Synthesis of complex thermally coupled distillation systems including divided wall columns
The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk con...
Saved in:
| Published in: | AIChE journal Vol. 59; no. 4; pp. 1139 - 1159 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Blackwell Publishing Ltd
01.04.2013
American Institute of Chemical Engineers |
| Subjects: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three‐component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1139–1159, 2013 |
|---|---|
| AbstractList | The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three-component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. [PUBLICATION ABSTRACT] The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three‐component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1139–1159, 2013 The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three-component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. |
| Author | Caballero, José A. Grossmann, Ignacio E. |
| Author_xml | – sequence: 1 givenname: José A. surname: Caballero fullname: Caballero, José A. email: caballer@ua.es organization: Dept. Chemical Engineering, University of Alicante, Ap. Correos 99, 03080, Alicante, Spain – sequence: 2 givenname: Ignacio E. surname: Grossmann fullname: Grossmann, Ignacio E. organization: Dept. Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh |
| BookMark | eNqNkUtPxCAYRYnRxPGx8B80caOLKo9Cy9JMfGaiCzUmbkiHUkUpHaHV6b_3c0ZdGE1cES7nfAHuBlr1rTcI7RB8QDCmh6XVB4RJQlfQiPAsT7nEfBWNMMYkhYCso40Yn2BH84KO0P314LtHE21M2jrRbTNzZp5AEprSuQGSHpIqqWzsrHNlZ1ufxCF2pomJ9dr1lfUPcPxqK8DeQALH9Y2PW2itLl0025_rJro9Ob4Zn6WTq9Pz8dEk1VnOaCoJ0VNqeFVoKkrOtOZ8qqkWIsOmmtZG5HUlsJGmpqTGuqh1kQsBG82YzBnbRHvLubPQvvQmdqqxURu4rDdtHxVhmcxEJqn8H8o4zAd09wf61PbBw0OAorjIOCcFUIdLSoc2xmBqpW23-KQulNYpgtVHLQpqUYtawNj_YcyCbcow_Mp-Tn-zzgx_g-rofPxlpEsD6jLzb6MMz0rkLOfq7vJUFZLg65OLiRqzdyZkrc4 |
| CODEN | AICEAC |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2019_05_028 crossref_primary_10_1007_s10098_017_1477_z crossref_primary_10_1016_j_applthermaleng_2024_124316 crossref_primary_10_1080_01496395_2015_1112397 crossref_primary_10_1002_aic_15964 crossref_primary_10_1002_cite_201600128 crossref_primary_10_1016_j_compchemeng_2019_106653 crossref_primary_10_1016_j_compchemeng_2019_02_013 crossref_primary_10_1002_aic_17740 crossref_primary_10_1016_j_compchemeng_2022_107922 crossref_primary_10_1002_aic_16731 crossref_primary_10_1016_j_cherd_2019_04_023 crossref_primary_10_1016_j_energy_2018_08_101 crossref_primary_10_1002_aic_14314 crossref_primary_10_1002_aic_14798 crossref_primary_10_1515_revce_2017_0085 crossref_primary_10_1002_aic_16294 crossref_primary_10_1002_aic_16809 crossref_primary_10_1016_j_compchemeng_2021_107475 crossref_primary_10_1016_j_compchemeng_2019_106650 crossref_primary_10_1016_j_seppur_2020_116837 crossref_primary_10_1016_j_compchemeng_2014_03_016 crossref_primary_10_1016_j_compchemeng_2018_10_009 crossref_primary_10_1016_j_cep_2021_108731 crossref_primary_10_1016_j_compchemeng_2019_06_022 crossref_primary_10_1016_j_proeng_2017_03_083 crossref_primary_10_1016_j_compchemeng_2022_107907 crossref_primary_10_1016_j_compchemeng_2019_106520 crossref_primary_10_1002_aic_14137 crossref_primary_10_1002_aic_17328 crossref_primary_10_1016_j_applthermaleng_2025_126753 crossref_primary_10_1021_acs_iecr_5c00037 crossref_primary_10_1016_j_energy_2021_121796 crossref_primary_10_3390_en15207708 crossref_primary_10_1002_aic_16994 crossref_primary_10_1016_j_energy_2016_10_016 crossref_primary_10_1016_j_energy_2020_117788 crossref_primary_10_1016_j_compchemeng_2013_10_015 crossref_primary_10_1016_j_compchemeng_2017_03_024 crossref_primary_10_1002_aic_15060 crossref_primary_10_1155_2022_3915508 crossref_primary_10_1016_j_compchemeng_2019_04_009 crossref_primary_10_1016_j_compchemeng_2020_107072 crossref_primary_10_1002_aic_14324 crossref_primary_10_1016_j_cjche_2016_05_023 crossref_primary_10_1016_j_compchemeng_2015_05_007 crossref_primary_10_1002_aic_18684 crossref_primary_10_1016_j_ces_2021_116766 crossref_primary_10_1002_aic_18801 crossref_primary_10_1016_j_jclepro_2014_06_016 |
| Cites_doi | 10.1016/j.compchemeng.2009.05.003 10.1021/ie000315n 10.1007/BF00934810 10.1021/ie950323h 10.1021/ie0341193 10.1021/ie0108649 10.1002/aic.690471211 10.1002/aic.690491118 10.1002/aic.690441124 10.1016/j.compchemeng.2011.06.015 10.1021/ie060030w 10.1002/aic.690490210 10.1016/S0098-1354(02)00220-X 10.1002/ceat.270100112 10.1007/BF00138693 10.1021/ie010863g 10.1021/ie00093a018 10.1023/A:1021039126272 10.1021/ie030640l 10.1016/S1570-7946(02)80056-6 10.1016/j.compchemeng.2004.04.010 10.1016/0098-1354(93)80015-F 10.1016/S0098-1354(99)00003-4 10.1002/aic.10803 10.1021/ie000761a 10.1021/ie802013r 10.1016/S1359-4311(02)00006-6 10.1002/aic.12118 10.1205/cherd06012 10.1021/ie0108651 10.1021/ie00093a017 10.1016/j.compchemeng.2011.06.014 10.1205/026387699526449 10.1002/aic.690320408 10.1016/0255-2701(89)80035-2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 American Institute of Chemical Engineers (AIChE) Copyright American Institute of Chemical Engineers Apr 2013 |
| Copyright_xml | – notice: Copyright © 2012 American Institute of Chemical Engineers (AIChE) – notice: Copyright American Institute of Chemical Engineers Apr 2013 |
| DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.13912 |
| DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Solid State and Superconductivity Abstracts Technology Research Database CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 1159 |
| ExternalDocumentID | 2928971731 10_1002_aic_13912 AIC13912 ark_67375_WNG_8910SFJL_C |
| Genre | article Feature |
| GrantInformation_xml | – fundername: Spanish Ministry of Science and Innovation funderid: CTQ2009‐14420‐C02 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PUEGO PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI UAO WRC WSB AAYXX AFFHD CITATION O8X 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c4732-911cb2e5d8c26a53cc55bc2c6640edbfe67fd60e9ef21f0c8fc8766f21c339733 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317466000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Thu Jul 10 22:35:56 EDT 2025 Fri Jul 11 06:59:48 EDT 2025 Mon Nov 10 03:06:13 EST 2025 Sat Nov 29 07:22:21 EST 2025 Tue Nov 18 21:06:20 EST 2025 Wed Jan 22 16:38:25 EST 2025 Tue Sep 09 05:31:42 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4732-911cb2e5d8c26a53cc55bc2c6640edbfe67fd60e9ef21f0c8fc8766f21c339733 |
| Notes | istex:1F8B42C203071B605E8A498FC69F4BC7734DA65C ArticleID:AIC13912 Spanish Ministry of Science and Innovation - No. CTQ2009-14420-C02 ark:/67375/WNG-8910SFJL-C SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://figshare.com/articles/Synthesis_of_complex_thermally_coupled_distillation_systems_including_divided_wall_columns/6467531 |
| PQID | 1320845518 |
| PQPubID | 23500 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1349464929 proquest_miscellaneous_1349435876 proquest_journals_1320845518 crossref_citationtrail_10_1002_aic_13912 crossref_primary_10_1002_aic_13912 wiley_primary_10_1002_aic_13912_AIC13912 istex_primary_ark_67375_WNG_8910SFJL_C |
| PublicationCentury | 2000 |
| PublicationDate | April 2013 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationTitleAlternate | AIChE J |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
| References | Drud AS. CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual. Bagsvaerd, Denmark:ARKI Consulting and Development A/S, 1996. Rong BG, Kraslawski A, Turunen I. Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems. Ind Eng Chem Res. 2004;43:5904-5915. Agrawal R. Synthesis of distillation column configurations for a multicomponent separation. Ind Eng Chem Res. 1996;35:1059-1071. Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind Eng Chem Res. 2003;42:605-615. Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers. Ind Eng Chem Res. 1989;28:1379-1386. Mix T, Dweck J, Weinberg M, Armstrong R. Energy conservation in distillation. Chem Eng Prog. 1978;74:49-55. Agrawal R, Fidkowski ZT. More operable arrangements of fully thermally coupled distillation columns. AIChE J. 1998;44:2565-2568. Caballero JA, Grossmann IE. Thermodynamically equivalent configurations for thermally coupled distillation. AIChE J. 2003;49:2864-2884. Caballero JA, Grossmann IE. Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences. Ind Eng Chem Res. 2006;45:8454-8474. Kondili E, Pantelides CC, Sargent RWH. A General algorithm for short-term scheduling of batch-operations .1. Milp Formulation. Comput Chem Eng. 1993;17:211-227. Errico M, Rong B-G. Modified simple column configurations for quaternary distillations. Comput Chem Eng. 2012;36:160-173. Petlyuk FB, Platonov VM, Slavinsk DM. Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng. 1965;5:555-561. Navarro MA, Javaloyes J, Caballero JA, Grossmann IE. Strategies for the robust simulation of thermally coupled distillation sequences. Comput Chem Eng. 2012;36:149-159. Yuan X, Pibouleau L, Domenech S. Experiments in process synthesis via mixed integer programming. Chem Eng Process 1989;25:99-116. Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements. Ind Eng Chem Res. 2003;42:616-629. Yeomans H, Grossmann IE. A systematic modeling framework of superstructure optimization in process synthesis. Comput Chem Eng. 1999;23:709-731. Agrawal R. More operable fully thermally coupled distribution column configurations for multicomponent distillation. Chem Eng Res Des. 1999;77:543-553. Kunesh J, Kister H, Lockett M, Fair JR. Distillation: still towering over other options. Chem Eng Prog. Oct. 1995;43-54. Rong BG, Turunen I. A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Chem Eng Res Des. 2006;84:1095-1116. King CJ. Separation Processes. New York:McGraw-Hill, 1980. Rudd H. Thermal coupling for energy efficiency. Chem Eng-London. 1992;27:S14-S15. Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 1. V-min diagram for a two-product column. Ind Eng Chem Res. 2003;42:596-604. Turton R, Bailei RC, Whiting WB, Shaeiwitz JA. Analysis Synthesis and Design of Chemical Processes. New York:McGraw-Hill, 2003. Duran MA, Grossmann IE. A Mixed-integer nonlinear-programming algorithm for process systems synthesis. AIChE J. 1986;32:592-606. Fidkowski ZT, Agrawal R. Multicomponent thermally coupled systems of distillation columns at minimum reflux. AIChE J. 2001;47:2713-2724. Kaibel G. Distillation columns with vertical partitions. Chem Eng Techol. 1987;10:92-98. Giridhar A, Agrawal R. Synthesis of distillation configurations: I. Characteristics of a good search space. Comput Chem Eng. 2010;34:73-83. Fidkowski ZT. Distillation configurations and their energy requirements. AIChE J. 2006;52:2098-2106. Ivakpour J, Kasiri N. Synthesis of distillation column sequences for nonsharp separations. Ind Eng Chem Res. 2009;48:8635-8649. Humphrey J. Separation processes: playing a critical role. Chem Eng Prog. 1995;91:43-54. Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration. Ind Eng Chem Res. 1989;28:1386-1397. Grossmann IE. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng. 2002;3:227-252. Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation-columns. Chem Eng Res Des. 1992;70:118-132. Rosenthal RE. GAMS - A User's Guide. Washington, DC:GAMS Development Corporation, 2012. Caballero JA, Grossmann IE. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind Eng Chem Res. 2001;40:2260-2274. Sahinidis NV. BARON: A general purpose global optimization software package. J Global Optim. 1996;8:201-205. Kim JK, Wankat PC. Quaternary distillation systems with less than N-1 columns. Ind Eng Chem Res. 2004;43:3838-3846. Agrawal R. Multicomponent distillation columns with partitions and multiple reboilers and condensers. Ind Eng Chem Res. 2001;40:4258-4266. Shah VH, Agrawal R. A matrix method for multicomponent distillation sequences. AIChE J. 2010;56:1759-1775. Agrawal R. Synthesis of multicomponent distillation column configurations. AIChE J. 2003;49:379-401. Soave G, Feliu JA. Saving energy in distillation towers by feed splitting. Appl Therm Eng. 2002;22:889-896. Vecchietti A, Lee S, Grossmann IE. Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput Chem Eng. 2003;27:433-448. Geofrion AM. Generalized benders decomposition. J Optim Theory Appl. 1972;10:237-259. Underwood A. Fractional distillation of multicomponent mixtures. Chem Eng Prog. 1948;44:603-614. Caballero JA, Grossmann IE. Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput Chem Eng. 2004;28:2307-2329. 2004; 43 2010; 34 2010; 56 2006; 52 1987; 10 1995; 91 2012 1986; 32 2004; 28 1978; 74 1999; 23 2002; 3 1996 1995 2003 2012; 36 1996; 35 2001; 47 1989; 25 2001; 40 1998; 44 2009; 48 1989; 28 1992; 70 1993; 17 2006; 84 2006; 45 2000 1965; 5 2002; 22 1942 1999; 77 2003; 49 2003; 27 1972; 10 1992; 27 1980 1948; 44 1949 2003; 42 1996; 8 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 Kunesh J (e_1_2_10_5_1) 1995 e_1_2_10_42_1 e_1_2_10_40_1 Rudd H (e_1_2_10_10_1) 1992; 27 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_34_1 e_1_2_10_32_1 Triantafyllou C (e_1_2_10_11_1) 1992; 70 e_1_2_10_30_1 Turton R (e_1_2_10_41_1) 2003 Rosenthal RE (e_1_2_10_44_1) 2012 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 King CJ (e_1_2_10_36_1) 1980 Mix T (e_1_2_10_3_1) 1978; 74 Underwood A (e_1_2_10_37_1) 1948; 44 Drud AS (e_1_2_10_45_1) 1996 Bussieck MR (e_1_2_10_47_1) 2000 e_1_2_10_19_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 Petlyuk FB (e_1_2_10_13_1) 1965; 5 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Humphrey J (e_1_2_10_2_1) 1995; 91 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 |
| References_xml | – reference: Agrawal R. Multicomponent distillation columns with partitions and multiple reboilers and condensers. Ind Eng Chem Res. 2001;40:4258-4266. – reference: Humphrey J. Separation processes: playing a critical role. Chem Eng Prog. 1995;91:43-54. – reference: King CJ. Separation Processes. New York:McGraw-Hill, 1980. – reference: Kunesh J, Kister H, Lockett M, Fair JR. Distillation: still towering over other options. Chem Eng Prog. Oct. 1995;43-54. – reference: Giridhar A, Agrawal R. Synthesis of distillation configurations: I. Characteristics of a good search space. Comput Chem Eng. 2010;34:73-83. – reference: Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration. Ind Eng Chem Res. 1989;28:1386-1397. – reference: Duran MA, Grossmann IE. A Mixed-integer nonlinear-programming algorithm for process systems synthesis. AIChE J. 1986;32:592-606. – reference: Yuan X, Pibouleau L, Domenech S. Experiments in process synthesis via mixed integer programming. Chem Eng Process 1989;25:99-116. – reference: Underwood A. Fractional distillation of multicomponent mixtures. Chem Eng Prog. 1948;44:603-614. – reference: Rosenthal RE. GAMS - A User's Guide. Washington, DC:GAMS Development Corporation, 2012. – reference: Drud AS. CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual. Bagsvaerd, Denmark:ARKI Consulting and Development A/S, 1996. – reference: Shah VH, Agrawal R. A matrix method for multicomponent distillation sequences. AIChE J. 2010;56:1759-1775. – reference: Vecchietti A, Lee S, Grossmann IE. Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput Chem Eng. 2003;27:433-448. – reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind Eng Chem Res. 2003;42:605-615. – reference: Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers. Ind Eng Chem Res. 1989;28:1379-1386. – reference: Grossmann IE. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng. 2002;3:227-252. – reference: Kaibel G. Distillation columns with vertical partitions. Chem Eng Techol. 1987;10:92-98. – reference: Agrawal R. More operable fully thermally coupled distribution column configurations for multicomponent distillation. Chem Eng Res Des. 1999;77:543-553. – reference: Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation-columns. Chem Eng Res Des. 1992;70:118-132. – reference: Agrawal R, Fidkowski ZT. More operable arrangements of fully thermally coupled distillation columns. AIChE J. 1998;44:2565-2568. – reference: Rong BG, Turunen I. A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Chem Eng Res Des. 2006;84:1095-1116. – reference: Agrawal R. Synthesis of distillation column configurations for a multicomponent separation. Ind Eng Chem Res. 1996;35:1059-1071. – reference: Rudd H. Thermal coupling for energy efficiency. Chem Eng-London. 1992;27:S14-S15. – reference: Rong BG, Kraslawski A, Turunen I. Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems. Ind Eng Chem Res. 2004;43:5904-5915. – reference: Kim JK, Wankat PC. Quaternary distillation systems with less than N-1 columns. Ind Eng Chem Res. 2004;43:3838-3846. – reference: Navarro MA, Javaloyes J, Caballero JA, Grossmann IE. Strategies for the robust simulation of thermally coupled distillation sequences. Comput Chem Eng. 2012;36:149-159. – reference: Yeomans H, Grossmann IE. A systematic modeling framework of superstructure optimization in process synthesis. Comput Chem Eng. 1999;23:709-731. – reference: Petlyuk FB, Platonov VM, Slavinsk DM. Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng. 1965;5:555-561. – reference: Errico M, Rong B-G. Modified simple column configurations for quaternary distillations. Comput Chem Eng. 2012;36:160-173. – reference: Turton R, Bailei RC, Whiting WB, Shaeiwitz JA. Analysis Synthesis and Design of Chemical Processes. New York:McGraw-Hill, 2003. – reference: Caballero JA, Grossmann IE. Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput Chem Eng. 2004;28:2307-2329. – reference: Fidkowski ZT. Distillation configurations and their energy requirements. AIChE J. 2006;52:2098-2106. – reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements. Ind Eng Chem Res. 2003;42:616-629. – reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 1. V-min diagram for a two-product column. Ind Eng Chem Res. 2003;42:596-604. – reference: Geofrion AM. Generalized benders decomposition. J Optim Theory Appl. 1972;10:237-259. – reference: Caballero JA, Grossmann IE. Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences. Ind Eng Chem Res. 2006;45:8454-8474. – reference: Caballero JA, Grossmann IE. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind Eng Chem Res. 2001;40:2260-2274. – reference: Caballero JA, Grossmann IE. Thermodynamically equivalent configurations for thermally coupled distillation. AIChE J. 2003;49:2864-2884. – reference: Soave G, Feliu JA. Saving energy in distillation towers by feed splitting. Appl Therm Eng. 2002;22:889-896. – reference: Kondili E, Pantelides CC, Sargent RWH. A General algorithm for short-term scheduling of batch-operations .1. Milp Formulation. Comput Chem Eng. 1993;17:211-227. – reference: Sahinidis NV. BARON: A general purpose global optimization software package. J Global Optim. 1996;8:201-205. – reference: Ivakpour J, Kasiri N. Synthesis of distillation column sequences for nonsharp separations. Ind Eng Chem Res. 2009;48:8635-8649. – reference: Fidkowski ZT, Agrawal R. Multicomponent thermally coupled systems of distillation columns at minimum reflux. AIChE J. 2001;47:2713-2724. – reference: Agrawal R. Synthesis of multicomponent distillation column configurations. AIChE J. 2003;49:379-401. – reference: Mix T, Dweck J, Weinberg M, Armstrong R. Energy conservation in distillation. Chem Eng Prog. 1978;74:49-55. – volume: 5 start-page: 555 year: 1965 end-page: 561 article-title: Thermodynamically optimal method for separating multicomponent mixtures publication-title: Int Chem Eng – volume: 32 start-page: 592 year: 1986 end-page: 606 article-title: A Mixed‐integer nonlinear‐programming algorithm for process systems synthesis publication-title: AIChE J – volume: 49 start-page: 2864 year: 2003 end-page: 2884 article-title: Thermodynamically equivalent configurations for thermally coupled distillation publication-title: AIChE J – volume: 44 start-page: 2565 year: 1998 end-page: 2568 article-title: More operable arrangements of fully thermally coupled distillation columns publication-title: AIChE J – volume: 23 start-page: 709 year: 1999 end-page: 731 article-title: A systematic modeling framework of superstructure optimization in process synthesis publication-title: Comput Chem Eng – volume: 28 start-page: 2307 year: 2004 end-page: 2329 article-title: Design of distillation sequences: from conventional to fully thermally coupled distillation systems publication-title: Comput Chem Eng – volume: 74 start-page: 49 year: 1978 end-page: 55 article-title: Energy conservation in distillation publication-title: Chem Eng Prog – volume: 45 start-page: 8454 year: 2006 end-page: 8474 article-title: Structural considerations and modeling in the synthesis of heat‐integrated‐thermally coupled distillation sequences publication-title: Ind Eng Chem Res – volume: 56 start-page: 1759 year: 2010 end-page: 1775 article-title: A matrix method for multicomponent distillation sequences publication-title: AIChE J – volume: 43 start-page: 5904 year: 2004 end-page: 5915 article-title: Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems publication-title: Ind Eng Chem Res – volume: 91 start-page: 43 year: 1995 end-page: 54 article-title: Separation processes: playing a critical role publication-title: Chem Eng Prog – volume: 49 start-page: 379 year: 2003 end-page: 401 article-title: Synthesis of multicomponent distillation column configurations publication-title: AIChE J – year: 2003 – volume: 77 start-page: 543 year: 1999 end-page: 553 article-title: More operable fully thermally coupled distribution column configurations for multicomponent distillation publication-title: Chem Eng Res Des – year: 1996 – year: 2000 – start-page: 43 year: 1995 end-page: 54 article-title: Distillation: still towering over other options publication-title: Chem Eng Prog – volume: 27 start-page: 433 year: 2003 end-page: 448 article-title: Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations publication-title: Comput Chem Eng – volume: 84 start-page: 1095 year: 2006 end-page: 1116 article-title: A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements publication-title: Chem Eng Res Des – volume: 10 start-page: 92 year: 1987 end-page: 98 article-title: Distillation columns with vertical partitions publication-title: Chem Eng Techol – volume: 35 start-page: 1059 year: 1996 end-page: 1071 article-title: Synthesis of distillation column configurations for a multicomponent separation publication-title: Ind Eng Chem Res – year: 1942 – volume: 42 start-page: 596 year: 2003 end-page: 604 article-title: Minimum energy consumption in multicomponent distillation. 1. V‐min diagram for a two‐product column publication-title: Ind Eng Chem Res – volume: 40 start-page: 4258 year: 2001 end-page: 4266 article-title: Multicomponent distillation columns with partitions and multiple reboilers and condensers publication-title: Ind Eng Chem Res – volume: 27 start-page: S14 year: 1992 end-page: S15 article-title: Thermal coupling for energy efficiency publication-title: Chem Eng‐London – volume: 48 start-page: 8635 year: 2009 end-page: 8649 article-title: Synthesis of distillation column sequences for nonsharp separations publication-title: Ind Eng Chem Res – volume: 8 start-page: 201 year: 1996 end-page: 205 article-title: BARON: A general purpose global optimization software package publication-title: J Global Optim – volume: 10 start-page: 237 year: 1972 end-page: 259 article-title: Generalized benders decomposition publication-title: J Optim Theory Appl – volume: 22 start-page: 889 year: 2002 end-page: 896 article-title: Saving energy in distillation towers by feed splitting publication-title: Appl Therm Eng – volume: 25 start-page: 99 year: 1989 end-page: 116 article-title: Experiments in process synthesis via mixed integer programming publication-title: Chem Eng Process – year: 2012 – volume: 3 start-page: 227 year: 2002 end-page: 252 article-title: Review of nonlinear mixed‐integer and disjunctive programming techniques publication-title: Optim Eng – volume: 34 start-page: 73 year: 2010 end-page: 83 article-title: Synthesis of distillation configurations: I. Characteristics of a good search space publication-title: Comput Chem Eng – volume: 36 start-page: 160 year: 2012 end-page: 173 article-title: Modified simple column configurations for quaternary distillations publication-title: Comput Chem Eng – volume: 44 start-page: 603 year: 1948 end-page: 614 article-title: Fractional distillation of multicomponent mixtures publication-title: Chem Eng Prog – volume: 70 start-page: 118 year: 1992 end-page: 132 article-title: The design and optimization of fully thermally coupled distillation‐columns publication-title: Chem Eng Res Des – volume: 28 start-page: 1386 year: 1989 end-page: 1397 article-title: Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration publication-title: Ind Eng Chem Res – volume: 43 start-page: 3838 year: 2004 end-page: 3846 article-title: Quaternary distillation systems with less than N‐1 columns publication-title: Ind Eng Chem Res – year: 1980 – volume: 36 start-page: 149 year: 2012 end-page: 159 article-title: Strategies for the robust simulation of thermally coupled distillation sequences publication-title: Comput Chem Eng – volume: 42 start-page: 616 year: 2003 end-page: 629 article-title: Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements publication-title: Ind Eng Chem Res – year: 1949 – volume: 28 start-page: 1379 year: 1989 end-page: 1386 article-title: Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers publication-title: Ind Eng Chem Res – volume: 47 start-page: 2713 year: 2001 end-page: 2724 article-title: Multicomponent thermally coupled systems of distillation columns at minimum reflux publication-title: AIChE J – volume: 52 start-page: 2098 year: 2006 end-page: 2106 article-title: Distillation configurations and their energy requirements publication-title: AIChE J – volume: 42 start-page: 605 year: 2003 end-page: 615 article-title: Minimum energy consumption in multicomponent distillation. 2. Three‐product Petlyuk arrangements publication-title: Ind Eng Chem Res – volume: 40 start-page: 2260 year: 2001 end-page: 2274 article-title: Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns publication-title: Ind Eng Chem Res – volume: 17 start-page: 211 year: 1993 end-page: 227 article-title: A General algorithm for short‐term scheduling of batch‐operations .1. Milp Formulation publication-title: Comput Chem Eng – ident: e_1_2_10_25_1 doi: 10.1016/j.compchemeng.2009.05.003 – ident: e_1_2_10_30_1 doi: 10.1021/ie000315n – ident: e_1_2_10_50_1 doi: 10.1007/BF00934810 – ident: e_1_2_10_17_1 doi: 10.1021/ie950323h – ident: e_1_2_10_22_1 doi: 10.1021/ie0341193 – ident: e_1_2_10_15_1 doi: 10.1021/ie0108649 – ident: e_1_2_10_26_1 – volume-title: Recent Advances in Nonlinear Mixed Integer Optimization year: 2000 ident: e_1_2_10_47_1 – volume: 44 start-page: 603 year: 1948 ident: e_1_2_10_37_1 article-title: Fractional distillation of multicomponent mixtures publication-title: Chem Eng Prog – volume: 91 start-page: 43 year: 1995 ident: e_1_2_10_2_1 article-title: Separation processes: playing a critical role publication-title: Chem Eng Prog – ident: e_1_2_10_9_1 doi: 10.1002/aic.690471211 – ident: e_1_2_10_19_1 doi: 10.1002/aic.690491118 – ident: e_1_2_10_21_1 doi: 10.1002/aic.690441124 – ident: e_1_2_10_12_1 – ident: e_1_2_10_29_1 doi: 10.1016/j.compchemeng.2011.06.015 – ident: e_1_2_10_7_1 doi: 10.1021/ie060030w – ident: e_1_2_10_24_1 doi: 10.1002/aic.690490210 – volume: 5 start-page: 555 year: 1965 ident: e_1_2_10_13_1 article-title: Thermodynamically optimal method for separating multicomponent mixtures publication-title: Int Chem Eng – ident: e_1_2_10_43_1 doi: 10.1016/S0098-1354(02)00220-X – volume-title: GAMS ‐ A User's Guide year: 2012 ident: e_1_2_10_44_1 – ident: e_1_2_10_27_1 doi: 10.1002/ceat.270100112 – volume-title: CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual year: 1996 ident: e_1_2_10_45_1 – ident: e_1_2_10_46_1 doi: 10.1007/BF00138693 – ident: e_1_2_10_14_1 doi: 10.1021/ie010863g – volume-title: Analysis Synthesis and Design of Chemical Processes year: 2003 ident: e_1_2_10_41_1 – ident: e_1_2_10_39_1 doi: 10.1021/ie00093a018 – ident: e_1_2_10_42_1 doi: 10.1023/A:1021039126272 – ident: e_1_2_10_28_1 doi: 10.1021/ie030640l – volume-title: Separation Processes year: 1980 ident: e_1_2_10_36_1 – ident: e_1_2_10_33_1 doi: 10.1016/S1570-7946(02)80056-6 – ident: e_1_2_10_6_1 doi: 10.1016/j.compchemeng.2004.04.010 – ident: e_1_2_10_34_1 doi: 10.1016/0098-1354(93)80015-F – ident: e_1_2_10_35_1 doi: 10.1016/S0098-1354(99)00003-4 – ident: e_1_2_10_8_1 doi: 10.1002/aic.10803 – start-page: 43 year: 1995 ident: e_1_2_10_5_1 article-title: Distillation: still towering over other options publication-title: Chem Eng Prog – ident: e_1_2_10_18_1 doi: 10.1021/ie000761a – ident: e_1_2_10_31_1 doi: 10.1021/ie802013r – ident: e_1_2_10_4_1 doi: 10.1016/S1359-4311(02)00006-6 – volume: 74 start-page: 49 year: 1978 ident: e_1_2_10_3_1 article-title: Energy conservation in distillation publication-title: Chem Eng Prog – ident: e_1_2_10_32_1 doi: 10.1002/aic.12118 – ident: e_1_2_10_23_1 doi: 10.1205/cherd06012 – volume: 27 start-page: S14 year: 1992 ident: e_1_2_10_10_1 article-title: Thermal coupling for energy efficiency publication-title: Chem Eng‐London – volume: 70 start-page: 118 year: 1992 ident: e_1_2_10_11_1 article-title: The design and optimization of fully thermally coupled distillation‐columns publication-title: Chem Eng Res Des – ident: e_1_2_10_16_1 doi: 10.1021/ie0108651 – ident: e_1_2_10_38_1 doi: 10.1021/ie00093a017 – ident: e_1_2_10_40_1 doi: 10.1016/j.compchemeng.2011.06.014 – ident: e_1_2_10_20_1 doi: 10.1205/026387699526449 – ident: e_1_2_10_48_1 doi: 10.1002/aic.690320408 – ident: e_1_2_10_49_1 doi: 10.1016/0255-2701(89)80035-2 |
| SSID | ssj0012782 |
| Score | 2.3472462 |
| Snippet | The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1139 |
| SubjectTerms | disjunctive programming problem Distillation divided wall column Equivalence Mathematical analysis Mathematical models mixed integer nonlinear programming problem Nonlinear programming Optimization Separation superstructure optimization Tasks thermally coupled distillation Thermodynamics Walls |
| Title | Synthesis of complex thermally coupled distillation systems including divided wall columns |
| URI | https://api.istex.fr/ark:/67375/WNG-8910SFJL-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.13912 https://www.proquest.com/docview/1320845518 https://www.proquest.com/docview/1349435876 https://www.proquest.com/docview/1349464929 |
| Volume | 59 |
| WOSCitedRecordID | wos000317466000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_KnQ_1wapVvLZKFBFf1m6z-Vp8KqenLeUQa7H4ErLZBA7XvXLb68d_7yS7t7agKPi2HxPIx8zkl2TyG4CXSonU09QnlEqRsKwMG025TXjucmeyUkreJpuQ06k6Pc0_rcHb1V2Ylh-i33ALlhH9dTBwUzS7v0hDzcy-QfgSMgwPKeotG8Dw3efJyVF_iEClasnCccWMSGFvRSyU0t2-8K3paBh69uoW1ryJWOOUM9n4r8reh3sd0iT7rWo8gDVXP4S7N_gHN-Hb8XWNALCZNWTuSYwud1ckQMIfpqqu8csSv5SkDI6gaqPmSMv93JBZbatlmPlIvNKFYpdYCMugu6ubR3Ayef9l_DHpki0klsmMBqdnC-p4qSwVhmfWcl5YaoVgqSsL74T0pUhxBD3d86lV3qIjFfhiM8Q0WfYYBvW8dk-A-NQULPMlLqYKZk2uqMVFn3G8cLTIuRzB61Wfa9sxkYeEGJVuOZSpxu7SsbtG8KIXPWvpN34n9CoOXC9hFt9DvJrk-uv0g1aIiI4nh0d6PIKd1cjqzlQbHe6QKxaI6UbwvP-NRhZOTkzt5ssgw3LEldjgv8gIhnAT2xd14c811vsH4_iw9e-i27BOYyqOEDW0A4PzxdI9hTv24nzWLJ51uv8TfSQHTA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_KnaA--C2eVo0i4svabTZfC76U07PV8xDbYulLyGYTOFz35Lan7X_vJLu3tqAo-LYfE0gmmckvyeQ3AM-UEqmnqU8olSJhWRk2mnKb8NzlzmSllLxNNiFnM3V0lH_cgFfruzAtP0S_4RYsI_rrYOBhQ3rrF2uomduXiF9CiuEhw2HEBzB8_WlyOO1PEahULVs4LpkRKmyvmYVSutUXvjAfDYNqTy-AzfOQNc45k-v_V9sbcK3DmmSnHRw3YcPVt-DqOQbC23C8f1YjBGzmDVl4EuPL3SkJoPCrqaoz_LLCLyUpgyuo2rg50rI_N2Re22oV5j4SL3Wh2A8shGXQ4dXNHTicvDkY7yZduoXEMpnR4PZsQR0vlaXC8MxazgtLrRAsdWXhnZC-FCn2oafbPrXKW3SlAl9shqgmy-7CoF7U7h4Qn5qCZb7E5VTBrMkVtbjsM44XjhY5lyN4sVa6th0XeUiJUemWRZlqVJeO6hrB0170W0vA8Tuh57Hnegmz_BIi1iTXn2dvtUJMtD95N9XjEWyuu1Z3xtrocItcsUBNN4In_W80s3B2Ymq3WAUZliOyxAb_RUYwBJzYvjgY_lxjvbM3jg_3_130MVzePfgw1dO92fsHcIXGxBwhhmgTBifLlXsIl-z3k3mzfNQZwk85Ggs8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA6lW0QfvIurrUYR8WXsNJPbgC9l29HqshRrsfQlZHKBpdPZstPV9t97kpmdtqAo-DaXE0hOck6-JCffQeiNlDz1JPUJIYInNLNhoyk3Cctd7nRmhWBtsgkxmcijo3x_BX1Y3oVp-SH6DbdgGdFfBwN3Z9ZvXrGG6ql5D_glpBgeUJZzMMvBztficNyfIhAhW7ZwWDIDVNhaMgulZLMvfGM-GgTVXtwAm9cha5xzinv_V9v76G6HNfF2OzgeoBVXP0R3rjEQPkLHB5c1QMBm2uCZxzG-3F3gAApPdVVdwpcFfLHYBldQtXFzuGV_bvC0NtUizH04XuoCsZ9QCMqAw6ubx-iw2P02-pR06RYSQ0VGgtszJXHMSkO4ZpkxjJWGGM5p6mzpHRfe8hT60JMtnxrpDbhSDi8mA1STZU_Qaj2r3VOEfapLmnkLy6mSGp1LYmDZpx0rHSlzJobo3VLpynRc5CElRqVaFmWiQF0qqmuIXveiZy0Bx--E3sae6yX0_CRErAmmvk8-KgmY6KD4PFajIVpfdq3qjLVR4Ra5pIGabohe9b_BzMLZia7dbBFkaA7IEhr8FxlOAXBC--Jg-HON1fbeKD48-3fRl-jW_k6hxnuTL8_RbRLzcoQQonW0ej5fuA20Zn6cT5v5i84OfgGz1Qq3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+complex+thermally+coupled+distillation+systems+including+divided+wall+columns&rft.jtitle=AIChE+journal&rft.au=Caballero%2C+Jos%C3%A9+A&rft.au=Grossmann%2C+Ignacio+E&rft.date=2013-04-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=59&rft.issue=4&rft.spage=1139&rft_id=info:doi/10.1002%2Faic.13912&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2928971731 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |