Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control
We develop a compound decision theory framework for multiple-testing problems and derive an oracle rule based on the z values that minimizes the false nondiscovery rate (FNR) subject to a constraint on the false discovery rate (FDR). We show that many commonly used multiple-testing procedures, which...
Gespeichert in:
| Veröffentlicht in: | Journal of the American Statistical Association Jg. 102; H. 479; S. 901 - 912 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria, VA
Taylor & Francis
01.09.2007
American Statistical Association Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0162-1459, 1537-274X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We develop a compound decision theory framework for multiple-testing problems and derive an oracle rule based on the z values that minimizes the false nondiscovery rate (FNR) subject to a constraint on the false discovery rate (FDR). We show that many commonly used multiple-testing procedures, which are p value-based, are inefficient, and propose an adaptive procedure based on the z values. The z value-based adaptive procedure asymptotically attains the performance of the z value oracle procedure and is more efficient than the conventional p value-based methods. We investigate the numerical performance of the adaptive procedure using both simulated and real data. In particular, we demonstrate our method in an analysis of the microarray data from a human immunodeficiency virus study that involves testing a large number of hypotheses simultaneously. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0162-1459 1537-274X |
| DOI: | 10.1198/016214507000000545 |