Robust Cardiac Function Assessment in 4D PC-MRI Data of the Aorta and Pulmonary Artery
Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular patholog...
Saved in:
| Published in: | Computer graphics forum Vol. 35; no. 1; pp. 32 - 43 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.02.2016
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties.
Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. |
|---|---|
| AbstractList | Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC-MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. |
| Author | Grothoff, Matthias Preim, Uta Köhler, Benjamin Fischbach, Katharina Gutberlet, Matthias Preim, Bernhard |
| Author_xml | – sequence: 1 givenname: Benjamin surname: Köhler fullname: Köhler, Benjamin email: ben.koehler@isg.cs.uni-magdeburg.de organization: Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany – sequence: 2 givenname: Uta surname: Preim fullname: Preim, Uta email: uta.preim@googlemail.com organization: Department of Diagnostic Radiology, Municipal Hospital, Magdeburg, Germany – sequence: 3 givenname: Matthias surname: Grothoff fullname: Grothoff, Matthias email: matthias.grothoff@helios-kliniken.de organization: Department of Diagnostics and Interventional Radiology, Heart Center, Leipzig, Germany – sequence: 4 givenname: Matthias surname: Gutberlet fullname: Gutberlet, Matthias email: matthias.gutberlet@helios-kliniken.de organization: Department of Diagnostics and Interventional Radiology, Heart Center, Leipzig, Germany – sequence: 5 givenname: Katharina surname: Fischbach fullname: Fischbach, Katharina email: katharina.fischbach@med.ovgu.de organization: Department of Radiology and Nuclear Medicine, University Hospital, Magdeburg, Germany – sequence: 6 givenname: Bernhard surname: Preim fullname: Preim, Bernhard email: bernhard@isg.cs.uni-magdeburg.de organization: Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany |
| BookMark | eNp9kE9v1DAQxS1UJLaFA9_AEhc4pLVjx3aOq7S7VF2gqpY_N2viOOCStYvtCPbb47LAoRLMZWak3xu9ecfoyAdvEXpOySktdWY-j6e0FqJ9hBaUC1kp0bRHaEFomSVpmifoOKVbQgiXolmgDzehn1PGHcTBgcGr2ZvsgsfLlGxKO-szdh7zc3zdVW9uLvE5ZMBhxPmLxcsQywJ-wNfztAse4h4vY7Zx_xQ9HmFK9tnvfoLery623etq82592S03leGStRU1LWuKDy7Y0A6gVC_HXtSj7Xlr2KDqvhFc0cFSAGOItIoxMD30QPhAW8tO0MvD3bsYvs02Zb1zydhpAm_DnDRV5dG2ZkoV9MUD9DbM0Rd3mkqhqKo544V6daBMDClFO-q76HblMU2Jvk9Yl4T1r4QLe_aANS7DfXo5gpv-p_juJrv_92ndrVd_FNVB4VK2P_4qIH7VQjLZ6I9v15pfreX202arr9hPbM6b-A |
| CitedBy_id | crossref_primary_10_1088_1361_6579_adab4e crossref_primary_10_1088_1361_6579_abe525 crossref_primary_10_1007_s11548_015_1256_4 crossref_primary_10_1088_1361_6579_acb8fd crossref_primary_10_1111_cgf_13394 crossref_primary_10_1186_s12968_021_00745_0 crossref_primary_10_1111_cgf_12669 crossref_primary_10_1111_cgf_12911 crossref_primary_10_1111_cgf_13412 |
| Cites_doi | 10.1109/TVCG.2010.153 10.1109/VISUAL.1999.809869 10.1002/jmri.1880030315 10.1111/cgf.12355 10.1002/jmri.23632 10.1016/j.mri.2012.06.036 10.1080/2151237X.2006.10129217 10.1111/j.1467-8659.2011.01953.x 10.1109/CVPR.2012.6248113 10.1109/TMI.2003.812261 10.1097/RTI.0000000000000068 10.1109/TMI.2009.2021652 10.1007/978-3-540-30463-0_14 10.1186/1532-429X-16-23 10.1109/VISUAL.1996.567777 10.1148/radiol.09091437 10.1109/TVCG.2013.189 10.1007/BFb0015544 10.1117/12.878202 10.1109/TVCG.2011.243 10.1145/984952.984987 10.1109/TVCG.2010.173 10.1016/0771-050X(80)90013-3 10.1002/(SICI)1522-2594(199903)41:3<520::AID-MRM14>3.0.CO;2-A 10.1007/978-3-540-40899-4_19 10.1002/jmri.24051 10.1161/CIRCULATIONAHA.109.851014 10.1111/cgf.12669 10.1109/TMI.2004.826946 10.1109/CVPR.2010.5539898 10.1109/PacificVis.2013.6596137 10.1109/TVCG.2012.318 10.1186/1532-429X-14-16 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F 10.1097/RTI.0b013e31829192a1 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. – notice: Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12669 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 43 |
| ExternalDocumentID | 3964299851 10_1111_cgf_12669 CGF12669 ark_67375_WNG_4KG7TXLT_K |
| Genre | article |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4739-1c935765463d9da88b7fb62feb49c3d82b56481de1aacc07e833acbaba04d19e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371492500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Thu Oct 02 10:29:25 EDT 2025 Fri Jul 25 23:41:47 EDT 2025 Sat Nov 29 07:49:32 EST 2025 Tue Nov 18 22:04:15 EST 2025 Wed Jan 22 16:38:13 EST 2025 Sun Sep 21 06:20:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4739-1c935765463d9da88b7fb62feb49c3d82b56481de1aacc07e833acbaba04d19e3 |
| Notes | istex:8D97975F7BE3A8A67933EC374EC88E0B5BEA4734 ark:/67375/WNG-4KG7TXLT-K ArticleID:CGF12669 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12669 |
| PQID | 1768182434 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1800492388 proquest_journals_1768182434 crossref_primary_10_1111_cgf_12669 crossref_citationtrail_10_1111_cgf_12669 wiley_primary_10_1111_cgf_12669_CGF12669 istex_primary_ark_67375_WNG_4KG7TXLT_K |
| PublicationCentury | 2000 |
| PublicationDate | February 2016 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | [FSS*12] Francois C., Srinivasan S., Schiebler M., Reeder S., Niespodzany E., Landgraf B., Wieben O., Frydrychowicz A.: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. Journal of Cardiovascular Magnetic Resonance 14, 1 (2012), 16. [LGP14] Lawonn K., Gasteiger R., Preim B.: Adaptive surface visualization of vessels with animated blood flow. Computer Graphics Forum 33, 8 (2014), 16-27. [vPBB*10] van Pelt R., Bescos J. O., Breeuwer M., Rachel E. C., Gröller M. E., ter Haar Romenij B., Vilanova A.: Exploration of 4D MRI blood flow using stylistic visualization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1339-1347. [AIR03] Antiga L., Iordache E. B., Remuzzi A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 22, 5 (2003), 674-684. [MFK*12] Markl M., Frydrychowicz A., Kozerke S., Hope M. D., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. [CRvdG*14] Calkoen E. E., Roest A. A., van der Geest R. J., de Roos A., Westenberg J. J.: Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: New applications. Journal of Thoracic Imaging 29, 3 (2014), 185-196. [BPS*13] Bächler P., Pinochet N., Sotelo J., Crelier G., Irarrazaval P., Tejos C., Uribe S.: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Journal of Magnetic Resonance Imaging 31, 2 (2013), 178-188. [HGH*10] Hummel M., Garth C., Hamann B., Hagen H., Joy K.: IRIS: Illustrative rendering for integral surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1319-1328. [HSD13] Hope M. D., Sedlic T., Dyverfeldt P.: Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging 28, 4 (2013), 217-230. [PVS*09] Piccinelli M., Veneziani A., Steinman D. A., Remuzzi A., Antiga L.: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms. IEEE Transactions on Medical Imaging 28, 8 (2009), 1141-1155. [MTHG03] Mattausch O., Theußl T., Hauser H., Gröller M. E.: Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines. Tech. Rep., Institute of Computer Graphics and Algorithms, Vienna University of Technology, 2003. [WKS*09] Wöhrle J., Kochs M., Spiess J., Nusser T., Hombach V., Merkle N.: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies. Circulation 119, 23 (2009), 3002-3008. [Jon06] Jones T. R.: Efficient generation of poisson-disk sampling patterns. Journal of Graph Tools 11, 2 (2006), 27-36. [BHV99] Bakker C. J., Hoogeveen R. M., Viergever M. A.: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. Journal of Magnetic Resonance Imaging 9, 1 (1999), 119-127. [vOPG*13] van Ooij P., Potters W. V., Guédon A., Schneiders J. J., Marquering H. A., Majoie C. B., Vanbavel E., Nederveen A. J.: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging 38, 4 (2013), 876-884. [BPM*13] Born S., Pfeifle M., Markl M., Gutberlet M., Scheuermann G.: Visual analysis of cardiac 4D MRI blood flow using line predicates. IEEE Transactions on Visualization and Computer Graphics 19 (2013), 900-912. [WCS*93] Walker P. G., Cranney G. B., Scheidegger M. B., Waseleski G., Pohost G. M., Yoganathan A. P.: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. Journal of Magnetic Resonance Imaging 3, 3 (1993), 521-530. [NJB*11] Neugebauer M., Janiga G., Beuing O., Skalej M., Preim B.: Anatomy-guided multi-level exploration of blood flow in cerebral aneurysms. Computer Graphics Forum 30, 3 (2011), 1041-1050. [HBV99] Hoogeveen R. M., Bakker C. J., Viergever M. A.: MR phase-contrast flow measurement with limited spatial resolution in small vessels: Value of model-based image analysis. Journal of Magnetic Resonance 41, 3 (1999), 520-528. [BK01] Boykov Y., Kolmogorov V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2001), 359-374. [RAFJ*14] Roldán-Alzate A., Frydrychowicz A., Johnson K. M., Kellihan H., Chesler N. C., Wieben O., Francois C. J.: Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 16, 1 (2014), 23. [GNBP11] Gasteiger R., Neugebauer M., Beuing O., Preim B.: The FLOWLENS: A focus-and-context visualization approach for exploration of blood flow in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2183-2192. [HHM*10] Hope M. D., Hope T. A., Meadows A. K., Ordovas K. G., Urbania T. H., Alley M. T., Higgins C. B.: Bicuspid aortic valve: Four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255, 1 (2010), 53-61. [KGP*13] Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2782. [AS04] Antiga L., Steinman D. A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging 23, 6 (2004), 704-713. [DP80] Dormand J. R., Prince P. J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 1 (1980), 19-26. 2010; 16 2013; 28 2012 2011 2010 2006; 11 2004; 23 2011; 30 1996 2006 2004 1999; 41 2014; 29 2003 2012; 14 2011; 17 2012; 36 2009; 119 1993; 3 1999; 9 1999 2009; 28 2013; 19 2013; 38 2001 2000 2013; 31 2010; 255 1980; 6 2014; 16 2014 2013 2014; 33 2003; 22 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 Boykov Y. (e_1_2_8_6_1) 2001 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 Bade R. (e_1_2_8_4_1) 2006 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – reference: [LGP14] Lawonn K., Gasteiger R., Preim B.: Adaptive surface visualization of vessels with animated blood flow. Computer Graphics Forum 33, 8 (2014), 16-27. – reference: [AS04] Antiga L., Steinman D. A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging 23, 6 (2004), 704-713. – reference: [BPS*13] Bächler P., Pinochet N., Sotelo J., Crelier G., Irarrazaval P., Tejos C., Uribe S.: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Journal of Magnetic Resonance Imaging 31, 2 (2013), 178-188. – reference: [Jon06] Jones T. R.: Efficient generation of poisson-disk sampling patterns. Journal of Graph Tools 11, 2 (2006), 27-36. – reference: [KGP*13] Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2782. – reference: [vOPG*13] van Ooij P., Potters W. V., Guédon A., Schneiders J. J., Marquering H. A., Majoie C. B., Vanbavel E., Nederveen A. J.: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging 38, 4 (2013), 876-884. – reference: [CRvdG*14] Calkoen E. E., Roest A. A., van der Geest R. J., de Roos A., Westenberg J. J.: Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: New applications. Journal of Thoracic Imaging 29, 3 (2014), 185-196. – reference: [FSS*12] Francois C., Srinivasan S., Schiebler M., Reeder S., Niespodzany E., Landgraf B., Wieben O., Frydrychowicz A.: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. Journal of Cardiovascular Magnetic Resonance 14, 1 (2012), 16. – reference: [HGH*10] Hummel M., Garth C., Hamann B., Hagen H., Joy K.: IRIS: Illustrative rendering for integral surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1319-1328. – reference: [PVS*09] Piccinelli M., Veneziani A., Steinman D. A., Remuzzi A., Antiga L.: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms. IEEE Transactions on Medical Imaging 28, 8 (2009), 1141-1155. – reference: [RAFJ*14] Roldán-Alzate A., Frydrychowicz A., Johnson K. M., Kellihan H., Chesler N. C., Wieben O., Francois C. J.: Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 16, 1 (2014), 23. – reference: [HBV99] Hoogeveen R. M., Bakker C. J., Viergever M. A.: MR phase-contrast flow measurement with limited spatial resolution in small vessels: Value of model-based image analysis. Journal of Magnetic Resonance 41, 3 (1999), 520-528. – reference: [AIR03] Antiga L., Iordache E. B., Remuzzi A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 22, 5 (2003), 674-684. – reference: [MTHG03] Mattausch O., Theußl T., Hauser H., Gröller M. E.: Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines. Tech. Rep., Institute of Computer Graphics and Algorithms, Vienna University of Technology, 2003. – reference: [HSD13] Hope M. D., Sedlic T., Dyverfeldt P.: Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging 28, 4 (2013), 217-230. – reference: [vPBB*10] van Pelt R., Bescos J. O., Breeuwer M., Rachel E. C., Gröller M. E., ter Haar Romenij B., Vilanova A.: Exploration of 4D MRI blood flow using stylistic visualization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1339-1347. – reference: [NJB*11] Neugebauer M., Janiga G., Beuing O., Skalej M., Preim B.: Anatomy-guided multi-level exploration of blood flow in cerebral aneurysms. Computer Graphics Forum 30, 3 (2011), 1041-1050. – reference: [BPM*13] Born S., Pfeifle M., Markl M., Gutberlet M., Scheuermann G.: Visual analysis of cardiac 4D MRI blood flow using line predicates. IEEE Transactions on Visualization and Computer Graphics 19 (2013), 900-912. – reference: [DP80] Dormand J. R., Prince P. J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 1 (1980), 19-26. – reference: [HHM*10] Hope M. D., Hope T. A., Meadows A. K., Ordovas K. G., Urbania T. H., Alley M. T., Higgins C. B.: Bicuspid aortic valve: Four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255, 1 (2010), 53-61. – reference: [WKS*09] Wöhrle J., Kochs M., Spiess J., Nusser T., Hombach V., Merkle N.: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies. Circulation 119, 23 (2009), 3002-3008. – reference: [BK01] Boykov Y., Kolmogorov V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2001), 359-374. – reference: [WCS*93] Walker P. G., Cranney G. B., Scheidegger M. B., Waseleski G., Pohost G. M., Yoganathan A. P.: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. Journal of Magnetic Resonance Imaging 3, 3 (1993), 521-530. – reference: [GNBP11] Gasteiger R., Neugebauer M., Beuing O., Preim B.: The FLOWLENS: A focus-and-context visualization approach for exploration of blood flow in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2183-2192. – reference: [BHV99] Bakker C. J., Hoogeveen R. M., Viergever M. A.: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. Journal of Magnetic Resonance Imaging 9, 1 (1999), 119-127. – reference: [MFK*12] Markl M., Frydrychowicz A., Kozerke S., Hope M. D., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. – start-page: 116 year: 2004 end-page: 123 – volume: 119 start-page: 3002 issue: 23 year: 2009 end-page: 3008 article-title: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies publication-title: Circulation – volume: 14 issue: 1 year: 2012 article-title: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot publication-title: Journal of Cardiovascular Magnetic Resonance – start-page: 107 year: 1996 end-page: 113 – start-page: 129 year: 2013 end-page: 136 – volume: 16 start-page: 1319 issue: 6 year: 2010 end-page: 1328 article-title: IRIS: Illustrative rendering for integral surfaces publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 41 start-page: 520 issue: 3 year: 1999 end-page: 528 article-title: MR phase‐contrast flow measurement with limited spatial resolution in small vessels: Value of model‐based image analysis publication-title: Journal of Magnetic Resonance – start-page: 59 year: 1999 end-page: 66 – year: 2003 – start-page: 359 year: 2001 end-page: 374 article-title: An experimental comparison of min‐cut/max‐flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 26 – start-page: 2181 year: 2010 end-page: 2188 – volume: 3 start-page: 521 issue: 3 year: 1993 end-page: 530 article-title: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data publication-title: Journal of Magnetic Resonance Imaging – volume: 11 start-page: 27 issue: 2 year: 2006 end-page: 36 article-title: Efficient generation of poisson‐disk sampling patterns publication-title: Journal of Graph Tools – volume: 38 start-page: 876 issue: 4 year: 2013 end-page: 884 article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm publication-title: Journal of Magnetic Resonance Imaging – volume: 36 start-page: 1015 issue: 5 year: 2012 end-page: 1036 article-title: 4D flow MRI publication-title: Journal of Magnetic Resonance Imaging – volume: 31 start-page: 178 issue: 2 year: 2013 end-page: 188 article-title: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping publication-title: Journal of Magnetic Resonance Imaging – volume: 17 start-page: 2183 issue: 12 year: 2011 end-page: 2192 article-title: The FLOWLENS: A focus‐and‐context visualization approach for exploration of blood flow in cerebral aneurysms publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 900 year: 2013 end-page: 912 article-title: Visual analysis of cardiac 4D MRI blood flow using line predicates publication-title: IEEE Transactions on Visualization and Computer Graphics 19 – volume: 28 start-page: 1141 issue: 8 year: 2009 end-page: 1155 article-title: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms publication-title: IEEE Transactions on Medical Imaging – volume: 22 start-page: 674 issue: 5 year: 2003 end-page: 684 article-title: Computational geometry for patient‐specific reconstruction and meshing of blood vessels from MR and CT angiography publication-title: IEEE Transactions on Medical Imaging – start-page: 3673 year: 2012 end-page: 3680 – volume: 16 start-page: 23 issue: 1 year: 2014 article-title: Non‐invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance publication-title: Journal of Cardiovascular Magnetic Resonance – start-page: 127 year: 2014 end-page: 131 – volume: 6 start-page: 19 issue: 1 year: 1980 end-page: 26 article-title: A family of embedded Runge‐Kutta formulae publication-title: Journal of Computational and Applied Mathematics – start-page: 289 year: 2006 end-page: 304 – start-page: 79640E year: 2011 end-page: 11 – volume: 33 start-page: 16 issue: 8 year: 2014 end-page: 27 article-title: Adaptive surface visualization of vessels with animated blood flow publication-title: Computer Graphics Forum – start-page: 186 year: 2000 end-page: 95 – volume: 29 start-page: 185 issue: 3 year: 2014 end-page: 196 article-title: Cardiovascular function and flow by 4‐dimensional magnetic resonance imaging techniques: New applications publication-title: Journal of Thoracic Imaging – volume: 23 start-page: 704 issue: 6 year: 2004 end-page: 713 article-title: Robust and objective decomposition and mapping of bifurcating vessels publication-title: IEEE Transactions on Medical Imaging – volume: 19 start-page: 2773 issue: 12 year: 2013 end-page: 2782 article-title: Semi‐automatic vortex extraction in 4D PC‐MRI cardiac blood flow data using line predicates publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 16 start-page: 1339 issue: 6 year: 2010 end-page: 1347 article-title: Exploration of 4D MRI blood flow using stylistic visualization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 255 start-page: 53 issue: 1 year: 2010 end-page: 61 article-title: Bicuspid aortic valve: Four‐dimensional MR evaluation of ascending aortic systolic flow patterns publication-title: Radiology – start-page: 283 year: 1996 end-page: 92 – volume: 28 start-page: 217 issue: 4 year: 2013 end-page: 230 article-title: Cardiothoracic magnetic resonance flow imaging publication-title: Journal of Thoracic Imaging – start-page: 1 year: 2014 end-page: 10 – volume: 30 start-page: 1041 issue: 3 year: 2011 end-page: 1050 article-title: Anatomy‐guided multi‐level exploration of blood flow in cerebral aneurysms publication-title: Computer Graphics Forum – volume: 9 start-page: 119 issue: 1 year: 1999 end-page: 127 article-title: Construction of a protocol for measuring blood flow by two‐dimensional phase‐contrast MRA publication-title: Journal of Magnetic Resonance Imaging – ident: e_1_2_8_36_1 doi: 10.1109/TVCG.2010.153 – ident: e_1_2_8_20_1 doi: 10.1109/VISUAL.1999.809869 – ident: e_1_2_8_37_1 doi: 10.1002/jmri.1880030315 – ident: e_1_2_8_26_1 doi: 10.1111/cgf.12355 – ident: e_1_2_8_28_1 doi: 10.1002/jmri.23632 – ident: e_1_2_8_9_1 doi: 10.1016/j.mri.2012.06.036 – ident: e_1_2_8_22_1 doi: 10.1080/2151237X.2006.10129217 – start-page: 359 year: 2001 ident: e_1_2_8_6_1 article-title: An experimental comparison of min‐cut/max‐flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 26 – ident: e_1_2_8_30_1 doi: 10.1111/j.1467-8659.2011.01953.x – ident: e_1_2_8_23_1 doi: 10.1109/CVPR.2012.6248113 – ident: e_1_2_8_2_1 doi: 10.1109/TMI.2003.812261 – ident: e_1_2_8_11_1 doi: 10.1097/RTI.0000000000000068 – ident: e_1_2_8_31_1 doi: 10.1109/TMI.2009.2021652 – ident: e_1_2_8_13_1 doi: 10.1007/978-3-540-30463-0_14 – ident: e_1_2_8_32_1 doi: 10.1186/1532-429X-16-23 – ident: e_1_2_8_39_1 doi: 10.1109/VISUAL.1996.567777 – ident: e_1_2_8_10_1 – ident: e_1_2_8_19_1 doi: 10.1148/radiol.09091437 – ident: e_1_2_8_24_1 doi: 10.1109/TVCG.2013.189 – ident: e_1_2_8_34_1 doi: 10.1007/BFb0015544 – ident: e_1_2_8_17_1 doi: 10.1117/12.878202 – ident: e_1_2_8_15_1 doi: 10.1109/TVCG.2011.243 – ident: e_1_2_8_29_1 doi: 10.1145/984952.984987 – ident: e_1_2_8_18_1 doi: 10.1109/TVCG.2010.173 – start-page: 289 volume-title: Simulation und Visualisierung year: 2006 ident: e_1_2_8_4_1 – ident: e_1_2_8_12_1 doi: 10.1016/0771-050X(80)90013-3 – ident: e_1_2_8_16_1 doi: 10.1002/(SICI)1522-2594(199903)41:3<520::AID-MRM14>3.0.CO;2-A – ident: e_1_2_8_33_1 doi: 10.1007/978-3-540-40899-4_19 – ident: e_1_2_8_35_1 doi: 10.1002/jmri.24051 – ident: e_1_2_8_38_1 doi: 10.1161/CIRCULATIONAHA.109.851014 – ident: e_1_2_8_25_1 doi: 10.1111/cgf.12669 – ident: e_1_2_8_3_1 doi: 10.1109/TMI.2004.826946 – ident: e_1_2_8_27_1 doi: 10.1109/CVPR.2010.5539898 – ident: e_1_2_8_7_1 doi: 10.1109/PacificVis.2013.6596137 – ident: e_1_2_8_8_1 doi: 10.1109/TVCG.2012.318 – ident: e_1_2_8_14_1 doi: 10.1186/1532-429X-14-16 – ident: e_1_2_8_5_1 doi: 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F – ident: e_1_2_8_21_1 doi: 10.1097/RTI.0b013e31829192a1 |
| SSID | ssj0004765 |
| Score | 2.2048366 |
| Snippet | Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke... Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 32 |
| SubjectTerms | 4d pc-mri Arteries Blood Blood flow Cardiac function Cardiology Circulatory system I.4.9 [Computing Methodologies]: Image Processing and Computer Vision Applications Image processing systems Magnetic resonance imaging Mathematical analysis Mathematical models NMR Nuclear magnetic resonance Planes Pulmonary arteries quantification scientific visualization stroke volume Three dimensional Valves |
| Title | Robust Cardiac Function Assessment in 4D PC-MRI Data of the Aorta and Pulmonary Artery |
| URI | https://api.istex.fr/ark:/67375/WNG-4KG7TXLT-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12669 https://www.proquest.com/docview/1768182434 https://www.proquest.com/docview/1800492388 |
| Volume | 35 |
| WOSCitedRecordID | wos000371492500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VhAMcSstDhLZoQQhxMYqz6-yuOEUJDqhtFEWpyG21u95FFZWD8kDlxk_ob-wv6axju6lEJSRulj2WR_PwfGPPfgvwDjGrZ1JkEXY6GTYoxkZCim7EjHOJbFNhHSs2m-CjkZjN5HgHPlVrYTb8EPUHt5AZxfs6JLg2y60kt9_9xxjLi3wAzQ7GLWtAczBJz05ul0XyblJRewfSmJJYKAzy1DffKUfNYNnLO1hzG7EWJSd98l_K7sFuiTRJbxMa-7Dj8qfweIt_8BnMJnOzXq5IvwgTS1IscsFRpFfzdZLznLABGfev_1ydTr6SgV5pMvcEcSPpBehOdJ6R8foCwxnVC49zi9_P4Sz9PO1_icqtFiLLOJVRbCXFziNw42cy00IY7k23451h0tJMdEzSZQhtXay1tW3uBKXaGm10m2WxdPQFNPJ57l4C4bH0eArtLQzjJtHWexszndGO8FwkLfhQWVzZkoc8bIdxoap-BI2lCmO14G0t-nNDvvE3ofeF22oJvfgRptV4or6NhoodD_l0djJVxy04rPyqykRdqhjbLWyxGGUteFNfxhQL_0107uZrlBGhj0JsI1D3wsv3a6P6w7Q4ePXvogfwCGFYOQt-CI3VYu2O4KH9tTpfLl6XUX0DQdP5Gw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9NAFD6sraA-eJetrjqKiC9Zms6kMwO-lNZ0l3ZLKV3s2zAzmZFll1R6EX3zJ_gb_SWeSZPYBQXBt5CckMO55HxnLt8AvEHM6pkUWYSdToYNirGRkKIbMeNcIttUWMeKwyb4ZCIWCzk9gPfVXpgdP0Q94BYyo_hfhwQPA9J7WW4_-eMY64u8AU2GYZQ0oDmYpefj3_sieTepuL0Da0zJLBRW8tQvX6tHzWDar9fA5j5kLWpOeu__tL0Pd0usSXq74HgABy5_CHf2GAgfwWK2NNv1hvSLQLEkxTIXXEV6NWMnucgJG5Bp_-f3H2ezUzLQG02WniByJL0A3onOMzLdXmFAo37hc2717TGcpx_m_ZOoPGwhsoxTGcVWUuw9Ajt-JjMthOHedDveGSYtzUTHJF2G4NbFWlvb5k5Qqq3RRrdZFktHn0AjX-buEAiPpcdbaHBhGDeJtt7bmOmMdoTnImnBu8rkypZM5OFAjCtVdSRoLFUYqwWva9HPO_qNPwm9LfxWS-jVZVivxhP1cTJUbDTk88V4rkYtOKocq8pUXasYGy5sshhlLXhVP8YkCzMnOnfLLcqI0EkhuhGoe-Hmv2uj-sO0uHj676Iv4dbJ_GysxqeT0TO4jaCsXBl-BI3Nauuew037ZXOxXr0oQ_wXLgn9Cw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9NAFD6sW5H1wbtYXXUUEV8iTTPJzIAvpTV1aS2ldLFvw1xl2SVdehF98yf4G_0lnkmT2AUFwbeQnJDDueR8JznzDcArxKyeCm4j7HQsNijaRFzwLKLauVR0Em4cLTebYJMJXyzE9ADe1WthdvwQzQe3kBnl-zokuLu0fi_LzWf_Nsb6Iq5Bi6Yiw7RsDWb56fj3ukiWpTW3d2CNqZiFwiRPc_OVetQKpv16BWzuQ9ay5uS3_0_bO3CrwpqktwuOu3Dgintwc4-B8D4sZku9XW9IvwwUQ3Isc8FVpNcwdpKzgtABmfZ_fv_xcXZCBmqjyNITRI6kF8A7UYUl0-0FBjTqFx7nVt8ewGn-ft7_EFWbLUSGskREsREJ9h6BHd8KqzjXzOus652mwiSWd3WaUQS3LlbKmA5zPEmU0UqrDrWxcMlDOCyWhXsEhMXC4yk0ONeU6VQZ701MlU263DOetuFNbXJpKibysCHGhaw7EjSWLI3VhpeN6OWOfuNPQq9LvzUSanUe5tVYKj9NhpKOhmy-GM_lqA3HtWNllaprGWPDhU0WTWgbXjSXMcnCnxNVuOUWZXjopBDdcNS9dPPftZH9YV4ePP530edwYzrI5fhkMnoCR4jJqsHwYzjcrLbuKVw3XzZn69WzKsJ_Abz9_IY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Cardiac+Function+Assessment+in+4D+PC%E2%80%90MRI+Data+of+the+Aorta+and+Pulmonary+Artery&rft.jtitle=Computer+graphics+forum&rft.au=K%C3%B6hler%2C+Benjamin&rft.au=Preim%2C+Uta&rft.au=Grothoff%2C+Matthias&rft.au=Gutberlet%2C+Matthias&rft.date=2016-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=1&rft.spage=32&rft.epage=43&rft_id=info:doi/10.1111%2Fcgf.12669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12669 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |