Finned zeolite catalysts
There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of compl...
Gespeichert in:
| Veröffentlicht in: | Nature materials Jg. 19; H. 10; S. 1074 - 1080 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.10.2020
Nature Publishing Group Springer Nature - Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials.
Nanosized zeolites enable better catalytic performance; however, their synthesis is non-trivial. Here, a simple treatment is presented that enables the growth of nanosized fins on zeolites that act as pseudo-nanoparticles, reducing deactivation rates for methanol-to-hydrocarbon catalysis. |
|---|---|
| AbstractList | There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials.There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials. There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials.Nanosized zeolites enable better catalytic performance; however, their synthesis is non-trivial. Here, a simple treatment is presented that enables the growth of nanosized fins on zeolites that act as pseudo-nanoparticles, reducing deactivation rates for methanol-to-hydrocarbon catalysis. There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials. Nanosized zeolites enable better catalytic performance; however, their synthesis is non-trivial. Here, a simple treatment is presented that enables the growth of nanosized fins on zeolites that act as pseudo-nanoparticles, reducing deactivation rates for methanol-to-hydrocarbon catalysis. There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials. There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances in catalysis and adsorption. Producing zeolite crystals with sizes less than 100 nm, however, is non-trivial, often requires the use of complex organics and typically results in a small product yield. Here we present an alternative, facile approach to enhance the mass-transport properties of zeolites by the epitaxial growth of fin-like protrusions on seed crystals. We validate this generalizable methodology on two common zeolites and confirm that fins are in crystallographic registry with the underlying seeds, and that secondary growth does not impede access to the micropores. Molecular modelling and time-resolved titration experiments of finned zeolites probe internal diffusion and reveal substantial improvements in mass transport, consistent with catalytic tests of a model reaction, which show that these structures behave as pseudo-nanocrystals with sizes commensurate to that of the fin. This approach could be extended to the rational synthesis of other zeolite and aluminosilicate materials. Nanosized zeolites enable better catalytic performance; however, their synthesis is non-trivial. Here, a simple treatment is presented that enables the growth of nanosized fins on zeolites that act as pseudo-nanoparticles, reducing deactivation rates for methanol-to-hydrocarbon catalysis. Not provided. |
| Author | Dauenhauer, Paul J. Palmer, Jeremy C. Zou, Xiaodong Agarwal, Ankur Rimer, Jeffrey D. Yang, Taimin Le, Thuy Thanh Weckhuysen, Bert M. Shen, Yufeng Lee, Choongsze Tsapatsis, Michael Dai, Heng Fu, Donglong |
| Author_xml | – sequence: 1 givenname: Heng orcidid: 0000-0002-7420-3367 surname: Dai fullname: Dai, Heng organization: Department of Chemical and Biomolecular Engineering, University of Houston – sequence: 2 givenname: Yufeng orcidid: 0000-0001-9777-4691 surname: Shen fullname: Shen, Yufeng organization: Department of Chemical and Biomolecular Engineering, University of Houston – sequence: 3 givenname: Taimin orcidid: 0000-0003-4318-8990 surname: Yang fullname: Yang, Taimin organization: Department of Materials and Environmental Chemistry, Stockholm University – sequence: 4 givenname: Choongsze orcidid: 0000-0001-5293-011X surname: Lee fullname: Lee, Choongsze organization: Department of Chemical Engineering and Materials Science, University of Minnesota – sequence: 5 givenname: Donglong surname: Fu fullname: Fu, Donglong organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 6 givenname: Ankur orcidid: 0000-0003-1930-8403 surname: Agarwal fullname: Agarwal, Ankur organization: Department of Chemical and Biomolecular Engineering, University of Houston – sequence: 7 givenname: Thuy Thanh orcidid: 0000-0003-1689-1824 surname: Le fullname: Le, Thuy Thanh organization: Department of Chemical and Biomolecular Engineering, University of Houston – sequence: 8 givenname: Michael orcidid: 0000-0001-5610-3525 surname: Tsapatsis fullname: Tsapatsis, Michael organization: Department of Chemical Engineering and Materials Science, University of Minnesota, Department of Chemical and Biomolecular Engineering, Johns Hopkins University – sequence: 9 givenname: Jeremy C. orcidid: 0000-0003-0856-4743 surname: Palmer fullname: Palmer, Jeremy C. organization: Department of Chemical and Biomolecular Engineering, University of Houston – sequence: 10 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 11 givenname: Paul J. surname: Dauenhauer fullname: Dauenhauer, Paul J. organization: Department of Chemical Engineering and Materials Science, University of Minnesota – sequence: 12 givenname: Xiaodong orcidid: 0000-0001-6748-6656 surname: Zou fullname: Zou, Xiaodong organization: Department of Materials and Environmental Chemistry, Stockholm University – sequence: 13 givenname: Jeffrey D. orcidid: 0000-0002-2296-3428 surname: Rimer fullname: Rimer, Jeffrey D. email: jrimer@central.uh.edu organization: Department of Chemical and Biomolecular Engineering, University of Houston |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32778812$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1850665$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185395$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNp9kTtPHDEURq0IBCzQJ02EQpOCCX6MH1MiCAEJiSbQWrbnzsZodryxPYqWX49Xs4C0Uqjs4pyr795vhnaGMABCXwj-QTBT56kmXLAKU1xhyVlFPqEDUktR1ULgnc2fEEr30SylJ4wp4VzsoX1GpVSK0AP0-doPA7QnzxB6n-HEmWz6VcrpCO12pk9wvHkP0cP1z9-XN9Xd_a_by4u7ytWS5UoCZmC72oKSoiWt7KwDaR2zHFtWuwYEgGls50zDrcQWnFGiLQLruFENO0Rn09z0D5aj1cvoFyaudDBeX_nHCx3iXKdRE8VZwwv-bcJDyl4nVzK7Py6UHVxeM1iINfR9gpYx_B0hZb3wyUHfmwHCmDStGVWcK6wKerqFPoUxDmXjQsm6UUpIWqivG2q0C2jfQr7esQByAlwMKUXodElmsg9Djsb3mmC9bkxPjenSmF43pkkxyZb5Ovwjh25uVthhDvE99P-lFwQApds |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_148657 crossref_primary_10_1126_science_adv5073 crossref_primary_10_1002_anie_202114388 crossref_primary_10_1038_s41929_023_00927_2 crossref_primary_10_1016_j_fuel_2021_121995 crossref_primary_10_1016_j_cclet_2024_109693 crossref_primary_10_1038_s41467_023_37455_3 crossref_primary_10_1002_ange_202102621 crossref_primary_10_1039_D5CS00169B crossref_primary_10_1016_j_micromeso_2023_112578 crossref_primary_10_1002_ange_202113077 crossref_primary_10_1016_j_cej_2023_144570 crossref_primary_10_1002_cctc_202300402 crossref_primary_10_1002_ange_202411197 crossref_primary_10_1002_anie_202200677 crossref_primary_10_1016_j_cej_2025_159282 crossref_primary_10_1016_j_micromeso_2022_112352 crossref_primary_10_1016_j_apcatb_2023_123519 crossref_primary_10_1016_j_cej_2024_150344 crossref_primary_10_1038_s42003_023_05046_z crossref_primary_10_1016_j_mcat_2022_112644 crossref_primary_10_1039_D1QI01636A crossref_primary_10_1039_D5QI00709G crossref_primary_10_3390_pr10102140 crossref_primary_10_1002_adma_202205885 crossref_primary_10_1002_smll_202406294 crossref_primary_10_1021_jacs_4c11264 crossref_primary_10_1021_jacs_2c10839 crossref_primary_10_1107_S1600576722009633 crossref_primary_10_3390_nano12152623 crossref_primary_10_1002_anie_202113077 crossref_primary_10_1021_jacs_1c11014 crossref_primary_10_1016_j_cattod_2022_05_005 crossref_primary_10_1016_j_mcat_2022_112871 crossref_primary_10_1021_jacs_5c03712 crossref_primary_10_1002_ange_202200677 crossref_primary_10_1007_s10562_020_03402_w crossref_primary_10_1007_s40201_021_00644_7 crossref_primary_10_1016_j_jcis_2021_10_125 crossref_primary_10_1021_jacs_4c12145 crossref_primary_10_1021_jacs_4c09483 crossref_primary_10_1021_acsnano_5c00673 crossref_primary_10_1038_s41563_020_0771_z crossref_primary_10_1016_j_seppur_2023_124003 crossref_primary_10_1039_D2BM00719C crossref_primary_10_1002_adma_202415562 crossref_primary_10_1016_j_jcis_2023_09_160 crossref_primary_10_1016_j_resconrec_2023_107154 crossref_primary_10_1016_j_isci_2025_112866 crossref_primary_10_1016_j_mtchem_2022_101061 crossref_primary_10_1021_jacs_1c12338 crossref_primary_10_1126_sciadv_ads4018 crossref_primary_10_1016_j_apsusc_2024_159399 crossref_primary_10_1021_acsnano_4c07594 crossref_primary_10_1515_pac_2023_1126 crossref_primary_10_1002_adfm_202100971 crossref_primary_10_1016_j_ces_2024_120247 crossref_primary_10_3390_catal13020261 crossref_primary_10_1021_acs_iecr_4c03390 crossref_primary_10_1007_s10934_021_01096_y crossref_primary_10_1002_anie_202102621 crossref_primary_10_1038_s41467_024_49672_5 crossref_primary_10_1557_s43579_023_00395_6 crossref_primary_10_1016_j_micromeso_2022_112364 crossref_primary_10_1093_nsr_nwac236 crossref_primary_10_1016_j_matlet_2021_130073 crossref_primary_10_1016_j_jcrysgro_2022_126992 crossref_primary_10_1016_j_fuel_2024_132331 crossref_primary_10_1021_jacsau_5c00645 crossref_primary_10_1002_anie_202424690 crossref_primary_10_1039_D2CY01530G crossref_primary_10_1002_admi_202201021 crossref_primary_10_1016_j_renene_2025_123306 crossref_primary_10_1016_j_apcatb_2022_121810 crossref_primary_10_1016_j_apcatb_2022_121775 crossref_primary_10_1007_s10934_024_01615_7 crossref_primary_10_1016_j_micromeso_2024_113345 crossref_primary_10_1021_jacs_0c11784 crossref_primary_10_1016_j_cej_2025_165870 crossref_primary_10_1039_D5CC02883C crossref_primary_10_1016_j_jcat_2021_11_004 crossref_primary_10_1021_jacs_5c04618 crossref_primary_10_1002_adma_202405079 crossref_primary_10_1002_ange_202114388 crossref_primary_10_1016_j_memsci_2023_121405 crossref_primary_10_1021_acscatal_5c00856 crossref_primary_10_1080_01614940_2021_1948298 crossref_primary_10_1016_j_ces_2024_120863 crossref_primary_10_1016_j_ces_2025_122468 crossref_primary_10_1038_s41586_024_08206_1 crossref_primary_10_1007_s11426_022_1307_5 crossref_primary_10_1016_j_cej_2022_140867 crossref_primary_10_1016_j_jcat_2021_09_028 crossref_primary_10_1038_s41467_021_27828_x crossref_primary_10_3390_inorganics11050214 crossref_primary_10_1016_j_checat_2024_101041 crossref_primary_10_1016_j_cjche_2022_07_010 crossref_primary_10_1016_j_micromeso_2022_112024 crossref_primary_10_1039_D4ME00076E crossref_primary_10_1016_j_fuel_2024_132461 crossref_primary_10_1002_anie_202210434 crossref_primary_10_1002_anie_202411197 crossref_primary_10_1007_s11705_024_2446_9 crossref_primary_10_1039_D4QI00287C crossref_primary_10_1016_j_cej_2021_131598 crossref_primary_10_1021_jacs_3c00309 crossref_primary_10_1039_D4NR03824J crossref_primary_10_1039_D4RA05881J crossref_primary_10_1002_anie_202017031 crossref_primary_10_1016_j_apcatb_2025_125917 crossref_primary_10_1002_ange_202210434 crossref_primary_10_1016_j_biombioe_2022_106350 crossref_primary_10_1016_j_ccr_2025_216903 crossref_primary_10_1016_j_jechem_2023_01_023 crossref_primary_10_1016_j_apcata_2024_119912 crossref_primary_10_1021_acs_iecr_4c02530 crossref_primary_10_1038_s44160_022_00091_8 crossref_primary_10_1016_j_jcat_2022_01_018 crossref_primary_10_1016_j_mcat_2022_112703 crossref_primary_10_1039_D3QI00646H crossref_primary_10_1016_j_cej_2024_155761 crossref_primary_10_1002_ange_202424690 crossref_primary_10_1002_ange_202017031 crossref_primary_10_1002_crat_202200287 crossref_primary_10_1016_j_micromeso_2021_110926 crossref_primary_10_1016_j_cej_2025_167120 crossref_primary_10_1016_j_colsurfa_2024_134537 crossref_primary_10_1039_D1FD00096A crossref_primary_10_1016_j_addma_2023_103890 |
| Cites_doi | 10.1021/jacs.5b06791 10.1002/cctc.201300345 10.1126/science.aan5630 10.1016/j.jcat.2018.10.031 10.1126/science.aal0121 10.1039/b809030k 10.1002/anie.201306370 10.1021/jp805766m 10.1038/nmat2530 10.1021/acs.chemmater.7b03121 10.1021/cs3006583 10.1002/chem.201503136 10.1039/a702063e 10.1126/science.aaa6760 10.1039/C5CS00292C 10.1021/cs501345g 10.1126/science.1204452 10.1016/j.jcat.2014.10.016 10.1021/acsnano.5b01308 10.1038/s41557-018-0081-0 10.1021/jp501928k 10.1126/science.1208891 10.1080/08927022.2013.840895 10.1039/C7SC02858J 10.1016/S0144-2449(05)80166-6 10.1007/s10450-007-9067-8 10.1039/C6CS00391E 10.1021/acscatal.8b04493 10.1021/ja001615z 10.1002/anie.200901551 10.1126/science.1250984 10.1126/science.1221111 10.1038/nature08288 10.1002/anie.201711418 10.1002/cphc.201700968 10.1038/nmat4173 10.1039/C5CS00210A 10.1021/acscatal.8b02274 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| CorporateAuthor | Univ. of Houston, TX (United States) Univ. of Delaware, Newark, DE (United States) |
| CorporateAuthor_xml | – name: Univ. of Delaware, Newark, DE (United States) – name: Univ. of Houston, TX (United States) |
| DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 OTOTI ADTPV AOWAS DG7 |
| DOI | 10.1038/s41563-020-0753-1 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV SwePub SwePub Articles SWEPUB Stockholms universitet |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1476-4660 |
| EndPage | 1080 |
| ExternalDocumentID | oai_DiVA_org_su_185395 1850665 32778812 10_1038_s41563_020_0753_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 321140 funderid: https://doi.org/10.13039/100010663 – fundername: Welch Foundation grantid: E-1882; E-1794 funderid: https://doi.org/10.13039/100000928 – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2017-0432 funderid: https://doi.org/10.13039/501100004359 – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) grantid: 2012.0112 funderid: https://doi.org/10.13039/501100004063 – fundername: DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy) grantid: DE-SC0001004; DE-SC0014468 funderid: https://doi.org/10.13039/100006133 – fundername: DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy) grantid: DE-SC0014468 – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) grantid: 2012.0112 – fundername: Welch Foundation grantid: E-1794 – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2017-0432 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 321140 – fundername: Welch Foundation grantid: E-1882 – fundername: DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy) grantid: DE-SC0001004 |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI ADTPV AOWAS DG7 NFIDA |
| ID | FETCH-LOGICAL-c473t-7e03ebf4be876d1d7fbce7bc3b50b34c9e6eea9bfca95b70beca86df4b3f5a893 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 169 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000558140100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Tue Nov 04 16:33:36 EST 2025 Fri May 19 00:46:14 EDT 2023 Thu Oct 02 13:15:43 EDT 2025 Mon Oct 06 17:06:30 EDT 2025 Wed Feb 19 02:28:24 EST 2025 Sat Nov 29 03:30:32 EST 2025 Tue Nov 18 21:00:11 EST 2025 Fri Feb 21 02:40:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-7e03ebf4be876d1d7fbce7bc3b50b34c9e6eea9bfca95b70beca86df4b3f5a893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0001004; SC0014468 USDOE Office of Science (SC) |
| ORCID | 0000-0002-7420-3367 0000-0001-5245-1426 0000-0001-6748-6656 0000-0001-5293-011X 0000-0003-4318-8990 0000-0003-1689-1824 0000-0003-0856-4743 0000-0001-9777-4691 0000-0002-2296-3428 0000-0001-5610-3525 0000-0003-1930-8403 0000000343188990 0000000167486656 0000000156103525 0000000316891824 0000000274203367 0000000197774691 0000000222963428 0000000308564743 0000000319308403 000000015293011X 0000000152451426 |
| PMID | 32778812 |
| PQID | 2474988672 |
| PQPubID | 27576 |
| PageCount | 7 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_185395 osti_scitechconnect_1850665 proquest_miscellaneous_2432855808 proquest_journals_2474988672 pubmed_primary_32778812 crossref_citationtrail_10_1038_s41563_020_0753_1 crossref_primary_10_1038_s41563_020_0753_1 springer_journals_10_1038_s41563_020_0753_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nat. Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature - Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature - Nature Publishing Group |
| References | Khare, Millar, Bhan (CR29) 2015; 321 Gallego (CR13) 2017; 8 Góra-Marek, Tarach, Choi (CR33) 2014; 118 Forester, Smith (CR39) 1997; 93 Yarulina (CR37) 2018; 10 Lupulescu, Rimer (CR23) 2014; 344 Park (CR18) 2009; 48 Zhu, Liu, Kong, Wang, Xie (CR24) 2008; 112 Hwang (CR7) 2019; 369 Karwacki (CR6) 2009; 8 CR35 Varoon (CR4) 2011; 333 Choi (CR9) 2009; 461 Shen, Le, Li, Rimer (CR34) 2018; 19 Shen (CR19) 2018; 8 Ilias, Bhan (CR28) 2013; 3 Nordvang, Borodina, Ruiz-Martinez, Fehrmann, Weckhuysen (CR30) 2015; 21 Kolokathis (CR31) 2014; 40 Kim, Park, Woo, Kwak, Kim (CR26) 2019; 9 Vicente (CR14) 2018; 57 De Yoreo (CR22) 2015; 349 Na (CR10) 2011; 333 Laloué, Laroche, Jobic, Methivier (CR38) 2007; 13 Li, Valla, Garcia-Martinez (CR15) 2014; 6 Ristanovic (CR20) 2013; 52 Paolucci (CR2) 2017; 357 Awala (CR8) 2015; 14 Zhang (CR25) 2017; 29 Borodina (CR36) 2015; 5 Cychosz, Guillet-Nicolas, Garcia-Martinez, Thommes (CR3) 2017; 46 Ghorbanpour, Gumidyala, Grabow, Crossley, Rimer (CR27) 2015; 9 Zhang (CR11) 2012; 336 Mintova (CR12) 2015; 44 Ding (CR21) 2015; 137 Ruthven, Eic, Richard (CR32) 1991; 11 Gallego (CR1) 2017; 355 Rangnekar, Mittal, Elyassi, Caro, Tsapatsis (CR5) 2015; 44 Perez-Ramirez, Christensen, Egeblad, Christensen, Groen (CR16) 2008; 37 Liu (CR17) 2000; 122 EM Gallego (753_CR1) 2017; 355 A Hwang (753_CR7) 2019; 369 EM Gallego (753_CR13) 2017; 8 Y Shen (753_CR34) 2018; 19 H Zhu (753_CR24) 2008; 112 S Ilias (753_CR28) 2013; 3 AI Lupulescu (753_CR23) 2014; 344 K Varoon (753_CR4) 2011; 333 N Rangnekar (753_CR5) 2015; 44 KA Cychosz (753_CR3) 2017; 46 R Khare (753_CR29) 2015; 321 TR Forester (753_CR39) 1997; 93 EC Nordvang (753_CR30) 2015; 21 DM Ruthven (753_CR32) 1991; 11 A Ghorbanpour (753_CR27) 2015; 9 753_CR35 JJ De Yoreo (753_CR22) 2015; 349 PD Kolokathis (753_CR31) 2014; 40 K Na (753_CR10) 2011; 333 X Zhang (753_CR11) 2012; 336 H Zhang (753_CR25) 2017; 29 J Vicente (753_CR14) 2018; 57 DH Park (753_CR18) 2009; 48 E Borodina (753_CR36) 2015; 5 Y Shen (753_CR19) 2018; 8 S Kim (753_CR26) 2019; 9 K Li (753_CR15) 2014; 6 N Laloué (753_CR38) 2007; 13 J Perez-Ramirez (753_CR16) 2008; 37 Y Liu (753_CR17) 2000; 122 K Ding (753_CR21) 2015; 137 H Awala (753_CR8) 2015; 14 Z Ristanovic (753_CR20) 2013; 52 S Mintova (753_CR12) 2015; 44 C Paolucci (753_CR2) 2017; 357 Kinga Góra-Marek (753_CR33) 2014; 118 L Karwacki (753_CR6) 2009; 8 M Choi (753_CR9) 2009; 461 I Yarulina (753_CR37) 2018; 10 |
| References_xml | – volume: 137 start-page: 11238 year: 2015 end-page: 11241 ident: CR21 article-title: Constructing hierarchical porous zeolites via kinetic regulation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06791 – volume: 6 start-page: 46 year: 2014 end-page: 66 ident: CR15 article-title: Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking publication-title: ChemCatChem doi: 10.1002/cctc.201300345 – volume: 357 start-page: 898 year: 2017 end-page: 903 ident: CR2 article-title: Dynamic multinuclear sites formed by mobilized copper ions in NO selective catalytic reduction publication-title: Science doi: 10.1126/science.aan5630 – volume: 369 start-page: 122 year: 2019 end-page: 132 ident: CR7 article-title: Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.10.031 – volume: 355 start-page: 1051 year: 2017 end-page: 1054 ident: CR1 article-title: Ab initio’ synthesis of zeolites for preestablished catalytic reactions publication-title: Science doi: 10.1126/science.aal0121 – volume: 37 start-page: 2530 year: 2008 end-page: 2542 ident: CR16 article-title: Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design publication-title: Chem. Soc. Rev. doi: 10.1039/b809030k – volume: 52 start-page: 13382 year: 2013 end-page: 13386 ident: CR20 article-title: Intergrowth structure and aluminium zoning of a zeolite ZSM-5 crystal as resolved by synchrotron-based micro X-Ray diffraction imaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306370 – volume: 112 start-page: 17257 year: 2008 end-page: 17264 ident: CR24 article-title: Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent publication-title: J. Phys. Chem. C doi: 10.1021/jp805766m – volume: 8 start-page: 959 year: 2009 end-page: 965 ident: CR6 article-title: Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers publication-title: Nat. Mater. doi: 10.1038/nmat2530 – volume: 29 start-page: 9247 year: 2017 end-page: 9255 ident: CR25 article-title: Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03121 – volume: 3 start-page: 18 year: 2013 end-page: 31 ident: CR28 article-title: Mechanism of the catalytic conversion of methanol to hydrocarbons publication-title: ACS Catal. doi: 10.1021/cs3006583 – volume: 21 start-page: 17324 year: 2015 end-page: 17335 ident: CR30 article-title: Effects of coke deposits on the catalytic performance of large zeolite H-ZSM-5 crystals during alcohol-to-hydrocarbon reactions as investigated by a combination of optical spectroscopy and microscopy publication-title: Chem. Eur. J. doi: 10.1002/chem.201503136 – ident: CR35 – volume: 93 start-page: 3249 year: 1997 end-page: 3257 ident: CR39 article-title: Bluemoon simulations of benzene in silicalite-1 - Prediction of free energies and diffusion coefficients publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a702063e – volume: 349 start-page: aaa6760 year: 2015 ident: CR22 article-title: Crystallization by particle attachment in synthetic, biogenic, and geologic environments publication-title: Science doi: 10.1126/science.aaa6760 – volume: 44 start-page: 7128 year: 2015 end-page: 7154 ident: CR5 article-title: Zeolite membranes—a review and comparison with MOFs publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00292C – volume: 5 start-page: 992 year: 2015 end-page: 1003 ident: CR36 article-title: Influence of the reaction temperature on the nature of the active and deactivating species during methanol to olefins conversion over H-SSZ-13 publication-title: ACS Catal. doi: 10.1021/cs501345g – volume: 333 start-page: 328 year: 2011 end-page: 332 ident: CR10 article-title: Directing zeolite structures into hierarchically nanoporous architectures publication-title: Science doi: 10.1126/science.1204452 – volume: 321 start-page: 23 year: 2015 end-page: 31 ident: CR29 article-title: A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI publication-title: J. Catal. doi: 10.1016/j.jcat.2014.10.016 – volume: 9 start-page: 4006 year: 2015 end-page: 4016 ident: CR27 article-title: Epitaxial growth of ZSM-5@silicalite-1: a core-shell zeolite designed with passivated surface acidity publication-title: ACS Nano doi: 10.1021/acsnano.5b01308 – volume: 10 start-page: 804 year: 2018 end-page: 812 ident: CR37 article-title: Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process publication-title: Nat. Chem. doi: 10.1038/s41557-018-0081-0 – volume: 118 start-page: 12266 year: 2014 end-page: 12274 ident: CR33 article-title: 2,6-Di- -butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites publication-title: J. Phys. Chem. C doi: 10.1021/jp501928k – volume: 333 start-page: 72 year: 2011 end-page: 75 ident: CR4 article-title: Dispersible exfoliated zeolite nanosheets and their application as a selective membrane publication-title: Science doi: 10.1126/science.1208891 – volume: 40 start-page: 80 year: 2014 end-page: 100 ident: CR31 article-title: Dimensionality reduction of free energy profiles of benzene in silicalite-1: calculation of diffusion coefficients using transition state theory publication-title: Mol. Simul. doi: 10.1080/08927022.2013.840895 – volume: 8 start-page: 8138 year: 2017 end-page: 8149 ident: CR13 article-title: Simple organic structure directing agents for synthesizing nanocrystalline zeolites publication-title: Chem. Sci doi: 10.1039/C7SC02858J – volume: 11 start-page: 647 year: 1991 end-page: 653 ident: CR32 article-title: Diffusion of C aromatic hydrocarbons in silicalite publication-title: Zeolites doi: 10.1016/S0144-2449(05)80166-6 – volume: 13 start-page: 491 year: 2007 end-page: 500 ident: CR38 article-title: Kinetic Monte Carlo study of binary diffusion in silicalite publication-title: Adsorption doi: 10.1007/s10450-007-9067-8 – volume: 46 start-page: 389 year: 2017 end-page: 414 ident: CR3 article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00391E – volume: 9 start-page: 2880 year: 2019 end-page: 2892 ident: CR26 article-title: Control of hierarchical structure and framework–Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion publication-title: ACS Catal. doi: 10.1021/acscatal.8b04493 – volume: 122 start-page: 8791 year: 2000 end-page: 8792 ident: CR17 article-title: Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001615z – volume: 48 start-page: 7645 year: 2009 end-page: 7648 ident: CR18 article-title: Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901551 – volume: 344 start-page: 729 year: 2014 end-page: 732 ident: CR23 article-title: In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization publication-title: Science doi: 10.1126/science.1250984 – volume: 336 start-page: 1684 year: 2012 end-page: 1687 ident: CR11 article-title: Synthesis of self-pillared zeolite nanosheets by repetitive branching publication-title: Science doi: 10.1126/science.1221111 – volume: 461 start-page: 246 year: 2009 end-page: 249 ident: CR9 article-title: Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts publication-title: Nature doi: 10.1038/nature08288 – volume: 57 start-page: 3459 year: 2018 end-page: 3463 ident: CR14 article-title: Direct synthesis of nano-ferrierite along the 10-ring-channel direction boosts their catalytic behavior publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711418 – volume: 19 start-page: 529 year: 2018 end-page: 537 ident: CR34 article-title: Optimized synthesis of ZSM-11 catalysts using 1,8-diaminooctane as a structure-directing agent publication-title: ChemPhysChem doi: 10.1002/cphc.201700968 – volume: 14 start-page: 447 year: 2015 end-page: 451 ident: CR8 article-title: Template-free nanosized faujasite-type zeolites publication-title: Nat. Mater. doi: 10.1038/nmat4173 – volume: 44 start-page: 7207 year: 2015 end-page: 7233 ident: CR12 article-title: Nanosized microporous crystals: emerging applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00210A – volume: 8 start-page: 11042 year: 2018 end-page: 11053 ident: CR19 article-title: Deconvoluting the competing effects of framework topology and diffusion path length on methanol-to-hydrocarbons reactions publication-title: ACS Catal. doi: 10.1021/acscatal.8b02274 – volume: 355 start-page: 1051 year: 2017 ident: 753_CR1 publication-title: Science doi: 10.1126/science.aal0121 – volume: 336 start-page: 1684 year: 2012 ident: 753_CR11 publication-title: Science doi: 10.1126/science.1221111 – volume: 349 start-page: aaa6760 year: 2015 ident: 753_CR22 publication-title: Science doi: 10.1126/science.aaa6760 – volume: 8 start-page: 11042 year: 2018 ident: 753_CR19 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02274 – volume: 44 start-page: 7128 year: 2015 ident: 753_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00292C – volume: 37 start-page: 2530 year: 2008 ident: 753_CR16 publication-title: Chem. Soc. Rev. doi: 10.1039/b809030k – volume: 112 start-page: 17257 year: 2008 ident: 753_CR24 publication-title: J. Phys. Chem. C doi: 10.1021/jp805766m – volume: 46 start-page: 389 year: 2017 ident: 753_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00391E – volume: 344 start-page: 729 year: 2014 ident: 753_CR23 publication-title: Science doi: 10.1126/science.1250984 – volume: 333 start-page: 328 year: 2011 ident: 753_CR10 publication-title: Science doi: 10.1126/science.1204452 – volume: 321 start-page: 23 year: 2015 ident: 753_CR29 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.10.016 – volume: 48 start-page: 7645 year: 2009 ident: 753_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901551 – volume: 52 start-page: 13382 year: 2013 ident: 753_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306370 – volume: 122 start-page: 8791 year: 2000 ident: 753_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001615z – volume: 10 start-page: 804 year: 2018 ident: 753_CR37 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0081-0 – volume: 369 start-page: 122 year: 2019 ident: 753_CR7 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.10.031 – volume: 14 start-page: 447 year: 2015 ident: 753_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat4173 – volume: 9 start-page: 4006 year: 2015 ident: 753_CR27 publication-title: ACS Nano doi: 10.1021/acsnano.5b01308 – volume: 19 start-page: 529 year: 2018 ident: 753_CR34 publication-title: ChemPhysChem doi: 10.1002/cphc.201700968 – volume: 13 start-page: 491 year: 2007 ident: 753_CR38 publication-title: Adsorption doi: 10.1007/s10450-007-9067-8 – volume: 3 start-page: 18 year: 2013 ident: 753_CR28 publication-title: ACS Catal. doi: 10.1021/cs3006583 – volume: 40 start-page: 80 year: 2014 ident: 753_CR31 publication-title: Mol. Simul. doi: 10.1080/08927022.2013.840895 – volume: 5 start-page: 992 year: 2015 ident: 753_CR36 publication-title: ACS Catal. doi: 10.1021/cs501345g – volume: 93 start-page: 3249 year: 1997 ident: 753_CR39 publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a702063e – volume: 6 start-page: 46 year: 2014 ident: 753_CR15 publication-title: ChemCatChem doi: 10.1002/cctc.201300345 – volume: 29 start-page: 9247 year: 2017 ident: 753_CR25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03121 – volume: 21 start-page: 17324 year: 2015 ident: 753_CR30 publication-title: Chem. Eur. J. doi: 10.1002/chem.201503136 – volume: 461 start-page: 246 year: 2009 ident: 753_CR9 publication-title: Nature doi: 10.1038/nature08288 – volume: 8 start-page: 8138 year: 2017 ident: 753_CR13 publication-title: Chem. Sci doi: 10.1039/C7SC02858J – volume: 57 start-page: 3459 year: 2018 ident: 753_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711418 – volume: 357 start-page: 898 year: 2017 ident: 753_CR2 publication-title: Science doi: 10.1126/science.aan5630 – volume: 137 start-page: 11238 year: 2015 ident: 753_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06791 – volume: 118 start-page: 12266 year: 2014 ident: 753_CR33 publication-title: J. Phys. Chem. C doi: 10.1021/jp501928k – volume: 44 start-page: 7207 year: 2015 ident: 753_CR12 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00210A – volume: 8 start-page: 959 year: 2009 ident: 753_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat2530 – volume: 9 start-page: 2880 year: 2019 ident: 753_CR26 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04493 – ident: 753_CR35 – volume: 333 start-page: 72 year: 2011 ident: 753_CR4 publication-title: Science doi: 10.1126/science.1208891 – volume: 11 start-page: 647 year: 1991 ident: 753_CR32 publication-title: Zeolites doi: 10.1016/S0144-2449(05)80166-6 |
| SSID | ssj0021556 |
| Score | 2.6586351 |
| Snippet | There is growing evidence for the advantages of synthesizing nanosized zeolites with markedly reduced internal diffusion limitations for enhanced performances... Not provided. Nanosized zeolites enable better catalytic performance; however, their synthesis is non-trivial. Here, a simple treatment is presented that enables the growth... |
| SourceID | swepub osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1074 |
| SubjectTerms | 119/118 140/131 140/146 639/301/299/1013 639/638/77/884 Aluminosilicates Aluminum silicates Biomaterials Catalysis Chemical synthesis Chemistry Chemistry and Materials Science Condensed Matter Physics Crystallography Crystals Epitaxial growth Fins Mass transport Materials Science Nanocrystals Nanoparticles Nanotechnology Optical and Electronic Materials Physics Titration Transport properties Zeolites |
| Title | Finned zeolite catalysts |
| URI | https://link.springer.com/article/10.1038/s41563-020-0753-1 https://www.ncbi.nlm.nih.gov/pubmed/32778812 https://www.proquest.com/docview/2474988672 https://www.proquest.com/docview/2432855808 https://www.osti.gov/biblio/1850665 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185395 |
| Volume | 19 |
| WOSCitedRecordID | wos000558140100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-4660 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-4660 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database (Proquest) customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-4660 databaseCode: KB. dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-4660 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-4660 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61Ww5wgPIoDS3VIsEF5Daxndg5oZZ2hVR1teKlvVmx41SV0KZsskjw65nJqwWhvfQyUhTbcmbGnrFn8g3A68JFuQtdxArnJZNZahl6CZIlSK3z3IVR3hSbUNOpns_TWXfhVnVplf2e2GzUeenojvyISyVTrRPF31__YFQ1iqKrXQmNTdgipDI5gq2Ts-ns03DkQmvZ_l-kEoaeBe_jmkIfVXR0oRhmyNBsChb9ZZlGJa6w_3mdtyKm_6CLNhZp8uiu37INDztfdHzcKs9j2PCLJ_DgFkLhU9idUG2ufPzbU56cHze3Pb-qunoGXydnXz58ZF0xBeakEjVTPhTeFtJ63P_yKFcFikJZJ2wcWiFd6hPvUVSFy9LYqhBlm-kkxw6iiDP0anZgtCgXfhfGPFVo1lM09RkeRrzNLNpBwpFTOQ7pbABhz0jjOqRxKnjx3TQRb6FNy3uDvDfEexMF8Hboct3CbKxrvEfSMegjENCto4wgV5uIwPeSOID9nummW4-VueF4AK-G17iSKDySLXy5ojaC6zjWoQ7geSvsYS6CK8Ldx97veunfDL5mom9aBRnGITDv06tvx6ZcXppqRXMWafxi_ZT34D4nNW1SCPdhVC9X_iXccz_rq2p5AJtqrhqqDzr1x6fzk0OkF3xGVH3-A6KHCfc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VCxJwKM_S0AJBoheQ1cR2YueAUEVZtWq76qGg3kzsOKgS2rSbLKj8KH4jM8kmLQjtrQcuucS2Jpm3x_4G4HXp4sJFLmal85LJPLMMowTJUnxa57mL4qJtNqEmE316mh2vwK_-Lgwdq-xtYmuoi8rRHvk2l0pmWqeKvz-_YNQ1iqqrfQuNTiwO_OUPTNnqd_u7yN8tzscfTz7ssUVXAeakEg1TPhLeltJ6NARFXKgSaVLWCZtEVkiX-dR7pLl0eZZYFeFH5jotcIIok1wT-BKa_FsSMyHSqyN-PCR46Ju720wqZRjH8L6KKvR2TYkSVUwjhk5asPgPPziqUJ__FeNeq8_-hWXa-r_x_f_tzz2A1UWkHe50qvEQVvz0Edy7hr_4GNbH1HmsCH96OgXow3Yv67Ju6ifw6UZIW4PRtJr6dQh5pjBoyTCQyTHV8ja36OUJJU8VuKSzAUQ944xb4KhTO49vpq3nC206XhvktSFemziAN8OU8w5EZNngDZIGgxEQwfg6Ou_kGhMTtGCaBLDZM9ksrE1trjgcwKvhNdoJKv7kU1_NaYzgOkl0pAN42gnXQIvgiroK4Oy3vbRdLb6E0K1OIId1CKp89-zzjqlmX009J5pFljxbTvJLuLN3cnRoDvcnBxtwl5OKtIclN2HUzOb-Odx235uzevaiVbYQvty0jP4GZDNnBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VC0JwaHmVpi0QJHoBWZvYSewcEKpYVlRFq0o81JuJHQdVQpt2k6UqP41f15m8WhDaWw9ccoltTTJPe8bfALwsbJjbwIassC5iUZYahlFCxBJ8Guu4DcK8aTYhZzN1fJwercHv_i4MlVX2NrEx1Hlp6Yx8zCMZpUolko-LriziaDJ9e3rGqIMUZVr7dhqtiBy6i3PcvlVvDibI6z3Op-8_v_vAug4DzEZS1Ey6QDhTRMahUcjDXBZInzRWmDgwIrKpS5xD-gubpbGRAX5wppIcJ4gizhQBMaH5vyUjjBOassFPw2YP_XR7s0kmDGMa3mdUhRpXtGmi7GnA0GELFv7hE0cl6va_4t1rudq_cE0bXzjd-J__4n1Y7yJwf79VmQew5uYP4d41XMZHsDWljmS5_8tRdaDzmzOui6quHsOXGyFtE0bzcu62wOepxGAmxQAnwy2YM5lB70_oeTLHJa3xIOiZqG2Hr05tPn7oJs8vlG75rpHvmviuQw9eDVNOW3CRVYN3SDI0RkYE72upDsrWOiTIwST2YLdnuO6sUKWvuO3Bi-E12g9KCmVzVy5pjOAqjlWgPHjSCtpAi-CSug3g7Ne95F0tvoLQvVY4h3UIwnxy8nVfl4vvuloSzSKNt1eT_BzuoGjqjwezwx24y0lbmhrKXRjVi6V7Crftz_qkWjxr9M6HbzctopeLwG_X |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finned+zeolite+catalysts&rft.jtitle=Nature+materials&rft.au=Dai%2C+Heng&rft.au=Shen%2C+Yufeng&rft.au=Yang%2C+Taimin&rft.au=Lee%2C+Choongsze&rft.date=2020-10-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=10&rft.spage=1074&rft.epage=1080&rft_id=info:doi/10.1038%2Fs41563-020-0753-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_020_0753_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |