclidean algorithm in publication-title: Mathematika – volume: 124 start-page: 2661 year: 1996 ident: 10.1016/j.aam.2013.11.001_br0070 article-title: The statistics of continued fractions for polynomials over a finite field publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-96-03394-1 – volume: 50 start-page: 497 year: 2008 ident: 10.1016/j.aam.2013.11.001_br0130 article-title: Gaussian laws for the main parameters of the Euclid algorithms publication-title: Algorithmica doi: 10.1007/s00453-007-9009-6 – start-page: 87 year: 1969 ident: 10.1016/j.aam.2013.11.001_br0080 article-title: On the average length of a class of finite continued fractions – volume: 78 start-page: 374 year: 1971 ident: 10.1016/j.aam.2013.11.001_br0040 article-title: A simple estimate for the number of steps in the Euclidean algorithm publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1971.11992763 – volume: 297 start-page: 447 year: 2003 ident: 10.1016/j.aam.2013.11.001_br0200 article-title: Dynamical analysis of a class of Euclidean algorithms publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00652-7 – volume: 2 start-page: 414 year: 1970 ident: 10.1016/j.aam.2013.11.001_br0030 article-title: The number of steps in the Euclidean algorithm publication-title: J. Number Theory doi: 10.1016/0022-314X(70)90044-2 – year: 1995 ident: 10.1016/j.aam.2013.11.001_br0160 article-title: Ergodic Theory of Fibred Systems and Metric Number Theory – volume: 18 start-page: 608 year: 1989 ident: 10.1016/j.aam.2013.11.001_br0150 article-title: Precise analyses of the right- and left-shift greatest common divisor algorithms for GF(q)[x] publication-title: SIAM J. Comput. doi: 10.1137/0218042 – volume: 81 start-page: 101 year: 1997 ident: 10.1016/j.aam.2013.11.001_br0180 article-title: Opérateurs de Ruelle–Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss publication-title: Acta Arith. doi: 10.4064/aa-81-2-101-144 – volume: 26 start-page: 557 year: 1989 ident: 10.1016/j.aam.2013.11.001_br0110 article-title: Algorithms with mediant convergents and their metrical theory publication-title: Osaka J. Math. – volume: 9 start-page: 429 year: 1990 ident: 10.1016/j.aam.2013.11.001_br0140 article-title: Analysis of Euclidean algorithms for polynomials over finite fields publication-title: J. Symbolic Comput. doi: 10.1016/S0747-7171(08)80021-1 – volume: 18 start-page: 257 year: 2000 ident: 10.1016/j.aam.2013.11.001_br0020 article-title: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties publication-title: Expo. Math. – year: 2009 ident: 10.1016/j.aam.2013.11.001_br0060 – volume: 35 start-page: 297 year: 1988 ident: 10.1016/j.aam.2013.11.001_br0120 article-title: The exact length of the Euclidean algorithm in Fq[X] publication-title: Mathematika doi: 10.1112/S002557930001528X – volume: 52 start-page: 527 year: 1988 ident: 10.1016/j.aam.2013.11.001_br0050 article-title: Presentation functions, fixed points, and a theory of scaling function dynamics publication-title: J. Stat. Phys. doi: 10.1007/BF01019716 – volume: 49 start-page: 142 year: 1994 ident: 10.1016/j.aam.2013.11.001_br0090 article-title: The number of steps in the Euclidean algorithm publication-title: J. Number Theory doi: 10.1006/jnth.1994.1088 – volume: 19 start-page: 329 year: 1998 ident: 10.1016/j.aam.2013.11.001_br0100 article-title: On convergence rates in the central limit theorems for combinatorial structures publication-title: European J. Combin. doi: 10.1006/eujc.1997.0179 – volume: 15 start-page: 281 year: 2006 ident: 10.1016/j.aam.2013.11.001_br0210 article-title: Euclidean dynamics publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.15.281 – volume: 110 start-page: 331 year: 2005 ident: 10.1016/j.aam.2013.11.001_br0010 article-title: Euclidean algorithms are Gaussian publication-title: J. Number Theory doi: 10.1016/j.jnt.2004.08.008 – volume: 72 start-page: 1023 year: 2008 ident: 10.1016/j.aam.2013.11.001_br0170 article-title: Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm publication-title: Izv. Math. doi: 10.1070/IM2008v072n05ABEH002427 – volume: 12 start-page: 519 year: 2000 ident: 10.1016/j.aam.2013.11.001_br0190 article-title: Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems publication-title: J. Theor. Nombres Bordeaux doi: 10.5802/jtnb.296 |
| SSID | ssj0009263 |
| Score | 1.988113 |
| Snippet | This paper studies digit-cost functions for the Euclid algorithm on polynomials with coefficients in a finite field, in terms of the number of operations... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 27 |
| SubjectTerms | Algorithms Asymptotic properties Bit-complexity Bivariate generating functions Combinatorial analysis Computational Complexity Computer Science Continued fractions Cost function Costs Data Structures and Algorithms Ergodic processes Farey map Finite field Functions (mathematics) Laurent formal power series Mathematical analysis Polynomials |
| Title | Fine costs for Euclid's algorithm on polynomials and Farey maps |
| URI | https://dx.doi.org/10.1016/j.aam.2013.11.001 https://www.proquest.com/docview/1671478331 https://hal.science/hal-01086629 |
| Volume | 54 |
| WOSCitedRecordID | wos000332427700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1090-2074 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0009263 issn: 0196-8858 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYxgM8IK5i3BQQAokqUxI7sf2EKtSqoFJ46FDfIi-114w2KU06jX_POXEuZYhpPPASRY5zkc-X48_28XcIeQ19qIF-A5ibUIELDNy40pPa5WESUi68SMxFlWyCTyZiNpNf61DeokonwLNMXFzI9X81NZSBsXHr7D-Yu30oFMA5GB2OYHY4XsvwQ-SNSV6UldJCb7BNlvgNvOip5Wm-ScvFClcI1vnyJ25JRvlknDwfKjBqb6XWxS5f7dsQgSpoVtWEddUqvXZT7HoDZVXMLHQ4m7RFy0R9V_OKn47AdRSLtLtQFtvUbu1va3_DxC7aQi49TZsgpHpSwmddVFYzTykjVwiryt442pDtekq-0-fadBF_eHM7sXB2pBRqBvj0CPVW69f8ppw9-RIPj8fjeDqYTd-sf7iYVAwX3-sMK3vkIOChBKd30P84mH3qVJkDm2qv-dpm2bsKALz01r8Rl70FRtBe6sgrdjK9S-7Uwwqnb-Fwj9zQ2X1y-3NnqQfkPQLDqYDhADAcC4y3hdPCwskzZwcWDsDCqWDhICwekuPhYPph5NbpM9yEcVq60pgTiukQgFUrw5nU2migaDTxjBY4UA1ZlDBfB8pXlKpAGtSo8k1CQ-5LTh-R_SzP9GPicKOjCFrLM1wzKriYS3bC5tIzoTEwpj0kXtM2cVJry2OKk2XcBBGexdCcMTYnjDkxkPKQvGtvWVthlasqs6bB45oZWsYXA1Suuu0VGKd9PCqpj_rjGMs8zDAWBfIcKr1sbBeDa8X1MpXpfFvEfsR9xgWl_pNr1HlKbnV_wjOyX262-jm5mZyXabF5USPvFxBpl8I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+costs+for+Euclid%27s+algorithm+on+polynomials+and+Farey+maps&rft.jtitle=Advances+in+applied+mathematics&rft.au=Berthe%2C+Valerie&rft.au=Nakada%2C+Hitoshi&rft.au=Natsui%2C+Rie&rft.au=Vallee%2C+Brigitte&rft.date=2014-03-01&rft.issn=0196-8858&rft.volume=54&rft.spage=27&rft.epage=65&rft_id=info:doi/10.1016%2Fj.aam.2013.11.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8858&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8858&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8858&client=summon |