Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons

Autism spectrum disorder (ASD) is thought to emerge during early cortical development. However, the exact developmental stages and associated molecular networks that prime disease propensity are elusive. To profile early neurodevelopmental alterations in ASD with macrocephaly, we monitored subject-d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature neuroscience Ročník 22; číslo 2; s. 243 - 255
Hlavní autoři: Schafer, Simon T, Paquola, Apua C M, Stern, Shani, Gosselin, David, Ku, Manching, Pena, Monique, Kuret, Thomas J M, Liyanage, Marvin, Mansour, Abed AlFatah, Jaeger, Baptiste N, Marchetto, Maria C, Glass, Christopher K, Mertens, Jerome, Gage, Fred H
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.02.2019
Témata:
ISSN:1097-6256, 1546-1726, 1546-1726
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Autism spectrum disorder (ASD) is thought to emerge during early cortical development. However, the exact developmental stages and associated molecular networks that prime disease propensity are elusive. To profile early neurodevelopmental alterations in ASD with macrocephaly, we monitored subject-derived induced pluripotent stem cells (iPSCs) throughout the recapitulation of cortical development. Our analysis revealed ASD-associated changes in the maturational sequence of early neuron development, involving temporal dysregulation of specific gene networks and morphological growth acceleration. The observed changes tracked back to a pathologically primed stage in neural stem cells (NSCs), reflected by altered chromatin accessibility. Concerted over-representation of network factors in control NSCs was sufficient to trigger ASD-like features, and circumventing the NSC stage by direct conversion of ASD iPSCs into induced neurons abolished ASD-associated phenotypes. Our findings identify heterochronic dynamics of a gene network that, while established earlier in development, contributes to subsequent neurodevelopmental aberrations in ASD.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1097-6256
1546-1726
1546-1726
DOI:10.1038/s41593-018-0295-x