Discrete 2-Tensor Fields on Triangulations
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often d...
Gespeichert in:
| Veröffentlicht in: | Computer graphics forum Jg. 33; H. 5; S. 13 - 24 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.08.2014
|
| Schlagworte: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. |
|---|---|
| AbstractList | Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors-thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors-thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. [PUBLICATION ABSTRACT] |
| Author | Budninskiy, Max Desbrun, Mathieu Liu, Beibei Tong, Yiying de Goes, Fernando |
| Author_xml | – sequence: 1 givenname: Fernando surname: de Goes fullname: de Goes, Fernando organization: Caltech – sequence: 2 givenname: Beibei surname: Liu fullname: Liu, Beibei organization: MSU – sequence: 3 givenname: Max surname: Budninskiy fullname: Budninskiy, Max organization: Caltech – sequence: 4 givenname: Yiying surname: Tong fullname: Tong, Yiying organization: MSU – sequence: 5 givenname: Mathieu surname: Desbrun fullname: Desbrun, Mathieu organization: Caltech |
| BookMark | eNp9kF9PwjAUxRuDiYA--A1IfFGTQdv1z_qo04EJakwwPjal60hxbNhuUb69FdQHEr0v9z78zsm5pwc6VV0ZAE4RHKIwI70ohggTzA9AFxHGo4RR0QFdiMLNIaVHoOf9EkJIOKNdcHljvXamMQMczUzlazfIrClzP6irwcxZVS3aUjW2rvwxOCxU6c3J9-6D5-x2lk6i6eP4Lr2aRprwmEdKqILDJOexEpoKrDjDmDPGYmaoCDGSOCeJnhda4xwZXMSC5LnAJOdzwZSK--B857t29VtrfCNXIaMpS1WZuvUScZ5AElNMA3q2hy7r1lUhnUSUUgIxoiJQFztKu9p7Zwq5dnal3EYiKL9ak6E1uW0tsKM9Vttm-3_jlC3_U7zb0mz-tpbpOPtRRDuF9Y35-FUo9ypZaJDKl4exfJpk1_w-nUgRfwKe7owU |
| CitedBy_id | crossref_primary_10_1111_cgf_14070 crossref_primary_10_1007_s10208_017_9353_0 crossref_primary_10_1093_imanum_drac015 crossref_primary_10_1111_cgf_13250 crossref_primary_10_1111_cgf_13243 crossref_primary_10_1145_2766927 crossref_primary_10_1111_cgf_12479 crossref_primary_10_1111_cgf_12864 crossref_primary_10_1145_2766888 crossref_primary_10_1109_TVCG_2020_3030454 crossref_primary_10_1145_3186564 crossref_primary_10_1145_3375659 crossref_primary_10_1109_TVCG_2018_2864839 crossref_primary_10_1145_2870629 crossref_primary_10_1007_s10208_019_09420_4 crossref_primary_10_1098_rspa_2024_0418 crossref_primary_10_1145_3131280 crossref_primary_10_1145_3386569_3392389 crossref_primary_10_1111_cgf_70193 crossref_primary_10_1109_TVCG_2017_2789203 crossref_primary_10_1145_2980179_2982441 |
| Cites_doi | 10.1007/0-387-38034-5_3 10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G 10.1145/2010324.1964998 10.1142/S0218202503002507 10.1090/S0025-5718-08-02071-1 10.1111/j.1467-8659.2006.00974.x 10.1145/1057432.1057440 10.1145/2601097.2601179 10.4310/jdg/1214429060 10.1007/978-3-540-88378-4 10.1142/S021820251350067X 10.1145/2461912.2461927 10.1016/j.physd.2010.10.012 10.1145/1189762.1189766 10.1145/2366145.2366171 10.1145/882262.882296 10.1007/978-1-4612-1029-0 10.1111/cgf.12173 10.1007/978-3-7091-6783-0_15 10.1145/2516971.2516977 10.7498/aps.10.259 10.1109/TVCG.2010.121 10.1007/s00033-007-6141-8 10.1109/VISUAL.1994.346326 10.1109/TVCG.2011.170 10.1515/9781400877577 10.1007/s10711-006-9109-5 10.1109/TVCG.2008.68 10.1145/1141911.1141991 10.1086/377166 10.1007/BF02733251 10.1111/j.1467-8659.2010.01779.x 10.1111/cgf.12174 10.1109/34.56205 10.1017/S0962492906210018 10.1080/10586458.1993.10504266 10.1007/s002110100348 10.1145/882262.882290 10.1111/j.1467-8659.2012.03231.x 10.1145/1183287.1183290 10.1145/777792.777839 10.1145/1360612.1360676 10.1016/j.cagd.2011.06.003 10.1145/2461912.2462005 10.1145/2461912.2461932 10.1145/1276377.1276447 |
| ContentType | Journal Article |
| Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12427 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 24 |
| ExternalDocumentID | 3410909661 10_1111_cgf_12427 CGF12427 ark_67375_WNG_QHFB7MCH_9 |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4737-a9af708d73a9c592a7622766636e5916783d48cbfcc2d1e2f394dd924d7b96aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341128900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Wed Oct 01 14:34:28 EDT 2025 Sun Nov 09 06:48:12 EST 2025 Sat Nov 29 08:02:00 EST 2025 Tue Nov 18 21:08:36 EST 2025 Wed Jan 22 16:25:45 EST 2025 Sun Sep 21 06:18:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4737-a9af708d73a9c592a7622766636e5916783d48cbfcc2d1e2f394dd924d7b96aa3 |
| Notes | istex:5CC72AC73270E57D46F3813BF96275B97DB70046 ark:/67375/WNG-QHFB7MCH-9 ArticleID:CGF12427 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12427 |
| PQID | 1555402159 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1778043525 proquest_journals_1555402159 crossref_primary_10_1111_cgf_12427 crossref_citationtrail_10_1111_cgf_12427 wiley_primary_10_1111_cgf_12427_CGF12427 istex_primary_ark_67375_WNG_QHFB7MCH_9 |
| PublicationCentury | 2000 |
| PublicationDate | August 2014 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007). 1 Green A., Zerna W.: Theoretical Elasticity. Dover, 2002. 5 Laidlaw D., Weickert J.: Visualization and Processing of Tensor Fields: Advances and Perspectives, 1st ed. Springer Publishing Company, Incorporated, 2009. 2 Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comp. Graph. 17, 7 (2011), 947-955. 8 Palke D., Lin Z., Chen G., Yeh H., Vincent P., Laramee R., Zhang E.: Asymmetric tensor field visualization for surfaces. IEEE Trans. Vis. Comp. Graph. 17, 12 (2011), 1979-1988. 2 Abraham R., Marsden J., Ratiu R.: Manifolds, Tensor Analysis, and Applications. Springer, 1988. 2, 3 Pinkall U., Polthier K.: Computing discrete minimal surfaces & their conjugates. Exp. Math. 2, 1 (1993), 15-36. 7, 12 de Goes F., Memari P., Mullen P., Desbrun M.: Weighted triangulations for geometry processing. ACM Trans. Graph. 33 (2014). 2 Kratz A., Auer C., Stommel M., Hotz I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comp. Graph. Forum 32, 1 (2013), 49-74. 2 Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (2003). 2 Bossavit A., Kettunen L.: Yee schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Num. Model. 12 (1999), 129-142. 7, 12 Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013). 1, 9 Arnold D.N., Awanou G., Winther R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24 (2014), 783-796. 2 Arnold D.N., Falk R.S., Winther R.: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations, Arnold D., Bochev P., Lehoucq R., Nicolaides R., Shashkov M., (Eds.), vol. 142 of IMA Vol. Math. Appl. 2006, pp. 47-68. 2 Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. Comp. Graph. Forum 32, 5 (2013), 73-82. 1, 8, 9 Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294-1326. 1 Hu H.C.: Some variational principles in elasticity and plasticity. Acta Phys. Sin. 10, 3 (1954), 259-290. 2, 4 Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1-155. 2, 5, 6 Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008). 2 de Goes F., Alliez P., Owhadi H., Desbrun M.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4 (2013). 2, 4, 6, 7 Whitney H.: Geometric Integration Theory. Princeton university Press, 1957. 1, 3, 5 Mullen P., Memari P., de Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30 (2011). 7 Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007). 2 Liu Y., Hao P., Snyder J., Wang W., Guo B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013). 4 Regge T.: General relativity without coordinates. Nuovo Cim. 19, 3 (1961), 558-571. 2 Campen M., Heistermann M., Kobbelt L.: Practical anisotropic geodesy. Comp. Graph. Forum 32, 5 (2013), 63-71. 2 Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). 2, 9 Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8 (2011), 449-462. 2, 4 Munkres J.R.: Elements of Algebraic Topology. Addison-Wesley, 1984. 5 Narain R., Samii A., O'Brien J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6 (2012). 2 Ben-Chen M., Butscher A., Solomon J., Guibas L.: On discrete Killing vector fields & patterns on surfaces. Comp. Graph. Forum 29, 5 (2010), 1701-1711. 2, 4, 9, 11 Bochev P.B., Hyman J.M.: Principles of Mimetic Discretizations of Differential Operators. IMA Volumes 142 (2006), 89-119. 2 Arnold D.N., Winther R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 3 (2003), 295-307. 2 Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014). 2 Meier D.L.: Constrained transport algorithms for numerical relativity. i. development of a finite-difference scheme. The Astrophysical Journal 595 (2003), 980-991. 2 Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92, 3 (2002), 401-419. 2 Grinspun E., Gingold Y.I., Reisman J., Zorin D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25, 3 (2006), 547-556. 6 Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629-639. 4, 9 Tong Y., Lombeyda S., Hirani A.N., Desbrun M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 3 (2003), 445-452. 1 Hildebrandt K., Polthier K., Wardetzky M.: On convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1 (2006), 89-112. 9 Wang K., Weiwei, Tong Y., Desbrun M., Schröder P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3 (2006), 1041-1048. 6, 9 Zhang E., Yeh H., Lin Z., Laramee R.: Asymmetric tensor analysis for flow visualization. IEEE Trans. Vis. Comp. Graph. 15, 1 (2009), 106-122. 2 1961; 19 1990; 12 2011 2010 2008; 38 2006; 15 2002; 1 2003; 13 2009 2008 2011; 30 1996 2007 2014; 24 2006 1994 2005 2004 2003 2002 2006; 171 2011; 17 1993; 2 2003; 595 2012; 31 1957 2013; 32 2000 2010; 29 2006; 25 1954; 10 2008; 27 1999; 12 2006; 142 1984 2002; 92 2011; 28 1969 2006; 123 2014; 33 2009; 15 2003; 22 2007; 26 1988 e_1_2_10_23_2 Petersen P. (e_1_2_10_44_2) 2006 e_1_2_10_21_2 Green A. (e_1_2_10_29_2) 2002 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_55_2 e_1_2_10_6_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_58_2 e_1_2_10_32_2 e_1_2_10_30_2 e_1_2_10_51_2 Munkres J.R. (e_1_2_10_42_2) 1984 Hu H.C. (e_1_2_10_31_2) 1954; 10 e_1_2_10_61_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_45_2 e_1_2_10_43_2 e_1_2_10_41_2 Alessandrini G. (e_1_2_10_9_2) 2002 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_52_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 Desbrun M. (e_1_2_10_22_2) 2008 e_1_2_10_54_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_56_2 e_1_2_10_57_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_59_2 e_1_2_10_10_2 Bochev P.B. (e_1_2_10_14_2) 2006; 142 Polthier K. (e_1_2_10_50_2) 2003 e_1_2_10_60_2 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_26_2 e_1_2_10_49_2 de Goes F. (e_1_2_10_20_2) 2014; 33 e_1_2_10_24_2 e_1_2_10_47_2 |
| References_xml | – reference: Hu H.C.: Some variational principles in elasticity and plasticity. Acta Phys. Sin. 10, 3 (1954), 259-290. 2, 4 – reference: Hildebrandt K., Polthier K., Wardetzky M.: On convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1 (2006), 89-112. 9 – reference: Arnold D.N., Winther R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 3 (2003), 295-307. 2 – reference: Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007). 2 – reference: Narain R., Samii A., O'Brien J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6 (2012). 2 – reference: Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008). 2 – reference: Ben-Chen M., Butscher A., Solomon J., Guibas L.: On discrete Killing vector fields & patterns on surfaces. Comp. Graph. Forum 29, 5 (2010), 1701-1711. 2, 4, 9, 11 – reference: Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8 (2011), 449-462. 2, 4 – reference: Laidlaw D., Weickert J.: Visualization and Processing of Tensor Fields: Advances and Perspectives, 1st ed. Springer Publishing Company, Incorporated, 2009. 2 – reference: Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007). 1 – reference: Meier D.L.: Constrained transport algorithms for numerical relativity. i. development of a finite-difference scheme. The Astrophysical Journal 595 (2003), 980-991. 2 – reference: Pinkall U., Polthier K.: Computing discrete minimal surfaces & their conjugates. Exp. Math. 2, 1 (1993), 15-36. 7, 12 – reference: Arnold D.N., Awanou G., Winther R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24 (2014), 783-796. 2 – reference: de Goes F., Alliez P., Owhadi H., Desbrun M.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4 (2013). 2, 4, 6, 7 – reference: Green A., Zerna W.: Theoretical Elasticity. Dover, 2002. 5 – reference: Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. Comp. Graph. Forum 32, 5 (2013), 73-82. 1, 8, 9 – reference: Grinspun E., Gingold Y.I., Reisman J., Zorin D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25, 3 (2006), 547-556. 6 – reference: Tong Y., Lombeyda S., Hirani A.N., Desbrun M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 3 (2003), 445-452. 1 – reference: Kratz A., Auer C., Stommel M., Hotz I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comp. Graph. Forum 32, 1 (2013), 49-74. 2 – reference: Zhang E., Yeh H., Lin Z., Laramee R.: Asymmetric tensor analysis for flow visualization. IEEE Trans. Vis. Comp. Graph. 15, 1 (2009), 106-122. 2 – reference: de Goes F., Memari P., Mullen P., Desbrun M.: Weighted triangulations for geometry processing. ACM Trans. Graph. 33 (2014). 2 – reference: Liu Y., Hao P., Snyder J., Wang W., Guo B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013). 4 – reference: Regge T.: General relativity without coordinates. Nuovo Cim. 19, 3 (1961), 558-571. 2 – reference: Arnold D.N., Falk R.S., Winther R.: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations, Arnold D., Bochev P., Lehoucq R., Nicolaides R., Shashkov M., (Eds.), vol. 142 of IMA Vol. Math. Appl. 2006, pp. 47-68. 2 – reference: Whitney H.: Geometric Integration Theory. Princeton university Press, 1957. 1, 3, 5 – reference: Abraham R., Marsden J., Ratiu R.: Manifolds, Tensor Analysis, and Applications. Springer, 1988. 2, 3 – reference: Palke D., Lin Z., Chen G., Yeh H., Vincent P., Laramee R., Zhang E.: Asymmetric tensor field visualization for surfaces. IEEE Trans. Vis. Comp. Graph. 17, 12 (2011), 1979-1988. 2 – reference: Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (2003). 2 – reference: Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294-1326. 1 – reference: Campen M., Heistermann M., Kobbelt L.: Practical anisotropic geodesy. Comp. Graph. Forum 32, 5 (2013), 63-71. 2 – reference: Mullen P., Memari P., de Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30 (2011). 7 – reference: Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629-639. 4, 9 – reference: Bossavit A., Kettunen L.: Yee schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Num. Model. 12 (1999), 129-142. 7, 12 – reference: Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92, 3 (2002), 401-419. 2 – reference: Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1-155. 2, 5, 6 – reference: Munkres J.R.: Elements of Algebraic Topology. Addison-Wesley, 1984. 5 – reference: Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013). 1, 9 – reference: Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014). 2 – reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). 2, 9 – reference: Wang K., Weiwei, Tong Y., Desbrun M., Schröder P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3 (2006), 1041-1048. 6, 9 – reference: Bochev P.B., Hyman J.M.: Principles of Mimetic Discretizations of Differential Operators. IMA Volumes 142 (2006), 89-119. 2 – reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comp. Graph. 17, 7 (2011), 947-955. 8 – start-page: III year: 2010 – volume: 2 start-page: 15 issue: 1 year: 1993 end-page: 36 article-title: Computing discrete minimal surfaces & their conjugates publication-title: Exp. Math – year: 2009 – year: 2005 – volume: 32 start-page: 49 issue: 1 year: 2013 end-page: 74 article-title: Visualization and analysis of second‐order tensors: Moving beyond the symmetric positive‐definite case publication-title: Comp. Graph. Forum – start-page: 843 year: 2007 end-page: 856 – volume: 17 start-page: 947 issue: 7 year: 2011 end-page: 955 article-title: Interactive visualization of rotational symmetry fields on surfaces publication-title: IEEE Trans. Vis. Comp. Graph – volume: 22 start-page: 445 issue: 3 year: 2003 end-page: 452 article-title: Discrete multiscale vector field decomposition publication-title: ACM Trans. Graph – volume: 27 issue: 3 year: 2008 article-title: Conformal equivalence of triangle meshes publication-title: ACM Trans. Graph – volume: 32 issue: 5 year: 2013 article-title: Geodesics in heat: A new approach to computing distance based on heat flow publication-title: ACM Trans. Graph – start-page: 113 year: 2003 end-page: 134 – volume: 29 start-page: 1701 issue: 5 year: 2010 end-page: 1711 article-title: On discrete Killing vector fields & patterns on surfaces publication-title: Comp. Graph. Forum – volume: 25 start-page: 1294 issue: 4 year: 2006 end-page: 1326 article-title: Vector field design on surfaces publication-title: ACM Trans. Graph – volume: 595 start-page: 980 year: 2003 end-page: 991 article-title: Constrained transport algorithms for numerical relativity. i. development of a finite‐difference scheme publication-title: The Astrophysical Journal – volume: 10 start-page: 259 issue: 3 year: 1954 end-page: 290 article-title: Some variational principles in elasticity and plasticity publication-title: Acta Phys. Sin – volume: 142 start-page: 47 year: 2006 end-page: 68 article-title: Differential complexes and stability of finite element methods II: The elasticity complex. In Compatible Spatial Discretizations publication-title: IMA Vol. Math. Appl – volume: 38 start-page: 287 year: 2008 end-page: 324 – volume: 31 issue: 6 year: 2012 article-title: Adaptive anisotropic remeshing for cloth simulation publication-title: ACM Trans. Graph – start-page: 312 year: 2003 end-page: 321 – volume: 32 start-page: 63 issue: 5 year: 2013 end-page: 71 article-title: Practical anisotropic geodesy publication-title: Comp. Graph. Forum – volume: 13 start-page: 295 issue: 3 year: 2003 end-page: 307 article-title: Nonconforming mixed elements for elasticity publication-title: Math. Models Methods Appl. Sci – volume: 15 start-page: 1 year: 2006 end-page: 155 article-title: Finite element exterior calculus, homological techniques, and applications publication-title: Acta Numerica – start-page: 443 year: 2011 end-page: 458 – volume: 32 start-page: 73 issue: 5 year: 2013 end-page: 82 article-title: An operator approach to tangent vector field processing publication-title: Comp. Graph. Forum – start-page: 147 year: 2000 end-page: 155 – volume: 1 start-page: 1 year: 2002 end-page: 21 – volume: 33 year: 2014 article-title: Weighted triangulations for geometry processing publication-title: ACM Trans. Graph – volume: 26 issue: 1 year: 2007 article-title: Stable, circulation‐preserving, simplicial fluids publication-title: ACM Trans. Graph – volume: 33 issue: 4 year: 2014 article-title: Frame fields: Anisotropic and non-orthogonal cross fields publication-title: ACM Trans. Graph. (SIGGRAPH) – volume: 28 start-page: 449 issue: 8 year: 2011 end-page: 462 article-title: Anisotropic quadrangulation publication-title: Computer Aided Geometric Design – volume: 92 start-page: 401 issue: 3 year: 2002 end-page: 419 article-title: Mixed finite elements for elasticity publication-title: Numer. Math – volume: 22 issue: 3 year: 2003 article-title: Anisotropic polygonal remeshing publication-title: ACM Trans. Graph – start-page: 3 year: 2005 end-page: 10 – start-page: 379 year: 1969 end-page: 392 – volume: 12 start-page: 629 issue: 7 year: 1990 end-page: 639 article-title: Scale‐space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell – volume: 32 issue: 4 year: 2013 article-title: Globally optimal direction fields publication-title: ACM Trans. Graph – volume: 171 year: 2006 – start-page: 278 year: 2005 end-page: 287 – start-page: 1229 year: 2008 end-page: 1251 – volume: 19 start-page: 558 issue: 3 year: 1961 end-page: 571 article-title: General relativity without coordinates publication-title: Nuovo Cim – volume: 30 year: 2011 article-title: HOT: Hodge‐optimized triangulations publication-title: ACM Trans. Graph. (SIGGRAPH) – start-page: 177 year: 2006 end-page: 185 – volume: 26 issue: 3 year: 2007 article-title: Design of tangent vector fields publication-title: ACM Trans. Graph – volume: 24 start-page: 783 year: 2014 end-page: 796 article-title: Nonconforming tetrahedral mixed finite elements for elasticity publication-title: Math. Models Methods Appl. Sci – start-page: 55 year: 2004 end-page: 64 – volume: 142 start-page: 89 year: 2006 end-page: 119 article-title: Principles of Mimetic Discretizations of Differential Operators publication-title: IMA Volumes – volume: 32 issue: 4 year: 2013 article-title: On the equilibrium of simplicial masonry structures publication-title: ACM Trans. Graph – start-page: 140 year: 1994 end-page: 147 – year: 1984 – year: 1957 – volume: 17 start-page: 1979 issue: 12 year: 2011 end-page: 1988 article-title: Asymmetric tensor field visualization for surfaces publication-title: IEEE Trans. Vis. Comp. Graph – volume: 15 start-page: 106 issue: 1 year: 2009 end-page: 122 article-title: Asymmetric tensor analysis for flow visualization publication-title: IEEE Trans. Vis. Comp. Graph – volume: 32 issue: 4 year: 2013 article-title: Computing self‐supporting surfaces by regular triangulation publication-title: ACM Trans. Graph. (SIGGRAPH) – year: 2002 – volume: 123 start-page: 89 issue: 1 year: 2006 end-page: 112 article-title: On convergence of metric and geometric properties of polyhedral surfaces publication-title: Geometriae Dedicata – year: 1988 – start-page: 63 year: 1996 end-page: 76 – volume: 25 start-page: 1041 issue: 3 year: 2006 end-page: 1048 article-title: Edge subdivision schemes and the construction of smooth vector fields publication-title: ACM Trans. Graph – volume: 12 start-page: 129 year: 1999 end-page: 142 article-title: Yee schemes on a tetrahedral mesh, with diagonal lumping publication-title: Int. J. Num. Model – volume: 25 start-page: 547 issue: 3 year: 2006 end-page: 556 article-title: Computing discrete shape operators on general meshes publication-title: Comput. Graph. Forum – ident: e_1_2_10_6_2 doi: 10.1007/0-387-38034-5_3 – ident: e_1_2_10_15_2 doi: 10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G – ident: e_1_2_10_41_2 doi: 10.1145/2010324.1964998 – ident: e_1_2_10_11_2 doi: 10.1142/S0218202503002507 – ident: e_1_2_10_2_2 doi: 10.1090/S0025-5718-08-02071-1 – ident: e_1_2_10_26_2 doi: 10.1111/j.1467-8659.2006.00974.x – volume-title: Elements of Algebraic Topology year: 1984 ident: e_1_2_10_42_2 – ident: e_1_2_10_56_2 doi: 10.1145/1057432.1057440 – ident: e_1_2_10_51_2 doi: 10.1145/2601097.2601179 – ident: e_1_2_10_13_2 doi: 10.4310/jdg/1214429060 – ident: e_1_2_10_39_2 doi: 10.1007/978-3-540-88378-4 – start-page: 287 volume-title: Oberwolfach Seminars year: 2008 ident: e_1_2_10_22_2 – ident: e_1_2_10_3_2 doi: 10.1142/S021820251350067X – ident: e_1_2_10_37_2 doi: 10.1145/2461912.2461927 – volume: 33 year: 2014 ident: e_1_2_10_20_2 article-title: Weighted triangulations for geometry processing publication-title: ACM Trans. Graph – ident: e_1_2_10_47_2 doi: 10.1016/j.physd.2010.10.012 – volume-title: Graduate Texts in Mathematics year: 2006 ident: e_1_2_10_44_2 – ident: e_1_2_10_23_2 doi: 10.1145/1189762.1189766 – ident: e_1_2_10_43_2 doi: 10.1145/2366145.2366171 – ident: e_1_2_10_60_2 – ident: e_1_2_10_28_2 – ident: e_1_2_10_5_2 doi: 10.1145/882262.882296 – ident: e_1_2_10_8_2 doi: 10.1007/978-1-4612-1029-0 – ident: e_1_2_10_16_2 doi: 10.1111/cgf.12173 – volume: 142 start-page: 89 year: 2006 ident: e_1_2_10_14_2 article-title: Principles of Mimetic Discretizations of Differential Operators publication-title: IMA Volumes – volume-title: Theoretical Elasticity year: 2002 ident: e_1_2_10_29_2 – ident: e_1_2_10_49_2 doi: 10.1007/978-3-7091-6783-0_15 – ident: e_1_2_10_18_2 doi: 10.1145/2516971.2516977 – volume: 10 start-page: 259 issue: 3 year: 1954 ident: e_1_2_10_31_2 article-title: Some variational principles in elasticity and plasticity publication-title: Acta Phys. Sin doi: 10.7498/aps.10.259 – ident: e_1_2_10_52_2 doi: 10.1109/TVCG.2010.121 – ident: e_1_2_10_34_2 doi: 10.1007/s00033-007-6141-8 – ident: e_1_2_10_21_2 doi: 10.1109/VISUAL.1994.346326 – ident: e_1_2_10_45_2 doi: 10.1109/TVCG.2011.170 – ident: e_1_2_10_57_2 doi: 10.1515/9781400877577 – ident: e_1_2_10_30_2 doi: 10.1007/s10711-006-9109-5 – start-page: 1 volume-title: International Mathematical Series year: 2002 ident: e_1_2_10_9_2 – ident: e_1_2_10_61_2 – ident: e_1_2_10_62_2 doi: 10.1109/TVCG.2008.68 – ident: e_1_2_10_58_2 doi: 10.1145/1141911.1141991 – ident: e_1_2_10_40_2 doi: 10.1086/377166 – ident: e_1_2_10_53_2 doi: 10.1007/BF02733251 – ident: e_1_2_10_12_2 doi: 10.1111/j.1467-8659.2010.01779.x – ident: e_1_2_10_4_2 doi: 10.1111/cgf.12174 – ident: e_1_2_10_46_2 doi: 10.1109/34.56205 – ident: e_1_2_10_7_2 doi: 10.1017/S0962492906210018 – start-page: 113 volume-title: Vis. & Math. year: 2003 ident: e_1_2_10_50_2 – ident: e_1_2_10_48_2 doi: 10.1080/10586458.1993.10504266 – ident: e_1_2_10_10_2 doi: 10.1007/s002110100348 – ident: e_1_2_10_55_2 doi: 10.1145/882262.882290 – ident: e_1_2_10_32_2 – ident: e_1_2_10_33_2 doi: 10.1111/j.1467-8659.2012.03231.x – ident: e_1_2_10_59_2 doi: 10.1145/1183287.1183290 – ident: e_1_2_10_17_2 doi: 10.1145/777792.777839 – ident: e_1_2_10_38_2 – ident: e_1_2_10_27_2 – ident: e_1_2_10_54_2 doi: 10.1145/1360612.1360676 – ident: e_1_2_10_24_2 – ident: e_1_2_10_36_2 doi: 10.1016/j.cagd.2011.06.003 – ident: e_1_2_10_35_2 doi: 10.1145/2461912.2462005 – ident: e_1_2_10_19_2 doi: 10.1145/2461912.2461932 – ident: e_1_2_10_25_2 doi: 10.1145/1276377.1276447 |
| SSID | ssj0004765 |
| Score | 2.2468426 |
| Snippet | Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations.... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Analysis Anisotropy Calculus Categories and Subject Descriptors (according to ACM CCS) Computer graphics Computer Graphics [I.3.5]: Computational Geometry and Object Modeling-Curve and surface representations Exact solutions Mathematical analysis Operators Representations Studies Tensors Topological manifolds Triangulation |
| Title | Discrete 2-Tensor Fields on Triangulations |
| URI | https://api.istex.fr/ark:/67375/WNG-QHFB7MCH-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12427 https://www.proquest.com/docview/1555402159 https://www.proquest.com/docview/1778043525 |
| Volume | 33 |
| WOSCitedRecordID | wos000341128900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB1014Me_BZXV6ki4sGKTT-S4El3rXvQRWVFbyFJWxGlK1sVj_4Ef6O_xEm3rSsoCN5KM4UwmUneayYvAFuOzwLJmUZuopXtMeXZ0lHE9jDxGL4nfpJL5p_Sbpfd3PDzMTgoz8IM9SGqH24mM_L52iS4VNlIkuvbZA8XJ0LHoU4wbv0a1NuX4dXp17FIGviltLcRjSmEhUwhT_Xxt-Wobjz7-g1rjiLWfMkJZ_7V2VmYLpCmdTgMjTkYi9N5mBrRH1yA3fYdzhoImy3y8fbeQ0bbH1ihqWnLrH5q9TA409vifq9sEa7C416rYxfXJ9jaoy61JZcJ3WcRdSXXPicS3U8o0hU3iH1EhZS5kce0SrQmkROTxOVeFCEfi6jigZTuEtTSfhovg5UQFTuc60QxpHOGUSPQ0kgOKVEBi50G7JReFLrQFjdXXDyIkmOgA0TugAZsVqaPQ0GNn4y286GoLOTg3lSgUV9cd0_ERSc8ometjuANaJZjJYrkywRCJMShiGWweaNqxrQxeyEyjfvPaEON8pLRgsW-5yP3e29E6yTMH1b-broKkwitvGGpYBNqT4PneA0m9MvTXTZYLyL1E_VP6Fg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL1MJ6gPfovTqVVEfLBi048k4ItudhPnUJnoW0jTVkTpZFPx0Z_gb_SXeNO1dYKC4FtpbiHk3puck96cAGxZLvMkZwq5iQpMhwWOKa2AmA4mHsP3xI1TyfwWbbfZzQ0_L8FBfhZmoA9RbLjpzEjna53gekN6KMvVbbyHqxOhI1B2MIwwvsv1S_-q9XUuknpuru2tVWMyZSFdyVN8_G09Kuuhff0GNocha7rm-NP_6-0MTGVY0zgcBMcslKJkDiaHFAjnYbd-h_MGAmeDfLy9d5DTdnuGr6va-kY3MToYnsltdsNXfwGu_ONOrWlmFyiYyqE2NSWXMd1nIbUlVy4nEh1AKBIW24tcxIWU2aHDVBArRUIrIrHNnTBERhbSgHtS2oswmnSTaAmMmASRxbmKA4aETnNqhFoK6SElgcciqwI7-TAKlamL60suHkTOMnAARDoAFdgsTB8Hkho_GW2nvigsZO9e16BRV1y3G-Ki6R_Rs1pT8ApUc2eJLP36AkESIlFEM9i8UTRj4ui_ITKJus9oQ7X2klaDxb6nrvu9N6LW8NOH5b-brsN4s3PWEq2T9ukKTCDQcgaFg1UYfeo9R6swpl6e7vq9tSxsPwHqnexI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6VFqHtYRsDRLcOApoQDwsizg_bEi-sJe1EqQpqtb5ZjuNU1VBaNS3icX_C_kb-Es5pkrUSSEi8RclFsu589vcl5-8Azh2fBZIzhdxERbbHIs-WTkRsDxOP4X3iJ7lkfp8OBmwy4cMafCjPwmz0IaoPbiYz8vXaJLhexMlWlqtp8g53J0IfQMMzTWTq0Oh8C8f9-3ORNPBLbW-jGlMoC5lKnurlnf2oYVz7cwdsbkPWfM8JD_9vtEdwUGBN6-NmcjyGmk6PYX9LgfAJXHRmuG4gcLbIr9u7EXLa-dIKTVVbZs1Ta4TTM50WHb6ypzAOP43aPbtooGArj7rUllwm9D2LqSu58jmRGABCkbC4gfYRF1Lmxh5TUaIUiR1NEpd7cYyMLKYRD6R0n0E9naf6OVgJibTDuUoihoTOcGqEWgrpISVRwLTThLelG4Uq1MVNk4vvomQZ6ACRO6AJryvTxUZS409Gb_JYVBZyeWNq0Kgvrgdd8bUXXtIv7Z7gTWiVwRJF-mUCQRIiUUQz-PhV9RgTx_wNkamer9GGGu0lowaLY89D9_fRiHY3zC9O_t30JTwadkLRvxp8PoU9xFnepm6wBfXVcq3P4KH6sZplyxfFrP0NkXPrww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+2-Tensor+Fields+on+Triangulations&rft.jtitle=Computer+graphics+forum&rft.au=de+Goes%2C+Fernando&rft.au=Liu%2C+Beibei&rft.au=Budninskiy%2C+Max&rft.au=Tong%2C+Yiying&rft.date=2014-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1111%2Fcgf.12427&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_QHFB7MCH_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |