Discrete 2-Tensor Fields on Triangulations

Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often d...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 5; pp. 13 - 24
Main Authors: de Goes, Fernando, Liu, Beibei, Budninskiy, Max, Tong, Yiying, Desbrun, Mathieu
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.
AbstractList Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors-thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors-thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. [PUBLICATION ABSTRACT]
Author Budninskiy, Max
Desbrun, Mathieu
Liu, Beibei
Tong, Yiying
de Goes, Fernando
Author_xml – sequence: 1
  givenname: Fernando
  surname: de Goes
  fullname: de Goes, Fernando
  organization: Caltech
– sequence: 2
  givenname: Beibei
  surname: Liu
  fullname: Liu, Beibei
  organization: MSU
– sequence: 3
  givenname: Max
  surname: Budninskiy
  fullname: Budninskiy, Max
  organization: Caltech
– sequence: 4
  givenname: Yiying
  surname: Tong
  fullname: Tong, Yiying
  organization: MSU
– sequence: 5
  givenname: Mathieu
  surname: Desbrun
  fullname: Desbrun, Mathieu
  organization: Caltech
BookMark eNp9kF9PwjAUxRuDiYA--A1IfFGTQdv1z_qo04EJakwwPjal60hxbNhuUb69FdQHEr0v9z78zsm5pwc6VV0ZAE4RHKIwI70ohggTzA9AFxHGo4RR0QFdiMLNIaVHoOf9EkJIOKNdcHljvXamMQMczUzlazfIrClzP6irwcxZVS3aUjW2rvwxOCxU6c3J9-6D5-x2lk6i6eP4Lr2aRprwmEdKqILDJOexEpoKrDjDmDPGYmaoCDGSOCeJnhda4xwZXMSC5LnAJOdzwZSK--B857t29VtrfCNXIaMpS1WZuvUScZ5AElNMA3q2hy7r1lUhnUSUUgIxoiJQFztKu9p7Zwq5dnal3EYiKL9ak6E1uW0tsKM9Vttm-3_jlC3_U7zb0mz-tpbpOPtRRDuF9Y35-FUo9ypZaJDKl4exfJpk1_w-nUgRfwKe7owU
CitedBy_id crossref_primary_10_1111_cgf_14070
crossref_primary_10_1007_s10208_017_9353_0
crossref_primary_10_1093_imanum_drac015
crossref_primary_10_1111_cgf_13250
crossref_primary_10_1111_cgf_13243
crossref_primary_10_1145_2766927
crossref_primary_10_1111_cgf_12479
crossref_primary_10_1111_cgf_12864
crossref_primary_10_1145_2766888
crossref_primary_10_1109_TVCG_2020_3030454
crossref_primary_10_1145_3186564
crossref_primary_10_1145_3375659
crossref_primary_10_1109_TVCG_2018_2864839
crossref_primary_10_1145_2870629
crossref_primary_10_1007_s10208_019_09420_4
crossref_primary_10_1098_rspa_2024_0418
crossref_primary_10_1145_3131280
crossref_primary_10_1145_3386569_3392389
crossref_primary_10_1111_cgf_70193
crossref_primary_10_1109_TVCG_2017_2789203
crossref_primary_10_1145_2980179_2982441
Cites_doi 10.1007/0-387-38034-5_3
10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G
10.1145/2010324.1964998
10.1142/S0218202503002507
10.1090/S0025-5718-08-02071-1
10.1111/j.1467-8659.2006.00974.x
10.1145/1057432.1057440
10.1145/2601097.2601179
10.4310/jdg/1214429060
10.1007/978-3-540-88378-4
10.1142/S021820251350067X
10.1145/2461912.2461927
10.1016/j.physd.2010.10.012
10.1145/1189762.1189766
10.1145/2366145.2366171
10.1145/882262.882296
10.1007/978-1-4612-1029-0
10.1111/cgf.12173
10.1007/978-3-7091-6783-0_15
10.1145/2516971.2516977
10.7498/aps.10.259
10.1109/TVCG.2010.121
10.1007/s00033-007-6141-8
10.1109/VISUAL.1994.346326
10.1109/TVCG.2011.170
10.1515/9781400877577
10.1007/s10711-006-9109-5
10.1109/TVCG.2008.68
10.1145/1141911.1141991
10.1086/377166
10.1007/BF02733251
10.1111/j.1467-8659.2010.01779.x
10.1111/cgf.12174
10.1109/34.56205
10.1017/S0962492906210018
10.1080/10586458.1993.10504266
10.1007/s002110100348
10.1145/882262.882290
10.1111/j.1467-8659.2012.03231.x
10.1145/1183287.1183290
10.1145/777792.777839
10.1145/1360612.1360676
10.1016/j.cagd.2011.06.003
10.1145/2461912.2462005
10.1145/2461912.2461932
10.1145/1276377.1276447
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12427
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 24
ExternalDocumentID 3410909661
10_1111_cgf_12427
CGF12427
ark_67375_WNG_QHFB7MCH_9
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4737-a9af708d73a9c592a7622766636e5916783d48cbfcc2d1e2f394dd924d7b96aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341128900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Wed Oct 01 14:34:28 EDT 2025
Sun Nov 09 06:48:12 EST 2025
Sat Nov 29 08:02:00 EST 2025
Tue Nov 18 21:08:36 EST 2025
Wed Jan 22 16:25:45 EST 2025
Sun Sep 21 06:18:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4737-a9af708d73a9c592a7622766636e5916783d48cbfcc2d1e2f394dd924d7b96aa3
Notes istex:5CC72AC73270E57D46F3813BF96275B97DB70046
ark:/67375/WNG-QHFB7MCH-9
ArticleID:CGF12427
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12427
PQID 1555402159
PQPubID 30877
PageCount 12
ParticipantIDs proquest_miscellaneous_1778043525
proquest_journals_1555402159
crossref_primary_10_1111_cgf_12427
crossref_citationtrail_10_1111_cgf_12427
wiley_primary_10_1111_cgf_12427_CGF12427
istex_primary_ark_67375_WNG_QHFB7MCH_9
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007). 1
Green A., Zerna W.: Theoretical Elasticity. Dover, 2002. 5
Laidlaw D., Weickert J.: Visualization and Processing of Tensor Fields: Advances and Perspectives, 1st ed. Springer Publishing Company, Incorporated, 2009. 2
Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comp. Graph. 17, 7 (2011), 947-955. 8
Palke D., Lin Z., Chen G., Yeh H., Vincent P., Laramee R., Zhang E.: Asymmetric tensor field visualization for surfaces. IEEE Trans. Vis. Comp. Graph. 17, 12 (2011), 1979-1988. 2
Abraham R., Marsden J., Ratiu R.: Manifolds, Tensor Analysis, and Applications. Springer, 1988. 2, 3
Pinkall U., Polthier K.: Computing discrete minimal surfaces & their conjugates. Exp. Math. 2, 1 (1993), 15-36. 7, 12
de Goes F., Memari P., Mullen P., Desbrun M.: Weighted triangulations for geometry processing. ACM Trans. Graph. 33 (2014). 2
Kratz A., Auer C., Stommel M., Hotz I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comp. Graph. Forum 32, 1 (2013), 49-74. 2
Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (2003). 2
Bossavit A., Kettunen L.: Yee schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Num. Model. 12 (1999), 129-142. 7, 12
Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013). 1, 9
Arnold D.N., Awanou G., Winther R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24 (2014), 783-796. 2
Arnold D.N., Falk R.S., Winther R.: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations, Arnold D., Bochev P., Lehoucq R., Nicolaides R., Shashkov M., (Eds.), vol. 142 of IMA Vol. Math. Appl. 2006, pp. 47-68. 2
Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. Comp. Graph. Forum 32, 5 (2013), 73-82. 1, 8, 9
Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294-1326. 1
Hu H.C.: Some variational principles in elasticity and plasticity. Acta Phys. Sin. 10, 3 (1954), 259-290. 2, 4
Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1-155. 2, 5, 6
Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008). 2
de Goes F., Alliez P., Owhadi H., Desbrun M.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4 (2013). 2, 4, 6, 7
Whitney H.: Geometric Integration Theory. Princeton university Press, 1957. 1, 3, 5
Mullen P., Memari P., de Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30 (2011). 7
Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007). 2
Liu Y., Hao P., Snyder J., Wang W., Guo B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013). 4
Regge T.: General relativity without coordinates. Nuovo Cim. 19, 3 (1961), 558-571. 2
Campen M., Heistermann M., Kobbelt L.: Practical anisotropic geodesy. Comp. Graph. Forum 32, 5 (2013), 63-71. 2
Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). 2, 9
Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8 (2011), 449-462. 2, 4
Munkres J.R.: Elements of Algebraic Topology. Addison-Wesley, 1984. 5
Narain R., Samii A., O'Brien J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6 (2012). 2
Ben-Chen M., Butscher A., Solomon J., Guibas L.: On discrete Killing vector fields & patterns on surfaces. Comp. Graph. Forum 29, 5 (2010), 1701-1711. 2, 4, 9, 11
Bochev P.B., Hyman J.M.: Principles of Mimetic Discretizations of Differential Operators. IMA Volumes 142 (2006), 89-119. 2
Arnold D.N., Winther R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 3 (2003), 295-307. 2
Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014). 2
Meier D.L.: Constrained transport algorithms for numerical relativity. i. development of a finite-difference scheme. The Astrophysical Journal 595 (2003), 980-991. 2
Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92, 3 (2002), 401-419. 2
Grinspun E., Gingold Y.I., Reisman J., Zorin D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25, 3 (2006), 547-556. 6
Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629-639. 4, 9
Tong Y., Lombeyda S., Hirani A.N., Desbrun M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 3 (2003), 445-452. 1
Hildebrandt K., Polthier K., Wardetzky M.: On convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1 (2006), 89-112. 9
Wang K., Weiwei, Tong Y., Desbrun M., Schröder P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3 (2006), 1041-1048. 6, 9
Zhang E., Yeh H., Lin Z., Laramee R.: Asymmetric tensor analysis for flow visualization. IEEE Trans. Vis. Comp. Graph. 15, 1 (2009), 106-122. 2
1961; 19
1990; 12
2011
2010
2008; 38
2006; 15
2002; 1
2003; 13
2009
2008
2011; 30
1996
2007
2014; 24
2006
1994
2005
2004
2003
2002
2006; 171
2011; 17
1993; 2
2003; 595
2012; 31
1957
2013; 32
2000
2010; 29
2006; 25
1954; 10
2008; 27
1999; 12
2006; 142
1984
2002; 92
2011; 28
1969
2006; 123
2014; 33
2009; 15
2003; 22
2007; 26
1988
e_1_2_10_23_2
Petersen P. (e_1_2_10_44_2) 2006
e_1_2_10_21_2
Green A. (e_1_2_10_29_2) 2002
e_1_2_10_40_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_55_2
e_1_2_10_6_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_32_2
e_1_2_10_30_2
e_1_2_10_51_2
Munkres J.R. (e_1_2_10_42_2) 1984
Hu H.C. (e_1_2_10_31_2) 1954; 10
e_1_2_10_61_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_45_2
e_1_2_10_43_2
e_1_2_10_41_2
Alessandrini G. (e_1_2_10_9_2) 2002
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_52_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
Desbrun M. (e_1_2_10_22_2) 2008
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_56_2
e_1_2_10_57_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_59_2
e_1_2_10_10_2
Bochev P.B. (e_1_2_10_14_2) 2006; 142
Polthier K. (e_1_2_10_50_2) 2003
e_1_2_10_60_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_26_2
e_1_2_10_49_2
de Goes F. (e_1_2_10_20_2) 2014; 33
e_1_2_10_24_2
e_1_2_10_47_2
References_xml – reference: Hu H.C.: Some variational principles in elasticity and plasticity. Acta Phys. Sin. 10, 3 (1954), 259-290. 2, 4
– reference: Hildebrandt K., Polthier K., Wardetzky M.: On convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1 (2006), 89-112. 9
– reference: Arnold D.N., Winther R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 3 (2003), 295-307. 2
– reference: Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007). 2
– reference: Narain R., Samii A., O'Brien J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6 (2012). 2
– reference: Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008). 2
– reference: Ben-Chen M., Butscher A., Solomon J., Guibas L.: On discrete Killing vector fields & patterns on surfaces. Comp. Graph. Forum 29, 5 (2010), 1701-1711. 2, 4, 9, 11
– reference: Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8 (2011), 449-462. 2, 4
– reference: Laidlaw D., Weickert J.: Visualization and Processing of Tensor Fields: Advances and Perspectives, 1st ed. Springer Publishing Company, Incorporated, 2009. 2
– reference: Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007). 1
– reference: Meier D.L.: Constrained transport algorithms for numerical relativity. i. development of a finite-difference scheme. The Astrophysical Journal 595 (2003), 980-991. 2
– reference: Pinkall U., Polthier K.: Computing discrete minimal surfaces & their conjugates. Exp. Math. 2, 1 (1993), 15-36. 7, 12
– reference: Arnold D.N., Awanou G., Winther R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24 (2014), 783-796. 2
– reference: de Goes F., Alliez P., Owhadi H., Desbrun M.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4 (2013). 2, 4, 6, 7
– reference: Green A., Zerna W.: Theoretical Elasticity. Dover, 2002. 5
– reference: Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. Comp. Graph. Forum 32, 5 (2013), 73-82. 1, 8, 9
– reference: Grinspun E., Gingold Y.I., Reisman J., Zorin D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25, 3 (2006), 547-556. 6
– reference: Tong Y., Lombeyda S., Hirani A.N., Desbrun M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 3 (2003), 445-452. 1
– reference: Kratz A., Auer C., Stommel M., Hotz I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comp. Graph. Forum 32, 1 (2013), 49-74. 2
– reference: Zhang E., Yeh H., Lin Z., Laramee R.: Asymmetric tensor analysis for flow visualization. IEEE Trans. Vis. Comp. Graph. 15, 1 (2009), 106-122. 2
– reference: de Goes F., Memari P., Mullen P., Desbrun M.: Weighted triangulations for geometry processing. ACM Trans. Graph. 33 (2014). 2
– reference: Liu Y., Hao P., Snyder J., Wang W., Guo B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013). 4
– reference: Regge T.: General relativity without coordinates. Nuovo Cim. 19, 3 (1961), 558-571. 2
– reference: Arnold D.N., Falk R.S., Winther R.: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations, Arnold D., Bochev P., Lehoucq R., Nicolaides R., Shashkov M., (Eds.), vol. 142 of IMA Vol. Math. Appl. 2006, pp. 47-68. 2
– reference: Whitney H.: Geometric Integration Theory. Princeton university Press, 1957. 1, 3, 5
– reference: Abraham R., Marsden J., Ratiu R.: Manifolds, Tensor Analysis, and Applications. Springer, 1988. 2, 3
– reference: Palke D., Lin Z., Chen G., Yeh H., Vincent P., Laramee R., Zhang E.: Asymmetric tensor field visualization for surfaces. IEEE Trans. Vis. Comp. Graph. 17, 12 (2011), 1979-1988. 2
– reference: Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (2003). 2
– reference: Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294-1326. 1
– reference: Campen M., Heistermann M., Kobbelt L.: Practical anisotropic geodesy. Comp. Graph. Forum 32, 5 (2013), 63-71. 2
– reference: Mullen P., Memari P., de Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30 (2011). 7
– reference: Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629-639. 4, 9
– reference: Bossavit A., Kettunen L.: Yee schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Num. Model. 12 (1999), 129-142. 7, 12
– reference: Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92, 3 (2002), 401-419. 2
– reference: Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1-155. 2, 5, 6
– reference: Munkres J.R.: Elements of Algebraic Topology. Addison-Wesley, 1984. 5
– reference: Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013). 1, 9
– reference: Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014). 2
– reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). 2, 9
– reference: Wang K., Weiwei, Tong Y., Desbrun M., Schröder P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3 (2006), 1041-1048. 6, 9
– reference: Bochev P.B., Hyman J.M.: Principles of Mimetic Discretizations of Differential Operators. IMA Volumes 142 (2006), 89-119. 2
– reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comp. Graph. 17, 7 (2011), 947-955. 8
– start-page: III
  year: 2010
– volume: 2
  start-page: 15
  issue: 1
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces & their conjugates
  publication-title: Exp. Math
– year: 2009
– year: 2005
– volume: 32
  start-page: 49
  issue: 1
  year: 2013
  end-page: 74
  article-title: Visualization and analysis of second‐order tensors: Moving beyond the symmetric positive‐definite case
  publication-title: Comp. Graph. Forum
– start-page: 843
  year: 2007
  end-page: 856
– volume: 17
  start-page: 947
  issue: 7
  year: 2011
  end-page: 955
  article-title: Interactive visualization of rotational symmetry fields on surfaces
  publication-title: IEEE Trans. Vis. Comp. Graph
– volume: 22
  start-page: 445
  issue: 3
  year: 2003
  end-page: 452
  article-title: Discrete multiscale vector field decomposition
  publication-title: ACM Trans. Graph
– volume: 27
  issue: 3
  year: 2008
  article-title: Conformal equivalence of triangle meshes
  publication-title: ACM Trans. Graph
– volume: 32
  issue: 5
  year: 2013
  article-title: Geodesics in heat: A new approach to computing distance based on heat flow
  publication-title: ACM Trans. Graph
– start-page: 113
  year: 2003
  end-page: 134
– volume: 29
  start-page: 1701
  issue: 5
  year: 2010
  end-page: 1711
  article-title: On discrete Killing vector fields & patterns on surfaces
  publication-title: Comp. Graph. Forum
– volume: 25
  start-page: 1294
  issue: 4
  year: 2006
  end-page: 1326
  article-title: Vector field design on surfaces
  publication-title: ACM Trans. Graph
– volume: 595
  start-page: 980
  year: 2003
  end-page: 991
  article-title: Constrained transport algorithms for numerical relativity. i. development of a finite‐difference scheme
  publication-title: The Astrophysical Journal
– volume: 10
  start-page: 259
  issue: 3
  year: 1954
  end-page: 290
  article-title: Some variational principles in elasticity and plasticity
  publication-title: Acta Phys. Sin
– volume: 142
  start-page: 47
  year: 2006
  end-page: 68
  article-title: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations
  publication-title: IMA Vol. Math. Appl
– volume: 38
  start-page: 287
  year: 2008
  end-page: 324
– volume: 31
  issue: 6
  year: 2012
  article-title: Adaptive anisotropic remeshing for cloth simulation
  publication-title: ACM Trans. Graph
– start-page: 312
  year: 2003
  end-page: 321
– volume: 32
  start-page: 63
  issue: 5
  year: 2013
  end-page: 71
  article-title: Practical anisotropic geodesy
  publication-title: Comp. Graph. Forum
– volume: 13
  start-page: 295
  issue: 3
  year: 2003
  end-page: 307
  article-title: Nonconforming mixed elements for elasticity
  publication-title: Math. Models Methods Appl. Sci
– volume: 15
  start-page: 1
  year: 2006
  end-page: 155
  article-title: Finite element exterior calculus, homological techniques, and applications
  publication-title: Acta Numerica
– start-page: 443
  year: 2011
  end-page: 458
– volume: 32
  start-page: 73
  issue: 5
  year: 2013
  end-page: 82
  article-title: An operator approach to tangent vector field processing
  publication-title: Comp. Graph. Forum
– start-page: 147
  year: 2000
  end-page: 155
– volume: 1
  start-page: 1
  year: 2002
  end-page: 21
– volume: 33
  year: 2014
  article-title: Weighted triangulations for geometry processing
  publication-title: ACM Trans. Graph
– volume: 26
  issue: 1
  year: 2007
  article-title: Stable, circulation‐preserving, simplicial fluids
  publication-title: ACM Trans. Graph
– volume: 33
  issue: 4
  year: 2014
  article-title: Frame fields: Anisotropic and non-orthogonal cross fields
  publication-title: ACM Trans. Graph. (SIGGRAPH)
– volume: 28
  start-page: 449
  issue: 8
  year: 2011
  end-page: 462
  article-title: Anisotropic quadrangulation
  publication-title: Computer Aided Geometric Design
– volume: 92
  start-page: 401
  issue: 3
  year: 2002
  end-page: 419
  article-title: Mixed finite elements for elasticity
  publication-title: Numer. Math
– volume: 22
  issue: 3
  year: 2003
  article-title: Anisotropic polygonal remeshing
  publication-title: ACM Trans. Graph
– start-page: 3
  year: 2005
  end-page: 10
– start-page: 379
  year: 1969
  end-page: 392
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  end-page: 639
  article-title: Scale‐space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 32
  issue: 4
  year: 2013
  article-title: Globally optimal direction fields
  publication-title: ACM Trans. Graph
– volume: 171
  year: 2006
– start-page: 278
  year: 2005
  end-page: 287
– start-page: 1229
  year: 2008
  end-page: 1251
– volume: 19
  start-page: 558
  issue: 3
  year: 1961
  end-page: 571
  article-title: General relativity without coordinates
  publication-title: Nuovo Cim
– volume: 30
  year: 2011
  article-title: HOT: Hodge‐optimized triangulations
  publication-title: ACM Trans. Graph. (SIGGRAPH)
– start-page: 177
  year: 2006
  end-page: 185
– volume: 26
  issue: 3
  year: 2007
  article-title: Design of tangent vector fields
  publication-title: ACM Trans. Graph
– volume: 24
  start-page: 783
  year: 2014
  end-page: 796
  article-title: Nonconforming tetrahedral mixed finite elements for elasticity
  publication-title: Math. Models Methods Appl. Sci
– start-page: 55
  year: 2004
  end-page: 64
– volume: 142
  start-page: 89
  year: 2006
  end-page: 119
  article-title: Principles of Mimetic Discretizations of Differential Operators
  publication-title: IMA Volumes
– volume: 32
  issue: 4
  year: 2013
  article-title: On the equilibrium of simplicial masonry structures
  publication-title: ACM Trans. Graph
– start-page: 140
  year: 1994
  end-page: 147
– year: 1984
– year: 1957
– volume: 17
  start-page: 1979
  issue: 12
  year: 2011
  end-page: 1988
  article-title: Asymmetric tensor field visualization for surfaces
  publication-title: IEEE Trans. Vis. Comp. Graph
– volume: 15
  start-page: 106
  issue: 1
  year: 2009
  end-page: 122
  article-title: Asymmetric tensor analysis for flow visualization
  publication-title: IEEE Trans. Vis. Comp. Graph
– volume: 32
  issue: 4
  year: 2013
  article-title: Computing self‐supporting surfaces by regular triangulation
  publication-title: ACM Trans. Graph. (SIGGRAPH)
– year: 2002
– volume: 123
  start-page: 89
  issue: 1
  year: 2006
  end-page: 112
  article-title: On convergence of metric and geometric properties of polyhedral surfaces
  publication-title: Geometriae Dedicata
– year: 1988
– start-page: 63
  year: 1996
  end-page: 76
– volume: 25
  start-page: 1041
  issue: 3
  year: 2006
  end-page: 1048
  article-title: Edge subdivision schemes and the construction of smooth vector fields
  publication-title: ACM Trans. Graph
– volume: 12
  start-page: 129
  year: 1999
  end-page: 142
  article-title: Yee schemes on a tetrahedral mesh, with diagonal lumping
  publication-title: Int. J. Num. Model
– volume: 25
  start-page: 547
  issue: 3
  year: 2006
  end-page: 556
  article-title: Computing discrete shape operators on general meshes
  publication-title: Comput. Graph. Forum
– ident: e_1_2_10_6_2
  doi: 10.1007/0-387-38034-5_3
– ident: e_1_2_10_15_2
  doi: 10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G
– ident: e_1_2_10_41_2
  doi: 10.1145/2010324.1964998
– ident: e_1_2_10_11_2
  doi: 10.1142/S0218202503002507
– ident: e_1_2_10_2_2
  doi: 10.1090/S0025-5718-08-02071-1
– ident: e_1_2_10_26_2
  doi: 10.1111/j.1467-8659.2006.00974.x
– volume-title: Elements of Algebraic Topology
  year: 1984
  ident: e_1_2_10_42_2
– ident: e_1_2_10_56_2
  doi: 10.1145/1057432.1057440
– ident: e_1_2_10_51_2
  doi: 10.1145/2601097.2601179
– ident: e_1_2_10_13_2
  doi: 10.4310/jdg/1214429060
– ident: e_1_2_10_39_2
  doi: 10.1007/978-3-540-88378-4
– start-page: 287
  volume-title: Oberwolfach Seminars
  year: 2008
  ident: e_1_2_10_22_2
– ident: e_1_2_10_3_2
  doi: 10.1142/S021820251350067X
– ident: e_1_2_10_37_2
  doi: 10.1145/2461912.2461927
– volume: 33
  year: 2014
  ident: e_1_2_10_20_2
  article-title: Weighted triangulations for geometry processing
  publication-title: ACM Trans. Graph
– ident: e_1_2_10_47_2
  doi: 10.1016/j.physd.2010.10.012
– volume-title: Graduate Texts in Mathematics
  year: 2006
  ident: e_1_2_10_44_2
– ident: e_1_2_10_23_2
  doi: 10.1145/1189762.1189766
– ident: e_1_2_10_43_2
  doi: 10.1145/2366145.2366171
– ident: e_1_2_10_60_2
– ident: e_1_2_10_28_2
– ident: e_1_2_10_5_2
  doi: 10.1145/882262.882296
– ident: e_1_2_10_8_2
  doi: 10.1007/978-1-4612-1029-0
– ident: e_1_2_10_16_2
  doi: 10.1111/cgf.12173
– volume: 142
  start-page: 89
  year: 2006
  ident: e_1_2_10_14_2
  article-title: Principles of Mimetic Discretizations of Differential Operators
  publication-title: IMA Volumes
– volume-title: Theoretical Elasticity
  year: 2002
  ident: e_1_2_10_29_2
– ident: e_1_2_10_49_2
  doi: 10.1007/978-3-7091-6783-0_15
– ident: e_1_2_10_18_2
  doi: 10.1145/2516971.2516977
– volume: 10
  start-page: 259
  issue: 3
  year: 1954
  ident: e_1_2_10_31_2
  article-title: Some variational principles in elasticity and plasticity
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.10.259
– ident: e_1_2_10_52_2
  doi: 10.1109/TVCG.2010.121
– ident: e_1_2_10_34_2
  doi: 10.1007/s00033-007-6141-8
– ident: e_1_2_10_21_2
  doi: 10.1109/VISUAL.1994.346326
– ident: e_1_2_10_45_2
  doi: 10.1109/TVCG.2011.170
– ident: e_1_2_10_57_2
  doi: 10.1515/9781400877577
– ident: e_1_2_10_30_2
  doi: 10.1007/s10711-006-9109-5
– start-page: 1
  volume-title: International Mathematical Series
  year: 2002
  ident: e_1_2_10_9_2
– ident: e_1_2_10_61_2
– ident: e_1_2_10_62_2
  doi: 10.1109/TVCG.2008.68
– ident: e_1_2_10_58_2
  doi: 10.1145/1141911.1141991
– ident: e_1_2_10_40_2
  doi: 10.1086/377166
– ident: e_1_2_10_53_2
  doi: 10.1007/BF02733251
– ident: e_1_2_10_12_2
  doi: 10.1111/j.1467-8659.2010.01779.x
– ident: e_1_2_10_4_2
  doi: 10.1111/cgf.12174
– ident: e_1_2_10_46_2
  doi: 10.1109/34.56205
– ident: e_1_2_10_7_2
  doi: 10.1017/S0962492906210018
– start-page: 113
  volume-title: Vis. & Math.
  year: 2003
  ident: e_1_2_10_50_2
– ident: e_1_2_10_48_2
  doi: 10.1080/10586458.1993.10504266
– ident: e_1_2_10_10_2
  doi: 10.1007/s002110100348
– ident: e_1_2_10_55_2
  doi: 10.1145/882262.882290
– ident: e_1_2_10_32_2
– ident: e_1_2_10_33_2
  doi: 10.1111/j.1467-8659.2012.03231.x
– ident: e_1_2_10_59_2
  doi: 10.1145/1183287.1183290
– ident: e_1_2_10_17_2
  doi: 10.1145/777792.777839
– ident: e_1_2_10_38_2
– ident: e_1_2_10_27_2
– ident: e_1_2_10_54_2
  doi: 10.1145/1360612.1360676
– ident: e_1_2_10_24_2
– ident: e_1_2_10_36_2
  doi: 10.1016/j.cagd.2011.06.003
– ident: e_1_2_10_35_2
  doi: 10.1145/2461912.2462005
– ident: e_1_2_10_19_2
  doi: 10.1145/2461912.2461932
– ident: e_1_2_10_25_2
  doi: 10.1145/1276377.1276447
SSID ssj0004765
Score 2.2468426
Snippet Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Analysis
Anisotropy
Calculus
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Computer Graphics [I.3.5]: Computational Geometry and Object Modeling-Curve and surface representations
Exact solutions
Mathematical analysis
Operators
Representations
Studies
Tensors
Topological manifolds
Triangulation
Title Discrete 2-Tensor Fields on Triangulations
URI https://api.istex.fr/ark:/67375/WNG-QHFB7MCH-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12427
https://www.proquest.com/docview/1555402159
https://www.proquest.com/docview/1778043525
Volume 33
WOSCitedRecordID wos000341128900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1q60EPfov1iygiHozYZJPN4klb0x60qLTobdnsbkSUVBoVj_4Ef6O_xNk0iRUUBG-BncAyO7P7XjL7BmAn0pHHCIltKpCuksM4tkWkpC38yGdRQyvpyazZBO12g5sbdlGBo-IuzEgfovzgZjIj269NgosoHUtyeRsf4OHk0AmoORi3XhVqrauwf_Z1LZL6XiHtbURjcmEhU8hTvvztOKoZz75-w5rjiDU7csLZf012DmZypGkdj0JjHio6WYDpMf3BRdhv3eGugbDZcj7e3nvIaAdDKzQ1bak1SKweBmdym_f3SpegH572mh07b59gS0JdagsmYnoYKOoKJj3mCNz3HIp0xfW1h6iQBq4igYxiKR3V0E7sMqIU8jFFI-YL4S5DNRkkegUsypCAK3NHVTeIICwgDaEM1VGOdCWN67BXeJHLXFvctLh44AXHQAfwzAF12C5NH0eCGj8Z7WZLUVqI4b2pQKMev-62-WUnPKHnzQ5ndVgv1ornyZdyhEiIQxHL4PBWOYxpY_6FiEQPntGGGuUlowWLc89W7vfZ8GY7zB5W_266BlMIrcioVHAdqk_DZ70Bk_Ll6S4dbuaR-gliBOpP
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL2oE9QHv8X5WUXEByuuTZsGfNFpnTiHykTfQpqkYyidbCo--hP8jf4Sb7q2TlAQfCvkFsLNvck57c25AFuRjjxGSGxTgXSV7MexLSIlbeFHPosqWklPps0maKMR3N2xyyE4yO_C9PUhig9uJjPS_dokuPkgPZDlshXv4enk0GEoEQwjjO_S8XV4U_-6F0l9L9f2NqoxmbKQqeQpXv52HpWMa1-_gc1ByJqeOeHU_2Y7DZMZ1rQO-8ExA0M6mYWJAQXCOdg9buO-gcDZcj7e3pvIaTtdKzRVbT2rk1hNDM-klXX46s3DTXjSrNbsrIGCLQl1qS2YiOl-oKgrmPSYI3DncygSFtfXHuJCGriKBDKKpXRURTuxy4hSyMgUjZgvhLsAI0kn0YtgUYYUXJlbqrpCBGEBqQhlyI5ypCtpXIad3I1cZuripsnFA89ZBjqApw4ow2Zh-tiX1PjJaDtdi8JCdO9NDRr1-G3jlF_VwiN6Ua1xVoaVfLF4ln49jiAJkSiiGRzeKIYxcczfEJHozjPaUKO9ZNRgce7p0v0-G149DdOHpb-brsNYrXlR5_WzxvkyjCPQIv3CwRUYeeo-61UYlS9P7V53LQvbT3Is7j8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2FBKFygFJaNRDAoApxqKvEXnu9EhdIcFIRooBSNbfVej-iqJUT5QNx7E_ob-wv6axjm0QCCYmbpR1Lq9md3ffsmTcAJ4lOAkaIcalAukqaxrgiUdIVYRKypKWVDGTWbIIOBtF4zIYV-FjUwmz0IcoPbjYysvPaBrieK7MV5XJizvB28ugDqBHbRKYKtc6P-KL_uy6ShkGh7W1VY3JlIZvJU768cx_VrGt_7YDNbcia3Tnx0_-b7T48ybGm82mzOZ5BRacH8HhLgfA5nHameG4gcHa8u5vbEXLa2cKJbVbb0pmlzgi3ZzrJO3wtD-Ei_jJq99y8gYIrCfWpK5gwtBkp6gsmA-YJPPk8ioTFD3WAuJBGviKRTIyUnmppz_iMKIWMTNGEhUL4R1BNZ6k-BocypODKVqnqFhGERaQllCU7ypO-pKYOHwo3cpmri9smF9e8YBnoAJ45oA7vStP5RlLjT0bvs7UoLcTiyuag0YBfDrr8ey_-TL-1e5zVoVEsFs_Db8kRJCESRTSDw2_LYQwc-zdEpHq2RhtqtZesGizOPVu6v8-Gt7tx9vDi303fwKNhJ-b988HXl7CHOIts8gYbUF0t1voVPJQ_V9Pl4nW-a-8BFwvtug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+2-Tensor+Fields+on+Triangulations&rft.jtitle=Computer+graphics+forum&rft.au=de+Goes%2C+Fernando&rft.au=Liu%2C+Beibei&rft.au=Budninskiy%2C+Max&rft.au=Tong%2C+Yiying&rft.date=2014-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1111%2Fcgf.12427&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon