Robust Cardiac Function Assessment in 4D PC-MRI Data of the Aorta and Pulmonary Artery

Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular patholog...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 1; s. 32 - 43
Hlavní autoři: Köhler, Benjamin, Preim, Uta, Grothoff, Matthias, Gutberlet, Matthias, Fischbach, Katharina, Preim, Bernhard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.02.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered.
AbstractList Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered.
Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC-MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties. Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered.
Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties.
Author Grothoff, Matthias
Preim, Uta
Köhler, Benjamin
Fischbach, Katharina
Gutberlet, Matthias
Preim, Bernhard
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Köhler
  fullname: Köhler, Benjamin
  email: ben.koehler@isg.cs.uni-magdeburg.de
  organization: Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
– sequence: 2
  givenname: Uta
  surname: Preim
  fullname: Preim, Uta
  email: uta.preim@googlemail.com
  organization: Department of Diagnostic Radiology, Municipal Hospital, Magdeburg, Germany
– sequence: 3
  givenname: Matthias
  surname: Grothoff
  fullname: Grothoff, Matthias
  email: matthias.grothoff@helios-kliniken.de
  organization: Department of Diagnostics and Interventional Radiology, Heart Center, Leipzig, Germany
– sequence: 4
  givenname: Matthias
  surname: Gutberlet
  fullname: Gutberlet, Matthias
  email: matthias.gutberlet@helios-kliniken.de
  organization: Department of Diagnostics and Interventional Radiology, Heart Center, Leipzig, Germany
– sequence: 5
  givenname: Katharina
  surname: Fischbach
  fullname: Fischbach, Katharina
  email: katharina.fischbach@med.ovgu.de
  organization: Department of Radiology and Nuclear Medicine, University Hospital, Magdeburg, Germany
– sequence: 6
  givenname: Bernhard
  surname: Preim
  fullname: Preim, Bernhard
  email: bernhard@isg.cs.uni-magdeburg.de
  organization: Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
BookMark eNp9kE9v1DAQxS1UJLaFA9_AEhc4pLVjx3aOq7S7VF2gqpY_N2viOOCStYvtCPbb47LAoRLMZWak3xu9ecfoyAdvEXpOySktdWY-j6e0FqJ9hBaUC1kp0bRHaEFomSVpmifoOKVbQgiXolmgDzehn1PGHcTBgcGr2ZvsgsfLlGxKO-szdh7zc3zdVW9uLvE5ZMBhxPmLxcsQywJ-wNfztAse4h4vY7Zx_xQ9HmFK9tnvfoLery623etq82592S03leGStRU1LWuKDy7Y0A6gVC_HXtSj7Xlr2KDqvhFc0cFSAGOItIoxMD30QPhAW8tO0MvD3bsYvs02Zb1zydhpAm_DnDRV5dG2ZkoV9MUD9DbM0Rd3mkqhqKo544V6daBMDClFO-q76HblMU2Jvk9Yl4T1r4QLe_aANS7DfXo5gpv-p_juJrv_92ndrVd_FNVB4VK2P_4qIH7VQjLZ6I9v15pfreX202arr9hPbM6b-A
CitedBy_id crossref_primary_10_1088_1361_6579_adab4e
crossref_primary_10_1088_1361_6579_abe525
crossref_primary_10_1007_s11548_015_1256_4
crossref_primary_10_1088_1361_6579_acb8fd
crossref_primary_10_1111_cgf_13394
crossref_primary_10_1186_s12968_021_00745_0
crossref_primary_10_1111_cgf_12669
crossref_primary_10_1111_cgf_12911
crossref_primary_10_1111_cgf_13412
Cites_doi 10.1109/TVCG.2010.153
10.1109/VISUAL.1999.809869
10.1002/jmri.1880030315
10.1111/cgf.12355
10.1002/jmri.23632
10.1016/j.mri.2012.06.036
10.1080/2151237X.2006.10129217
10.1111/j.1467-8659.2011.01953.x
10.1109/CVPR.2012.6248113
10.1109/TMI.2003.812261
10.1097/RTI.0000000000000068
10.1109/TMI.2009.2021652
10.1007/978-3-540-30463-0_14
10.1186/1532-429X-16-23
10.1109/VISUAL.1996.567777
10.1148/radiol.09091437
10.1109/TVCG.2013.189
10.1007/BFb0015544
10.1117/12.878202
10.1109/TVCG.2011.243
10.1145/984952.984987
10.1109/TVCG.2010.173
10.1016/0771-050X(80)90013-3
10.1002/(SICI)1522-2594(199903)41:3<520::AID-MRM14>3.0.CO;2-A
10.1007/978-3-540-40899-4_19
10.1002/jmri.24051
10.1161/CIRCULATIONAHA.109.851014
10.1111/cgf.12669
10.1109/TMI.2004.826946
10.1109/CVPR.2010.5539898
10.1109/PacificVis.2013.6596137
10.1109/TVCG.2012.318
10.1186/1532-429X-14-16
10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F
10.1097/RTI.0b013e31829192a1
ContentType Journal Article
Copyright 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12669
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 43
ExternalDocumentID 3964299851
10_1111_cgf_12669
CGF12669
ark_67375_WNG_4KG7TXLT_K
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4739-1c935765463d9da88b7fb62feb49c3d82b56481de1aacc07e833acbaba04d19e3
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371492500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Oct 02 10:29:25 EDT 2025
Fri Jul 25 23:41:47 EDT 2025
Sat Nov 29 07:49:32 EST 2025
Tue Nov 18 22:04:15 EST 2025
Wed Jan 22 16:38:13 EST 2025
Sun Sep 21 06:20:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4739-1c935765463d9da88b7fb62feb49c3d82b56481de1aacc07e833acbaba04d19e3
Notes istex:8D97975F7BE3A8A67933EC374EC88E0B5BEA4734
ark:/67375/WNG-4KG7TXLT-K
ArticleID:CGF12669
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12669
PQID 1768182434
PQPubID 30877
PageCount 12
ParticipantIDs proquest_miscellaneous_1800492388
proquest_journals_1768182434
crossref_primary_10_1111_cgf_12669
crossref_citationtrail_10_1111_cgf_12669
wiley_primary_10_1111_cgf_12669_CGF12669
istex_primary_ark_67375_WNG_4KG7TXLT_K
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [FSS*12] Francois C., Srinivasan S., Schiebler M., Reeder S., Niespodzany E., Landgraf B., Wieben O., Frydrychowicz A.: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. Journal of Cardiovascular Magnetic Resonance 14, 1 (2012), 16.
[LGP14] Lawonn K., Gasteiger R., Preim B.: Adaptive surface visualization of vessels with animated blood flow. Computer Graphics Forum 33, 8 (2014), 16-27.
[vPBB*10] van Pelt R., Bescos J. O., Breeuwer M., Rachel E. C., Gröller M. E., ter Haar Romenij B., Vilanova A.: Exploration of 4D MRI blood flow using stylistic visualization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1339-1347.
[AIR03] Antiga L., Iordache E. B., Remuzzi A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 22, 5 (2003), 674-684.
[MFK*12] Markl M., Frydrychowicz A., Kozerke S., Hope M. D., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036.
[CRvdG*14] Calkoen E. E., Roest A. A., van der Geest R. J., de Roos A., Westenberg J. J.: Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: New applications. Journal of Thoracic Imaging 29, 3 (2014), 185-196.
[BPS*13] Bächler P., Pinochet N., Sotelo J., Crelier G., Irarrazaval P., Tejos C., Uribe S.: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Journal of Magnetic Resonance Imaging 31, 2 (2013), 178-188.
[HGH*10] Hummel M., Garth C., Hamann B., Hagen H., Joy K.: IRIS: Illustrative rendering for integral surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1319-1328.
[HSD13] Hope M. D., Sedlic T., Dyverfeldt P.: Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging 28, 4 (2013), 217-230.
[PVS*09] Piccinelli M., Veneziani A., Steinman D. A., Remuzzi A., Antiga L.: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms. IEEE Transactions on Medical Imaging 28, 8 (2009), 1141-1155.
[MTHG03] Mattausch O., Theußl T., Hauser H., Gröller M. E.: Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines. Tech. Rep., Institute of Computer Graphics and Algorithms, Vienna University of Technology, 2003.
[WKS*09] Wöhrle J., Kochs M., Spiess J., Nusser T., Hombach V., Merkle N.: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies. Circulation 119, 23 (2009), 3002-3008.
[Jon06] Jones T. R.: Efficient generation of poisson-disk sampling patterns. Journal of Graph Tools 11, 2 (2006), 27-36.
[BHV99] Bakker C. J., Hoogeveen R. M., Viergever M. A.: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. Journal of Magnetic Resonance Imaging 9, 1 (1999), 119-127.
[vOPG*13] van Ooij P., Potters W. V., Guédon A., Schneiders J. J., Marquering H. A., Majoie C. B., Vanbavel E., Nederveen A. J.: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging 38, 4 (2013), 876-884.
[BPM*13] Born S., Pfeifle M., Markl M., Gutberlet M., Scheuermann G.: Visual analysis of cardiac 4D MRI blood flow using line predicates. IEEE Transactions on Visualization and Computer Graphics 19 (2013), 900-912.
[WCS*93] Walker P. G., Cranney G. B., Scheidegger M. B., Waseleski G., Pohost G. M., Yoganathan A. P.: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. Journal of Magnetic Resonance Imaging 3, 3 (1993), 521-530.
[NJB*11] Neugebauer M., Janiga G., Beuing O., Skalej M., Preim B.: Anatomy-guided multi-level exploration of blood flow in cerebral aneurysms. Computer Graphics Forum 30, 3 (2011), 1041-1050.
[HBV99] Hoogeveen R. M., Bakker C. J., Viergever M. A.: MR phase-contrast flow measurement with limited spatial resolution in small vessels: Value of model-based image analysis. Journal of Magnetic Resonance 41, 3 (1999), 520-528.
[BK01] Boykov Y., Kolmogorov V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2001), 359-374.
[RAFJ*14] Roldán-Alzate A., Frydrychowicz A., Johnson K. M., Kellihan H., Chesler N. C., Wieben O., Francois C. J.: Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 16, 1 (2014), 23.
[GNBP11] Gasteiger R., Neugebauer M., Beuing O., Preim B.: The FLOWLENS: A focus-and-context visualization approach for exploration of blood flow in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2183-2192.
[HHM*10] Hope M. D., Hope T. A., Meadows A. K., Ordovas K. G., Urbania T. H., Alley M. T., Higgins C. B.: Bicuspid aortic valve: Four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255, 1 (2010), 53-61.
[KGP*13] Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2782.
[AS04] Antiga L., Steinman D. A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging 23, 6 (2004), 704-713.
[DP80] Dormand J. R., Prince P. J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 1 (1980), 19-26.
2010; 16
2013; 28
2012
2011
2010
2006; 11
2004; 23
2011; 30
1996
2006
2004
1999; 41
2014; 29
2003
2012; 14
2011; 17
2012; 36
2009; 119
1993; 3
1999; 9
1999
2009; 28
2013; 19
2013; 38
2001
2000
2013; 31
2010; 255
1980; 6
2014; 16
2014
2013
2014; 33
2003; 22
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
Boykov Y. (e_1_2_8_6_1) 2001
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Bade R. (e_1_2_8_4_1) 2006
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: [LGP14] Lawonn K., Gasteiger R., Preim B.: Adaptive surface visualization of vessels with animated blood flow. Computer Graphics Forum 33, 8 (2014), 16-27.
– reference: [AS04] Antiga L., Steinman D. A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging 23, 6 (2004), 704-713.
– reference: [BPS*13] Bächler P., Pinochet N., Sotelo J., Crelier G., Irarrazaval P., Tejos C., Uribe S.: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Journal of Magnetic Resonance Imaging 31, 2 (2013), 178-188.
– reference: [Jon06] Jones T. R.: Efficient generation of poisson-disk sampling patterns. Journal of Graph Tools 11, 2 (2006), 27-36.
– reference: [KGP*13] Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2782.
– reference: [vOPG*13] van Ooij P., Potters W. V., Guédon A., Schneiders J. J., Marquering H. A., Majoie C. B., Vanbavel E., Nederveen A. J.: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging 38, 4 (2013), 876-884.
– reference: [CRvdG*14] Calkoen E. E., Roest A. A., van der Geest R. J., de Roos A., Westenberg J. J.: Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: New applications. Journal of Thoracic Imaging 29, 3 (2014), 185-196.
– reference: [FSS*12] Francois C., Srinivasan S., Schiebler M., Reeder S., Niespodzany E., Landgraf B., Wieben O., Frydrychowicz A.: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. Journal of Cardiovascular Magnetic Resonance 14, 1 (2012), 16.
– reference: [HGH*10] Hummel M., Garth C., Hamann B., Hagen H., Joy K.: IRIS: Illustrative rendering for integral surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1319-1328.
– reference: [PVS*09] Piccinelli M., Veneziani A., Steinman D. A., Remuzzi A., Antiga L.: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms. IEEE Transactions on Medical Imaging 28, 8 (2009), 1141-1155.
– reference: [RAFJ*14] Roldán-Alzate A., Frydrychowicz A., Johnson K. M., Kellihan H., Chesler N. C., Wieben O., Francois C. J.: Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 16, 1 (2014), 23.
– reference: [HBV99] Hoogeveen R. M., Bakker C. J., Viergever M. A.: MR phase-contrast flow measurement with limited spatial resolution in small vessels: Value of model-based image analysis. Journal of Magnetic Resonance 41, 3 (1999), 520-528.
– reference: [AIR03] Antiga L., Iordache E. B., Remuzzi A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 22, 5 (2003), 674-684.
– reference: [MTHG03] Mattausch O., Theußl T., Hauser H., Gröller M. E.: Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines. Tech. Rep., Institute of Computer Graphics and Algorithms, Vienna University of Technology, 2003.
– reference: [HSD13] Hope M. D., Sedlic T., Dyverfeldt P.: Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging 28, 4 (2013), 217-230.
– reference: [vPBB*10] van Pelt R., Bescos J. O., Breeuwer M., Rachel E. C., Gröller M. E., ter Haar Romenij B., Vilanova A.: Exploration of 4D MRI blood flow using stylistic visualization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1339-1347.
– reference: [NJB*11] Neugebauer M., Janiga G., Beuing O., Skalej M., Preim B.: Anatomy-guided multi-level exploration of blood flow in cerebral aneurysms. Computer Graphics Forum 30, 3 (2011), 1041-1050.
– reference: [BPM*13] Born S., Pfeifle M., Markl M., Gutberlet M., Scheuermann G.: Visual analysis of cardiac 4D MRI blood flow using line predicates. IEEE Transactions on Visualization and Computer Graphics 19 (2013), 900-912.
– reference: [DP80] Dormand J. R., Prince P. J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 1 (1980), 19-26.
– reference: [HHM*10] Hope M. D., Hope T. A., Meadows A. K., Ordovas K. G., Urbania T. H., Alley M. T., Higgins C. B.: Bicuspid aortic valve: Four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255, 1 (2010), 53-61.
– reference: [WKS*09] Wöhrle J., Kochs M., Spiess J., Nusser T., Hombach V., Merkle N.: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies. Circulation 119, 23 (2009), 3002-3008.
– reference: [BK01] Boykov Y., Kolmogorov V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2001), 359-374.
– reference: [WCS*93] Walker P. G., Cranney G. B., Scheidegger M. B., Waseleski G., Pohost G. M., Yoganathan A. P.: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. Journal of Magnetic Resonance Imaging 3, 3 (1993), 521-530.
– reference: [GNBP11] Gasteiger R., Neugebauer M., Beuing O., Preim B.: The FLOWLENS: A focus-and-context visualization approach for exploration of blood flow in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2183-2192.
– reference: [BHV99] Bakker C. J., Hoogeveen R. M., Viergever M. A.: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. Journal of Magnetic Resonance Imaging 9, 1 (1999), 119-127.
– reference: [MFK*12] Markl M., Frydrychowicz A., Kozerke S., Hope M. D., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036.
– start-page: 116
  year: 2004
  end-page: 123
– volume: 119
  start-page: 3002
  issue: 23
  year: 2009
  end-page: 3008
  article-title: Impact of percutaneous device implantation for closure of patent foramen ovale on valve insufficiencies
  publication-title: Circulation
– volume: 14
  issue: 1
  year: 2012
  article-title: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot
  publication-title: Journal of Cardiovascular Magnetic Resonance
– start-page: 107
  year: 1996
  end-page: 113
– start-page: 129
  year: 2013
  end-page: 136
– volume: 16
  start-page: 1319
  issue: 6
  year: 2010
  end-page: 1328
  article-title: IRIS: Illustrative rendering for integral surfaces
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 41
  start-page: 520
  issue: 3
  year: 1999
  end-page: 528
  article-title: MR phase‐contrast flow measurement with limited spatial resolution in small vessels: Value of model‐based image analysis
  publication-title: Journal of Magnetic Resonance
– start-page: 59
  year: 1999
  end-page: 66
– year: 2003
– start-page: 359
  year: 2001
  end-page: 374
  article-title: An experimental comparison of min‐cut/max‐flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 26
– start-page: 2181
  year: 2010
  end-page: 2188
– volume: 3
  start-page: 521
  issue: 3
  year: 1993
  end-page: 530
  article-title: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 11
  start-page: 27
  issue: 2
  year: 2006
  end-page: 36
  article-title: Efficient generation of poisson‐disk sampling patterns
  publication-title: Journal of Graph Tools
– volume: 38
  start-page: 876
  issue: 4
  year: 2013
  end-page: 884
  article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 36
  start-page: 1015
  issue: 5
  year: 2012
  end-page: 1036
  article-title: 4D flow MRI
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 31
  start-page: 178
  issue: 2
  year: 2013
  end-page: 188
  article-title: Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 17
  start-page: 2183
  issue: 12
  year: 2011
  end-page: 2192
  article-title: The FLOWLENS: A focus‐and‐context visualization approach for exploration of blood flow in cerebral aneurysms
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 900
  year: 2013
  end-page: 912
  article-title: Visual analysis of cardiac 4D MRI blood flow using line predicates
  publication-title: IEEE Transactions on Visualization and Computer Graphics 19
– volume: 28
  start-page: 1141
  issue: 8
  year: 2009
  end-page: 1155
  article-title: A framework for geometric analysis of vascular structures: Application to cerebral aneurysms
  publication-title: IEEE Transactions on Medical Imaging
– volume: 22
  start-page: 674
  issue: 5
  year: 2003
  end-page: 684
  article-title: Computational geometry for patient‐specific reconstruction and meshing of blood vessels from MR and CT angiography
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 3673
  year: 2012
  end-page: 3680
– volume: 16
  start-page: 23
  issue: 1
  year: 2014
  article-title: Non‐invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance
  publication-title: Journal of Cardiovascular Magnetic Resonance
– start-page: 127
  year: 2014
  end-page: 131
– volume: 6
  start-page: 19
  issue: 1
  year: 1980
  end-page: 26
  article-title: A family of embedded Runge‐Kutta formulae
  publication-title: Journal of Computational and Applied Mathematics
– start-page: 289
  year: 2006
  end-page: 304
– start-page: 79640E
  year: 2011
  end-page: 11
– volume: 33
  start-page: 16
  issue: 8
  year: 2014
  end-page: 27
  article-title: Adaptive surface visualization of vessels with animated blood flow
  publication-title: Computer Graphics Forum
– start-page: 186
  year: 2000
  end-page: 95
– volume: 29
  start-page: 185
  issue: 3
  year: 2014
  end-page: 196
  article-title: Cardiovascular function and flow by 4‐dimensional magnetic resonance imaging techniques: New applications
  publication-title: Journal of Thoracic Imaging
– volume: 23
  start-page: 704
  issue: 6
  year: 2004
  end-page: 713
  article-title: Robust and objective decomposition and mapping of bifurcating vessels
  publication-title: IEEE Transactions on Medical Imaging
– volume: 19
  start-page: 2773
  issue: 12
  year: 2013
  end-page: 2782
  article-title: Semi‐automatic vortex extraction in 4D PC‐MRI cardiac blood flow data using line predicates
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 16
  start-page: 1339
  issue: 6
  year: 2010
  end-page: 1347
  article-title: Exploration of 4D MRI blood flow using stylistic visualization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 255
  start-page: 53
  issue: 1
  year: 2010
  end-page: 61
  article-title: Bicuspid aortic valve: Four‐dimensional MR evaluation of ascending aortic systolic flow patterns
  publication-title: Radiology
– start-page: 283
  year: 1996
  end-page: 92
– volume: 28
  start-page: 217
  issue: 4
  year: 2013
  end-page: 230
  article-title: Cardiothoracic magnetic resonance flow imaging
  publication-title: Journal of Thoracic Imaging
– start-page: 1
  year: 2014
  end-page: 10
– volume: 30
  start-page: 1041
  issue: 3
  year: 2011
  end-page: 1050
  article-title: Anatomy‐guided multi‐level exploration of blood flow in cerebral aneurysms
  publication-title: Computer Graphics Forum
– volume: 9
  start-page: 119
  issue: 1
  year: 1999
  end-page: 127
  article-title: Construction of a protocol for measuring blood flow by two‐dimensional phase‐contrast MRA
  publication-title: Journal of Magnetic Resonance Imaging
– ident: e_1_2_8_36_1
  doi: 10.1109/TVCG.2010.153
– ident: e_1_2_8_20_1
  doi: 10.1109/VISUAL.1999.809869
– ident: e_1_2_8_37_1
  doi: 10.1002/jmri.1880030315
– ident: e_1_2_8_26_1
  doi: 10.1111/cgf.12355
– ident: e_1_2_8_28_1
  doi: 10.1002/jmri.23632
– ident: e_1_2_8_9_1
  doi: 10.1016/j.mri.2012.06.036
– ident: e_1_2_8_22_1
  doi: 10.1080/2151237X.2006.10129217
– start-page: 359
  year: 2001
  ident: e_1_2_8_6_1
  article-title: An experimental comparison of min‐cut/max‐flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 26
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1467-8659.2011.01953.x
– ident: e_1_2_8_23_1
  doi: 10.1109/CVPR.2012.6248113
– ident: e_1_2_8_2_1
  doi: 10.1109/TMI.2003.812261
– ident: e_1_2_8_11_1
  doi: 10.1097/RTI.0000000000000068
– ident: e_1_2_8_31_1
  doi: 10.1109/TMI.2009.2021652
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-540-30463-0_14
– ident: e_1_2_8_32_1
  doi: 10.1186/1532-429X-16-23
– ident: e_1_2_8_39_1
  doi: 10.1109/VISUAL.1996.567777
– ident: e_1_2_8_10_1
– ident: e_1_2_8_19_1
  doi: 10.1148/radiol.09091437
– ident: e_1_2_8_24_1
  doi: 10.1109/TVCG.2013.189
– ident: e_1_2_8_34_1
  doi: 10.1007/BFb0015544
– ident: e_1_2_8_17_1
  doi: 10.1117/12.878202
– ident: e_1_2_8_15_1
  doi: 10.1109/TVCG.2011.243
– ident: e_1_2_8_29_1
  doi: 10.1145/984952.984987
– ident: e_1_2_8_18_1
  doi: 10.1109/TVCG.2010.173
– start-page: 289
  volume-title: Simulation und Visualisierung
  year: 2006
  ident: e_1_2_8_4_1
– ident: e_1_2_8_12_1
  doi: 10.1016/0771-050X(80)90013-3
– ident: e_1_2_8_16_1
  doi: 10.1002/(SICI)1522-2594(199903)41:3<520::AID-MRM14>3.0.CO;2-A
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-540-40899-4_19
– ident: e_1_2_8_35_1
  doi: 10.1002/jmri.24051
– ident: e_1_2_8_38_1
  doi: 10.1161/CIRCULATIONAHA.109.851014
– ident: e_1_2_8_25_1
  doi: 10.1111/cgf.12669
– ident: e_1_2_8_3_1
  doi: 10.1109/TMI.2004.826946
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2010.5539898
– ident: e_1_2_8_7_1
  doi: 10.1109/PacificVis.2013.6596137
– ident: e_1_2_8_8_1
  doi: 10.1109/TVCG.2012.318
– ident: e_1_2_8_14_1
  doi: 10.1186/1532-429X-14-16
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F
– ident: e_1_2_8_21_1
  doi: 10.1097/RTI.0b013e31829192a1
SSID ssj0004765
Score 2.2049382
Snippet Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke...
Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) allows the non-invasive acquisition of time-resolved, 3D blood flow information. Stroke...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms 4d pc-mri
Arteries
Blood
Blood flow
Cardiac function
Cardiology
Circulatory system
I.4.9 [Computing Methodologies]: Image Processing and Computer Vision Applications
Image processing systems
Magnetic resonance imaging
Mathematical analysis
Mathematical models
NMR
Nuclear magnetic resonance
Planes
Pulmonary arteries
quantification
scientific visualization
stroke volume
Three dimensional
Valves
Title Robust Cardiac Function Assessment in 4D PC-MRI Data of the Aorta and Pulmonary Artery
URI https://api.istex.fr/ark:/67375/WNG-4KG7TXLT-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12669
https://www.proquest.com/docview/1768182434
https://www.proquest.com/docview/1800492388
Volume 35
WOSCitedRecordID wos000371492500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VpAc4FChFhLZoQQhxMYq9a68tTlGCA2qJoigVua1m12tUUTkoP6jceIQ-Y5-ks47tphJIlbhZ8lgezc_ON_bstwBv0RGacB55vq_REzajdRB15FkZRibPqYJhXh42IUejeDZLxjvwsd4Ls-GHaD64ucwo12uX4KiXW0luvucffCovyQNoBxS3ogXtwSQ9O73dFimjsKb2dqQxFbGQG-RpHr5TjtrOspd3sOY2Yi1LTvr4v5R9AnsV0mS9TWg8hR1b7MOjLf7BZzCbzPV6uWL9MkwMS6nIOUexXsPXyc4LJgZs3L_-c_V18oUNcIVsnjPCjaznoDvDImPj9QWFM6nnXmcXvw_gLP007X_2qqMWPCMkTzzfJJw6D8eNnyUZxrGWuY6C3GqRGJ7FgQ4jQdDW-ojGdKWNOUejUWNXZH5i-XNoFfPCvgCWm25mJNeRcVx1WaCNRAxCpM7JpbjowPva4spUPOTuOIwLVfcjZCxVGqsDbxrRnxvyjb8JvSvd1kjg4oebVpOh-jYaKnEylNPZ6VSddOCo9quqEnWpfGq3qMUSnPR63dymFHP_TbCw8zXJxK6PImwTk-6ll_-tjeoP0_Li5f1FD-EhwbBqFvwIWqvF2h7Drvm1Ol8uXlVRfQMNQfms
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Su9D20HeJ27TdllJ6UbC8K60EuRi7coIdY4xDfVtmV6sSEuTiR2lv-Qn5jf0lnZUlxYEWCr0JNELDPHa-2ce3AB_QEZpwHnq-r9ETNqVxEHXoWRmEJsuogmFWXDYhx-NoPo8ne3BUnYXZ8kPUE24uM4rx2iW4m5DeyXLzNTv0qb7Ed6ApKIyCBjT70-RsdHMuUoZBxe3tWGNKZiG3k6f--FY9ajrT_rgFNncha1Fzkkf_p-1jeFhiTdbdBscT2LP5U3iww0D4DObThd6s1qxXBIphCZU55yrWrRk72XnORJ9Ner-urk-nJ6yPa2SLjBFyZF0H3hnmKZtsLimgST_3O7v8-RzOks-z3rFXXrbgGSF57Pkm5tR7OHb8NE4xirTMdNjJrBax4WnU0UEoCNxaH9GYtrQR52g0amyL1I8tfwGNfJHbfWCZaadGch0ax1aXdrSRiJ0AqXdySS5a8KkyuTIlE7m7EONSVR0JGUsVxmrB-1r025Z-409CHwu_1RK4vHD71WSgvowHSgwHcjYfzdSwBQeVY1WZqivlU8NFTZbgpNe7-jUlmVs5wdwuNiQTuU6K0E1Euhdu_rs2qjdIioeX_y76Fu4dz05HanQyHr6C-wTKyp3hB9BYLzf2Ndw139fnq-WbMsR_AwFR_Zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB_Oq8j54LdYPXUVEV8iTXeTTcCX0pp6tJZSeti3ZXazK8cd6dEP0Tf_BP9G_xJn0yT2QEHwLZAJGeZj5zfJ7G8BXqEnNOE8DsJQYyBsTusg6jiwMoqNc1TB0JWHTcjJJFks0ukBvKv3wuz4IZoPbj4zyvXaJ7i9zN1elpvP7m1I9SW9Bi0RpTGlZWswy07Hv_dFyjiqub09a0zFLOQneZqHr9Sjljft1ytgcx-yljUnu_1_2t6BWxXWZL1dcNyFA1vcg5t7DIT3YTFb6u16w_ploBiWUZnzrmK9hrGTnRVMDNi0__P7j4-zEzbADbKlY4QcWc-Dd4ZFzqbbCwpo0s-_zq6-PYDT7P28_yGoDlsIjJA8DUKTcuo9PDt-nuaYJFo6HXed1SI1PE-6OooFgVsbIhrTkTbhHI1GjR2Rh6nlD-GwWBb2ETBnOrmRXMfGs9XlXW0kYjdC6p18kos2vKlNrkzFRO4PxLhQdUdCxlKlsdrwshG93NFv_Enodem3RgJX535eTUbq02SoxGgo54vxXI3acFw7VlWpulYhNVzUZAlOer1oblOS-T8nWNjllmQS30kRuklI99LNf9dG9YdZefH430Wfw43pIFPjk8noCRwRJqsGw4_hcLPa2qdw3XzZnK1Xz6oI_wWPtP0X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Cardiac+Function+Assessment+in+4D+PC-MRI+Data+of+the+Aorta+and+Pulmonary+Artery&rft.jtitle=Computer+graphics+forum&rft.au=Kohler%2C+Benjamin&rft.au=Preim%2C+Uta&rft.au=Grothoff%2C+Matthias&rft.au=Gutberlet%2C+Matthias&rft.date=2016-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=1&rft.spage=32&rft_id=info:doi/10.1111%2Fcgf.12669&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3964299851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon