Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions
•A larger size of Ru nanoparticles leads to a higher (TOF).•Heterogeneous distribution of the size of Ru nanoparticles favors higher TOF.•Homogeneous distribution of size of Ru nanoparticles leads to lower TOF. Ru/γ-Al2O3 catalysts were prepared using three different methods: wet impregnation, collo...
Uložené v:
| Vydané v: | Applied catalysis. A, General Ročník 474; číslo SI; s. 194 - 202 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier B.V
22.03.2014
Elsevier |
| Predmet: | |
| ISSN: | 0926-860X, 1873-3875 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A larger size of Ru nanoparticles leads to a higher (TOF).•Heterogeneous distribution of the size of Ru nanoparticles favors higher TOF.•Homogeneous distribution of size of Ru nanoparticles leads to lower TOF.
Ru/γ-Al2O3 catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with different average sizes and distribution of sizes were obtained. The catalysts were tested in ammonia synthesis under mild reaction conditions, namely low temperature (100°C) and low pressure (4bar), and characterized by N2 adsorption, XRD, XPS, TEM and TPR techniques. The results indicate that a good catalytic performance can be achieved by Ru supported nanoparticles fulfilling two requirements: (i) a relatively high average size (despite the usual assertion that only small particles are required) and (ii) a broad distribution of sizes that ensures the presence of both small particles, containing highly active sites, and large nanoparticles, which are shown to promote the reaction on small particles. This promotion results from a cooperative effect between small and large nanoparticles in good contact, which also allows keeping a highly reduced surface of ruthenium.
It is proposed that, under mild reaction conditions, large Ru nanoparticles promote the ammonia synthesis reaction by allowing a more effective activation and transfer of hydrogen atoms, able to hydrogenate strongly adsorbed nitrogen atoms, and thus to release active sites for the activation of N2. |
|---|---|
| AbstractList | Ru/ gamma -Al sub(2)O sub(3) catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with different average sizes and distribution of sizes were obtained. The catalysts were tested in ammonia synthesis under mild reaction conditions, namely low temperature (100 C) and low pressure (4 bar), and characterized by N sub(2) adsorption, XRD, XPS, TEM and TPR techniques. The results indicate that a good catalytic performance can be achieved by Ru supported nanoparticles fulfilling two requirements: (i) a relatively high average size (despite the usual assertion that only small particles are required) and (ii) a broad distribution of sizes that ensures the presence of both small particles, containing highly active sites, and large nanoparticles, which are shown to promote the reaction on small particles. This promotion results from a cooperative effect between small and large nanoparticles in good contact, which also allows keeping a highly reduced surface of ruthenium. It is proposed that, under mild reaction conditions, large Ru nanoparticles promote the ammonia synthesis reaction by allowing a more effective activation and transfer of hydrogen atoms, able to hydrogenate strongly adsorbed nitrogen atoms, and thus to release active sites for the activation of N sub(2). Ru/gamma-Al2O3 catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with different average sizes and distribution of sizes were obtained. The catalysts were tested in ammonia synthesis under mild reaction conditions, namely low temperature (100 degrees C) and low pressure (4 bar), and characterized by N-2 adsorption, XRD, XPS, TEM and TPR techniques. The results indicate that a good catalytic performance can be achieved by Ru supported nanoparticles fulfilling two requirements: (i) a relatively high average size (despite the usual assertion that only small particles are required) and (ii) a broad distribution of sizes that ensures the presence of both small particles, containing highly active sites, and large nanoparticles, which are shown to promote the reaction on small particles. This promotion results from a cooperative effect between small and large nanoparticles in good contact, which also allows keeping a highly reduced surface of ruthenium. It is proposed that, under mild reaction conditions, large Ru nanoparticles promote the ammonia synthesis reaction by allowing a more effective activation and transfer of hydrogen atoms, able to hydrogenate strongly adsorbed nitrogen atoms, and thus to release active sites for the activation of N2. (c) 2013 Elsevier B.V. All rights reserved. •A larger size of Ru nanoparticles leads to a higher (TOF).•Heterogeneous distribution of the size of Ru nanoparticles favors higher TOF.•Homogeneous distribution of size of Ru nanoparticles leads to lower TOF. Ru/γ-Al2O3 catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with different average sizes and distribution of sizes were obtained. The catalysts were tested in ammonia synthesis under mild reaction conditions, namely low temperature (100°C) and low pressure (4bar), and characterized by N2 adsorption, XRD, XPS, TEM and TPR techniques. The results indicate that a good catalytic performance can be achieved by Ru supported nanoparticles fulfilling two requirements: (i) a relatively high average size (despite the usual assertion that only small particles are required) and (ii) a broad distribution of sizes that ensures the presence of both small particles, containing highly active sites, and large nanoparticles, which are shown to promote the reaction on small particles. This promotion results from a cooperative effect between small and large nanoparticles in good contact, which also allows keeping a highly reduced surface of ruthenium. It is proposed that, under mild reaction conditions, large Ru nanoparticles promote the ammonia synthesis reaction by allowing a more effective activation and transfer of hydrogen atoms, able to hydrogenate strongly adsorbed nitrogen atoms, and thus to release active sites for the activation of N2. |
| Author | Sanchez, Clément Fernández, Camila Sassoye, Capucine Debecker, Damien P. Ruiz, Patricio |
| Author_xml | – sequence: 1 givenname: Camila surname: Fernández fullname: Fernández, Camila email: camila.fernandez@uclouvain.be organization: Institute of Condensed Matter and Nanosciences – IMCN, Division “Molecules, Solids and Reactivity-MOST”, Université catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium – sequence: 2 givenname: Capucine surname: Sassoye fullname: Sassoye, Capucine organization: Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Paris 75005, France – sequence: 3 givenname: Damien P. surname: Debecker fullname: Debecker, Damien P. organization: Institute of Condensed Matter and Nanosciences – IMCN, Division “Molecules, Solids and Reactivity-MOST”, Université catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium – sequence: 4 givenname: Clément surname: Sanchez fullname: Sanchez, Clément organization: Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Paris 75005, France – sequence: 5 givenname: Patricio surname: Ruiz fullname: Ruiz, Patricio email: ruiz@cata.ucl.ac.be organization: Institute of Condensed Matter and Nanosciences – IMCN, Division “Molecules, Solids and Reactivity-MOST”, Université catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28423667$$DView record in Pascal Francis https://hal.science/hal-01289924$$DView record in HAL |
| BookMark | eNqFks-KFDEQhxtZwdnVN_CQi6CHGfOnO-l4EJZldYUBQRS8hZokzdbQk7RJemB8AV_bNLPswYN7Skh9X6XIL5fNRYjBN81rRjeMMvl-v4HJQoENp0xsqN5QoZ81K9YrsRa96i6aFdVcrntJf75oLnPeU0p5q7tV8-d2GLwtJA6k3HuS8bcnEBxxmEvC3VwwhqWY52mKqXhHvs0kQIgTpIJ29JlUoKqYCNiCRywngoHA4RADAsmnUIsZM5mD84kccHQk-QWtno3B4bLLL5vnA4zZv3pYr5ofn26_39ytt18_f7m53q5tq0RZq53veWs1Z074joKSTHR2cIoqUEM3qLYX0rpOOw5e0o5Z0Yreay2HnR6sElfNu3PfexjNlPAA6WQioLm73prljDLea83bI6vs2zM7pfhr9rmYA2brxxGCj3M2TCqlNatXPo12UjHOZCcr-uYBhWxhHBIEi_lxFt63XEi5TNqeOZtizskPjwijZond7M05drPEbqg2NfaqffhHs1hgeeOSAMen5I9n2dcIjuiTyRZ9sN5hqr_EuIj_b_AXop7OlA |
| CitedBy_id | crossref_primary_10_1039_D0NR00788A crossref_primary_10_1016_S1872_2067_20_63787_1 crossref_primary_10_1016_j_apsusc_2024_161906 crossref_primary_10_1016_j_cattod_2024_114723 crossref_primary_10_1080_00986445_2014_923995 crossref_primary_10_1016_j_apcata_2022_118678 crossref_primary_10_1016_S1872_2067_23_64644_3 crossref_primary_10_1002_cctc_201501211 crossref_primary_10_1039_C7CS00697G crossref_primary_10_1007_s10562_019_02802_x crossref_primary_10_1038_s42004_025_01488_0 crossref_primary_10_1007_s10562_016_1862_y crossref_primary_10_1016_j_chempr_2021_11_008 crossref_primary_10_1039_D3SC05447K crossref_primary_10_1007_s10562_019_02674_1 crossref_primary_10_1016_j_carbon_2017_07_014 crossref_primary_10_1016_j_ces_2024_120021 crossref_primary_10_1016_j_jcat_2022_08_004 crossref_primary_10_1039_D0CY02476G crossref_primary_10_1002_adma_202314121 crossref_primary_10_1039_D0CY01658F crossref_primary_10_1016_j_ces_2023_118926 crossref_primary_10_3390_catal9050406 crossref_primary_10_1016_j_apcata_2018_01_006 crossref_primary_10_1016_j_cattod_2014_11_010 crossref_primary_10_1002_slct_202000311 crossref_primary_10_1080_10584587_2016_1168220 crossref_primary_10_1039_D2CY02035A crossref_primary_10_1016_j_apcata_2021_118058 crossref_primary_10_1016_j_cattod_2015_03_014 crossref_primary_10_1039_D5CY00122F crossref_primary_10_1016_j_jcat_2024_115530 crossref_primary_10_1007_s11224_020_01592_y crossref_primary_10_1016_j_apcata_2018_06_017 crossref_primary_10_1016_j_inoche_2020_108169 crossref_primary_10_1039_C8CC01884G crossref_primary_10_1016_j_apcata_2014_04_043 crossref_primary_10_1039_D3CY00489A crossref_primary_10_1016_j_cattod_2015_06_026 crossref_primary_10_1016_j_jcat_2016_09_013 crossref_primary_10_1016_j_apcata_2015_05_023 crossref_primary_10_1016_j_jcat_2020_05_039 crossref_primary_10_1016_j_cattod_2017_01_002 crossref_primary_10_1016_j_jcat_2021_10_024 crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1016_j_apcatb_2017_08_058 crossref_primary_10_1016_j_jcat_2021_10_019 crossref_primary_10_1016_j_jre_2017_07_011 crossref_primary_10_1002_cjce_22431 crossref_primary_10_1039_D2CY02041F crossref_primary_10_1016_j_molcata_2015_10_019 |
| Cites_doi | 10.1002/sia.740210302 10.1016/0368-2048(76)80015-1 10.1021/ja804893b 10.1039/c1gc15769h 10.1006/jcat.1997.1447 10.1021/jp9842291 10.1016/j.apcatb.2010.10.028 10.1006/jcat.2000.3087 10.1016/j.jcat.2013.02.009 10.1007/BF02498142 10.1103/PhysRevLett.83.1814 10.1021/la980550z 10.1016/j.jcat.2004.12.005 10.1063/1.481103 10.1016/j.molcata.2006.08.071 10.1016/S0368-2048(98)00462-9 10.1021/cm0203868 10.1006/jcat.2000.2857 10.1021/j100475a011 10.1016/0021-9517(85)90265-9 10.1016/j.catcom.2013.05.003 10.1016/S0926-860X(00)00713-4 10.1006/jcat.2001.3418 10.1021/cr030063a 10.1006/jcat.2002.3615 10.1016/j.apcata.2004.01.014 10.1016/j.apsusc.2011.09.127 10.1016/j.apcatb.2011.11.043 10.1016/S1381-1169(00)00396-4 10.1016/0021-9517(72)90179-0 10.1016/S0926-860X(99)00090-3 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
| DOI | 10.1016/j.apcata.2013.09.039 |
| DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-3875 |
| EndPage | 202 |
| ExternalDocumentID | oai:HAL:hal-01289924v1 28423667 10_1016_j_apcata_2013_09_039 S0926860X13005814 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPD SSG SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADMUD ADNMO AEIPS AFJKZ AGHFR AGQPQ AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ ~HD BNPGV IQODW SSH 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
| ID | FETCH-LOGICAL-c473t-7be824c921d3e50a76135cfd707a7f5f74836cd59d2ae6051c3438e996fb9fc73 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336005800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-860X |
| IngestDate | Tue Oct 14 20:33:06 EDT 2025 Sun Sep 28 16:12:54 EDT 2025 Sun Sep 28 01:23:42 EDT 2025 Wed Apr 02 08:10:24 EDT 2025 Sat Nov 29 07:05:26 EST 2025 Tue Nov 18 21:33:18 EST 2025 Fri Feb 23 02:24:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | SI |
| Keywords | Catalytic cooperation Size distribution Ru supported catalyst Nanoparticle Low-temperature ammonia synthesis Ammonia Heterogeneous catalysis Catalytic reaction Synthesis Support Supported catalyst Low temperature |
| Language | English |
| License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c473t-7be824c921d3e50a76135cfd707a7f5f74836cd59d2ae6051c3438e996fb9fc73 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ORCID | 0000-0002-6426-4844 0000-0003-2790-888X |
| PQID | 1567121656 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01289924v1 proquest_miscellaneous_1677991483 proquest_miscellaneous_1567121656 pascalfrancis_primary_28423667 crossref_primary_10_1016_j_apcata_2013_09_039 crossref_citationtrail_10_1016_j_apcata_2013_09_039 elsevier_sciencedirect_doi_10_1016_j_apcata_2013_09_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-22 |
| PublicationDateYYYYMMDD | 2014-03-22 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Applied catalysis. A, General |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Okal, Zawadzki, Tylus (bib0155) 2011; 101 Kerkhof, Moulijn (bib0120) 1979; 83 Froment, Genet, Devillers (bib0160) 1999; 104 Logadottir, Rod, Nørskov, Hammer, Dahl, Jacobsen (bib0055) 2001; 197 Nørskov, Bligaard, Logadottir, Bahn, Hansen, Bollinger, Bengaard, Hammer, Sljivancanin, Mavrikakis, Xu, Dahl, Jacobsen (bib0060) 2002; 209 Elmasides, Kondarides, Gru1nert, Verykios (bib0145) 1999; 103 Kowalczyk, Jodzis, Rarog, Zielinski, Pielaszek, Presz (bib0085) 1999; 184 Karelovic, Ruiz (bib0170) 2013; 301 Tougaard (bib0140) 2002 Zhang, Chan (bib0110) 2003; 15 Karelovic, Ruiz (bib0165) 2012; 113–114 Raróg-Pilecka, Miskiewicz, Szmigiel, Kowalczyk (bib0090) 2005; 231 Burda, Chen, Narayanan, El-Sayed (bib0045) 2005; 105 Aika, Ohya, Ozaki, Inoue, Yasumori (bib0020) 1985; 92 Eriksson, Nylén, Rojas, Boutonnet (bib0105) 2004; 265 Talonen, Eskelinen, Syvajarvi, Roine (bib0125) 1999 Liang, Wei, Xin, Li (bib0095) 2001; 208 Li, Park (bib0115) 1999; 15 Tanuma, Powell, Penn (bib0130) 1994; 21 Miyazaki, Balint, Aika, Nakano (bib0030) 2001; 204 Seetharamulu, Kumar, Padmasri, Raju, Rao (bib0040) 2007; 263 Sassoye, Muller, Debecker, Karelovic, Cassaignon, Pizarro, Ruiz, Sanchez (bib0100) 2011; 13 Shur, Yunusov (bib0010) 1998; 47 Aika, Hori, Ozaki (bib0015) 1972; 27 Hinrichsen, Rosowski, Hornung, Muhler, Ertl (bib0025) 1997; 165 Harding, Habibpour, Kunz, Nam-Su Farnbacher, Heiz, Yoon, Landman (bib0050) 2009; 131 Dahl, Logadottir, Egeberg, Larsen, Chorkendorff, Törnqvist, Nørskov (bib0065) 1999; 83 Larichev, Boris, Moroz, Valerii, Bukhtiyarov (bib0150) 2011; 258 Rod, Logadottir, Nørskov (bib0005) 2000; 112 Wu, Chen, Zheng, Zeng, Zheng, Guan (bib0035) 2003; 248 Jacobsen, Søren Dahl, Hansen, Eric Törnqvist, Lone Jensen, Henrik Topsøe, Prip, Møenshaug, Chorkendorff (bib0075) 2000; 163 Lin, Wei, Lin, Ni (bib0080) 2013; 39 Dahl, Sehested, Jacobsen, Törnqvist, Chorkendorff (bib0070) 2000; 192 Scofield (bib0135) 1976; 8 Lin (10.1016/j.apcata.2013.09.039_bib0080) 2013; 39 Aika (10.1016/j.apcata.2013.09.039_bib0015) 1972; 27 Kerkhof (10.1016/j.apcata.2013.09.039_bib0120) 1979; 83 Tougaard (10.1016/j.apcata.2013.09.039_bib0140) 2002 Liang (10.1016/j.apcata.2013.09.039_bib0095) 2001; 208 Okal (10.1016/j.apcata.2013.09.039_bib0155) 2011; 101 Logadottir (10.1016/j.apcata.2013.09.039_bib0055) 2001; 197 Shur (10.1016/j.apcata.2013.09.039_bib0010) 1998; 47 Aika (10.1016/j.apcata.2013.09.039_bib0020) 1985; 92 Miyazaki (10.1016/j.apcata.2013.09.039_bib0030) 2001; 204 Froment (10.1016/j.apcata.2013.09.039_bib0160) 1999; 104 Seetharamulu (10.1016/j.apcata.2013.09.039_bib0040) 2007; 263 Harding (10.1016/j.apcata.2013.09.039_bib0050) 2009; 131 Karelovic (10.1016/j.apcata.2013.09.039_bib0170) 2013; 301 Rod (10.1016/j.apcata.2013.09.039_bib0005) 2000; 112 Dahl (10.1016/j.apcata.2013.09.039_bib0065) 1999; 83 Zhang (10.1016/j.apcata.2013.09.039_bib0110) 2003; 15 Elmasides (10.1016/j.apcata.2013.09.039_bib0145) 1999; 103 Raróg-Pilecka (10.1016/j.apcata.2013.09.039_bib0090) 2005; 231 Tanuma (10.1016/j.apcata.2013.09.039_bib0130) 1994; 21 Burda (10.1016/j.apcata.2013.09.039_bib0045) 2005; 105 Dahl (10.1016/j.apcata.2013.09.039_bib0070) 2000; 192 Li (10.1016/j.apcata.2013.09.039_bib0115) 1999; 15 Wu (10.1016/j.apcata.2013.09.039_bib0035) 2003; 248 Larichev (10.1016/j.apcata.2013.09.039_bib0150) 2011; 258 Jacobsen (10.1016/j.apcata.2013.09.039_bib0075) 2000; 163 Sassoye (10.1016/j.apcata.2013.09.039_bib0100) 2011; 13 Scofield (10.1016/j.apcata.2013.09.039_bib0135) 1976; 8 Nørskov (10.1016/j.apcata.2013.09.039_bib0060) 2002; 209 Karelovic (10.1016/j.apcata.2013.09.039_bib0165) 2012; 113–114 Talonen (10.1016/j.apcata.2013.09.039_bib0125) 1999 Eriksson (10.1016/j.apcata.2013.09.039_bib0105) 2004; 265 Hinrichsen (10.1016/j.apcata.2013.09.039_bib0025) 1997; 165 Kowalczyk (10.1016/j.apcata.2013.09.039_bib0085) 1999; 184 |
| References_xml | – volume: 208 start-page: 193 year: 2001 end-page: 201 ident: bib0095 publication-title: Appl. Catal. A – volume: 263 start-page: 253 year: 2007 end-page: 258 ident: bib0040 publication-title: J. Mol. Catal. A: Chem. – volume: 101 start-page: 548 year: 2011 end-page: 559 ident: bib0155 publication-title: Appl. Catal. B – volume: 13 start-page: 3230 year: 2011 end-page: 3237 ident: bib0100 publication-title: Green Chem. – volume: 163 start-page: 19 year: 2000 end-page: 26 ident: bib0075 publication-title: J. Mol. Catal. A – volume: 112 start-page: 5343 year: 2000 ident: bib0005 publication-title: J. Chem. Phys. – volume: 131 start-page: 538 year: 2009 ident: bib0050 publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 305 year: 1985 ident: bib0020 publication-title: J. Catal. – volume: 104 start-page: 119 year: 1999 end-page: 126 ident: bib0160 publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 27 start-page: 424 year: 1972 ident: bib0015 publication-title: J. Catal. – volume: 83 start-page: 1612 year: 1979 end-page: 1619 ident: bib0120 publication-title: J. Phys. Chem. – volume: 301 start-page: 141 year: 2013 end-page: 153 ident: bib0170 publication-title: J. Catal. – volume: 192 start-page: 391 year: 2000 end-page: 399 ident: bib0070 publication-title: J. Catal. – volume: 8 start-page: 129 year: 1976 end-page: 137 ident: bib0135 publication-title: J. Electron Spectrosc. – volume: 21 start-page: 165 year: 1994 end-page: 176 ident: bib0130 publication-title: Surf. Interface Anal. – volume: 265 start-page: 207 year: 2004 end-page: 219 ident: bib0105 publication-title: Appl. Catal. A – volume: 248 start-page: 8 year: 2003 end-page: 2489 ident: bib0035 publication-title: Chem. Commun. – volume: 39 start-page: 14 year: 2013 end-page: 19 ident: bib0080 publication-title: Catal. Commun. – volume: 15 start-page: 451 year: 2003 end-page: 459 ident: bib0110 publication-title: Chem. Mater. – volume: 83 start-page: 1814 year: 1999 end-page: 1817 ident: bib0065 publication-title: Phys. Rev. Lett. – volume: 184 start-page: 95 year: 1999 end-page: 102 ident: bib0085 publication-title: Appl. Catal. A – volume: 231 start-page: 11 year: 2005 end-page: 19 ident: bib0090 publication-title: J. Catal. – volume: 258 start-page: 1541 year: 2011 end-page: 1550 ident: bib0150 publication-title: Appl. Surf. Sci. – volume: 204 start-page: 364 year: 2001 end-page: 371 ident: bib0030 publication-title: J. Catal. – year: 1999 ident: bib0125 article-title: Outokumpu HSC Chemistry for Windows, 4.0 ed. – volume: 105 start-page: 1025 year: 2005 ident: bib0045 publication-title: Chem. Rev. – volume: 15 start-page: 952 year: 1999 end-page: 956 ident: bib0115 publication-title: Langmuir – volume: 103 start-page: 5227 year: 1999 end-page: 5239 ident: bib0145 publication-title: J. Phys. Chem. B – year: 2002 ident: bib0140 article-title: QUASES-IMFP-TPP2M Software – volume: 197 start-page: 229 year: 2001 end-page: 231 ident: bib0055 publication-title: J. Catal. – volume: 47 start-page: 765 year: 1998 end-page: 776 ident: bib0010 publication-title: Russ. Chem. Bull. – volume: 209 start-page: 275 year: 2002 end-page: 278 ident: bib0060 publication-title: J. Catal. – volume: 165 start-page: 33 year: 1997 end-page: 44 ident: bib0025 publication-title: J. Catal. – volume: 113–114 start-page: 237 year: 2012 end-page: 249 ident: bib0165 publication-title: Appl. Catal. B – volume: 21 start-page: 165 year: 1994 ident: 10.1016/j.apcata.2013.09.039_bib0130 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740210302 – volume: 8 start-page: 129 year: 1976 ident: 10.1016/j.apcata.2013.09.039_bib0135 publication-title: J. Electron Spectrosc. doi: 10.1016/0368-2048(76)80015-1 – volume: 131 start-page: 538 year: 2009 ident: 10.1016/j.apcata.2013.09.039_bib0050 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804893b – volume: 13 start-page: 3230 year: 2011 ident: 10.1016/j.apcata.2013.09.039_bib0100 publication-title: Green Chem. doi: 10.1039/c1gc15769h – volume: 165 start-page: 33 year: 1997 ident: 10.1016/j.apcata.2013.09.039_bib0025 publication-title: J. Catal. doi: 10.1006/jcat.1997.1447 – volume: 103 start-page: 5227 year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0145 publication-title: J. Phys. Chem. B doi: 10.1021/jp9842291 – volume: 101 start-page: 548 year: 2011 ident: 10.1016/j.apcata.2013.09.039_bib0155 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.10.028 – volume: 197 start-page: 229 year: 2001 ident: 10.1016/j.apcata.2013.09.039_bib0055 publication-title: J. Catal. doi: 10.1006/jcat.2000.3087 – volume: 301 start-page: 141 year: 2013 ident: 10.1016/j.apcata.2013.09.039_bib0170 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.02.009 – volume: 47 start-page: 765 year: 1998 ident: 10.1016/j.apcata.2013.09.039_bib0010 publication-title: Russ. Chem. Bull. doi: 10.1007/BF02498142 – volume: 83 start-page: 1814 issue: 9 year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0065 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1814 – volume: 15 start-page: 952 year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0115 publication-title: Langmuir doi: 10.1021/la980550z – volume: 248 start-page: 8 year: 2003 ident: 10.1016/j.apcata.2013.09.039_bib0035 publication-title: Chem. Commun. – volume: 231 start-page: 11 year: 2005 ident: 10.1016/j.apcata.2013.09.039_bib0090 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.005 – volume: 112 start-page: 5343 year: 2000 ident: 10.1016/j.apcata.2013.09.039_bib0005 publication-title: J. Chem. Phys. doi: 10.1063/1.481103 – volume: 263 start-page: 253 year: 2007 ident: 10.1016/j.apcata.2013.09.039_bib0040 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2006.08.071 – volume: 104 start-page: 119 year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0160 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(98)00462-9 – volume: 15 start-page: 451 year: 2003 ident: 10.1016/j.apcata.2013.09.039_bib0110 publication-title: Chem. Mater. doi: 10.1021/cm0203868 – volume: 192 start-page: 391 year: 2000 ident: 10.1016/j.apcata.2013.09.039_bib0070 publication-title: J. Catal. doi: 10.1006/jcat.2000.2857 – volume: 83 start-page: 1612 year: 1979 ident: 10.1016/j.apcata.2013.09.039_bib0120 publication-title: J. Phys. Chem. doi: 10.1021/j100475a011 – volume: 92 start-page: 305 year: 1985 ident: 10.1016/j.apcata.2013.09.039_bib0020 publication-title: J. Catal. doi: 10.1016/0021-9517(85)90265-9 – volume: 39 start-page: 14 year: 2013 ident: 10.1016/j.apcata.2013.09.039_bib0080 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.05.003 – volume: 208 start-page: 193 year: 2001 ident: 10.1016/j.apcata.2013.09.039_bib0095 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(00)00713-4 – volume: 204 start-page: 364 year: 2001 ident: 10.1016/j.apcata.2013.09.039_bib0030 publication-title: J. Catal. doi: 10.1006/jcat.2001.3418 – volume: 105 start-page: 1025 year: 2005 ident: 10.1016/j.apcata.2013.09.039_bib0045 publication-title: Chem. Rev. doi: 10.1021/cr030063a – volume: 209 start-page: 275 year: 2002 ident: 10.1016/j.apcata.2013.09.039_bib0060 publication-title: J. Catal. doi: 10.1006/jcat.2002.3615 – volume: 265 start-page: 207 year: 2004 ident: 10.1016/j.apcata.2013.09.039_bib0105 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2004.01.014 – year: 2002 ident: 10.1016/j.apcata.2013.09.039_bib0140 – volume: 258 start-page: 1541 year: 2011 ident: 10.1016/j.apcata.2013.09.039_bib0150 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.09.127 – volume: 113–114 start-page: 237 year: 2012 ident: 10.1016/j.apcata.2013.09.039_bib0165 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.11.043 – volume: 163 start-page: 19 year: 2000 ident: 10.1016/j.apcata.2013.09.039_bib0075 publication-title: J. Mol. Catal. A doi: 10.1016/S1381-1169(00)00396-4 – volume: 27 start-page: 424 year: 1972 ident: 10.1016/j.apcata.2013.09.039_bib0015 publication-title: J. Catal. doi: 10.1016/0021-9517(72)90179-0 – volume: 184 start-page: 95 year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0085 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(99)00090-3 – year: 1999 ident: 10.1016/j.apcata.2013.09.039_bib0125 |
| SSID | ssj0002495 |
| Score | 2.3926194 |
| Snippet | •A larger size of Ru nanoparticles leads to a higher (TOF).•Heterogeneous distribution of the size of Ru nanoparticles favors higher TOF.•Homogeneous... Ru/ gamma -Al sub(2)O sub(3) catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported... Ru/gamma-Al2O3 catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with... |
| SourceID | hal proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 194 |
| SubjectTerms | Activation Ammonia Catalysis Catalysts Catalytic cooperation Chemical Sciences Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Low-temperature ammonia synthesis Material chemistry Nanoparticle Nanoparticles Physical and chemical studies. Granulometry. Electrokinetic phenomena Ru supported catalyst Size distribution Surface chemistry Synthesis Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry X-ray photoelectron spectroscopy |
| Title | Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions |
| URI | https://dx.doi.org/10.1016/j.apcata.2013.09.039 https://www.proquest.com/docview/1567121656 https://www.proquest.com/docview/1677991483 https://hal.science/hal-01289924 |
| Volume | 474 |
| WOSCitedRecordID | wos000336005800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3875 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002495 issn: 0926-860X databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2QQKEEAwQ5TIZhHipMiWOE8eP1S4aqBpo66S-WanjaJlKGtZ1GvwB_ho_i3NiJ-k0YOOBl6pK7ETJ98U-Pj7nO4S80xOuTRTknsyz0OMx0Dg1zHgTmH5YYnKuJzXSQ3FwkIzH8vPKys8mF-ZiKsoyubyU1X-FGo4B2Jg6-w9wtxeFA_AfQIdfgB1-bwW80yN2e__z4rvdIMhQIdcVt8KT80VVa5pn_cNFv0xLWDy7GLlu_wCTHuraEkXZT_EJihQlDuAkyphg-tlZ_0sxxQQYV3IcVtdZ0fkAG3lbZ-rWviKUQNnqD6xDvta8_q1Pexs9L-2ccQQ2_uybjVpMq8VyNMAOEsTFhuxAJ1N2OWtHwOkTd71pF-TjvBwBxzAvtuz4lCz2ktgf23nLDtaJCFEbOFoezbngS-NxYCsou6md1cnd12cN68A43UorfA8Y7xda8VvZzZJNZMDBJ7V3PByq0e549L766mH9Mtznd8VcVsk6E5GE8XV98GF3_LG1CrDGd6376J6jSeOsYw2v3_hPZtLqCcbrPqjSOXzCua29cs2MqG2j0SPy0C1q6MAS6DFZMeUGubvd1BLcIPeXZC-fkB-WonSWU6ASRYpSwJ0uUxRPthSlhwt6haIUGtQUpQ1FaVFSR1HaUpTWFKVIUdpQlHYUfUqO93ZH2_ueKwjiaS7Cc09MTMK4lizIQhP5qQBbNNJ5JnyRijzKBU_CWGeRzFhqYJ0e6JCHiYElfT6RuRbhM7JWzkrznFAjU18aACqZZBy75AHTgfCZ5to3QdQjYfP-lXZq-Vi0ZaqasMhTZVFTiJrypQLUesRre1VWLeaG9qKBVjmL11qyCqh5Q8-3wIT2JigSvz8YKjyGJqeUjF8EPbJ5hShtc7BJWRjHokfeNMxRwAjcK0xLM1vMVRDFImAozfWXNrEQsLyEl_7iFtd5Se51H_YrsnZ-tjCvyR19cV7Mzzbd5_ILVnIC0g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+size+and+distribution+of+supported+Ru+nanoparticles+on+their+activity+in+ammonia+synthesis+under+mild+reaction+conditions&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Fernandez%2C+Camila&rft.au=Sassoye%2C+Capucine&rft.au=Debecker%2C+Damien+P&rft.au=Sanchez%2C+Clement&rft.date=2014-03-22&rft.issn=0926-860X&rft.eissn=1873-3875&rft.volume=474&rft.spage=194&rft.epage=202&rft_id=info:doi/10.1016%2Fj.apcata.2013.09.039&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |