Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design

Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 62; číslo 9; s. 3484 - 3504
Hlavní autoři: Gopinath, Smitha, Jackson, George, Galindo, Amparo, Adjiman, Claire S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Blackwell Publishing Ltd 01.09.2016
American Institute of Chemical Engineers
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484–3504, 2016
AbstractList Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC + group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J , 62: 3484–3504, 2016
Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer-approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group-contribution version of the statistical associating fluid theory (SAFT-[gamma] Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher-fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484-3504, 2016
Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer-approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group-contribution version of the statistical associating fluid theory (SAFT- gamma Mie) and on the GC super(+) group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher-fidelity nonlinear models in molecular and process design. copyright 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484-3504, 2016
Author Jackson, George
Galindo, Amparo
Adjiman, Claire S.
Gopinath, Smitha
Author_xml – sequence: 1
  givenname: Smitha
  surname: Gopinath
  fullname: Gopinath, Smitha
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
– sequence: 2
  givenname: George
  surname: Jackson
  fullname: Jackson, George
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
– sequence: 3
  givenname: Amparo
  surname: Galindo
  fullname: Galindo, Amparo
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
– sequence: 4
  givenname: Claire S.
  surname: Adjiman
  fullname: Adjiman, Claire S.
  email: c.adjiman@imperial.ac.uk
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
BookMark eNqNkU1r3DAQhkVJIZu0h_wDQS_twYk-LEs-hm2-IDSXlh7FrCQnSmXLlWw2---j3U16CC30okHM877DzHuEDoY4OIROKDmlhLAz8OaUiprSd2hRqqxES8QBWhBCaLVtHKKjnB_Lj0nFFmh9N08uYRjHFJ98D5OPA4ZwH5OfHnq8Li8eHzbZGwjYxh78gJOzs9mBXUzYxH7celTgrbO4j8GZOUDxHCzOboS0Ny0DjMsZW5f9_fABve8gZPfxpR6jH5cX35fX1e3d1c3y_LYyteS0Yi2tnV1xDoJw03SN5cxKoCtQDVsZYVtGHTWuVTWorulqw1fMsg54bVTTEH6MPu99y_jfs8uT7n02LgQYXJyzpooLIcvl5H-gVDStVLIt6Kc36GOc01AW2VK0ZTWntFBne8qkmHNynTZ-2h1jSuCDpkRvM9MlM73LrCi-vFGMqYSSNn9lX9zXPrjNv0F9frN8VVR7hc-Te_qjgPRLN5JLoX9-uypi9VVdXlNd82esLrgn
CODEN AICEAC
CitedBy_id crossref_primary_10_1039_D4ME00127C
crossref_primary_10_1039_C9ME00089E
crossref_primary_10_1016_j_cherd_2016_10_014
crossref_primary_10_1016_j_enconman_2017_03_048
crossref_primary_10_1016_j_fluid_2022_113674
crossref_primary_10_1016_j_pecs_2024_101201
crossref_primary_10_1016_j_compchemeng_2021_107522
crossref_primary_10_1016_j_compchemeng_2020_107005
crossref_primary_10_1016_j_compchemeng_2025_109232
crossref_primary_10_1016_j_coche_2017_05_005
crossref_primary_10_1016_j_cherd_2017_03_009
crossref_primary_10_1016_j_rser_2020_110179
crossref_primary_10_1016_j_compchemeng_2025_109266
crossref_primary_10_1063_5_0087125
crossref_primary_10_1016_j_compchemeng_2024_108972
crossref_primary_10_1002_aic_18236
crossref_primary_10_1016_j_compchemeng_2019_106518
crossref_primary_10_3390_pr7120882
crossref_primary_10_1016_j_egypro_2017_09_179
crossref_primary_10_1016_j_compchemeng_2018_01_016
crossref_primary_10_1002_cite_202200098
crossref_primary_10_1021_acs_iecr_4c04993
crossref_primary_10_1016_j_compchemeng_2021_107252
crossref_primary_10_1002_ente_202200182
crossref_primary_10_1016_j_cherd_2023_11_007
crossref_primary_10_1016_j_coche_2021_100724
crossref_primary_10_1016_j_compchemeng_2025_109138
crossref_primary_10_1002_aic_16903
crossref_primary_10_1016_j_compchemeng_2023_108204
crossref_primary_10_1002_cite_202000001
crossref_primary_10_1002_cite_202200172
crossref_primary_10_1016_j_compchemeng_2020_106802
crossref_primary_10_1016_j_compchemeng_2019_06_022
Cites_doi 10.1016/j.cej.2010.06.018
10.1002/aic.10715
10.1021/ie901281w
10.1021/ie9906520
10.1016/S1004-9541(08)60100-7
10.1590/S0104-66322010000300008
10.1016/j.ces.2016.04.042
10.1016/j.compchemeng.2012.02.021
10.1016/0098-1354(95)87087-3
10.1063/1.4851455
10.1002/aic.14630
10.1021/ie400968j
10.1016/S0098-1354(94)85027-5
10.1111/j.1475-3995.1997.tb00061.x
10.1007/BF00934810
10.1016/j.ces.2006.06.006
10.1007/BF01581153
10.1016/0009-2509(94)00216-E
10.1016/j.compchemeng.2010.07.028
10.1063/1.473101
10.1007/s11590-006-0026-1
10.1021/ie302516v
10.1021/ie049328h
10.1016/S0378-3812(99)00089-8
10.1016/j.compchemeng.2011.07.009
10.1002/aic.14112
10.1002/aic.14838
10.1002/aic.690491211
10.1002/aic.690450415
10.1038/nchem.1755
10.1021/ie0003887
10.1016/j.compchemeng.2015.04.008
10.1039/tf9231900038
10.1039/9781849730983-00215
10.1016/j.compchemeng.2010.06.016
10.1016/0378-3812(93)87127-M
10.1016/j.ces.2016.08.008
10.1016/j.fluid.2012.02.010
10.1016/B978-0-444-63433-7.50007-9
10.1021/ie00104a021
10.1016/j.cep.2003.03.002
10.1016/0378-3812(89)80308-5
10.1016/j.cherd.2008.01.008
10.1002/aic.690400808
10.1016/B978-0-444-59519-5.50115-5
10.1016/S0098-1354(99)00300-2
10.1002/9780470747537
10.1002/aic.15122
10.1016/S1570-7946(09)70356-6
10.1007/BF02592064
10.1080/00268979809482207
10.1021/acs.iecr.5b01995
10.1016/S0098-1354(97)00255-X
10.1016/0300-9467(92)80002-R
10.1016/j.ces.2016.04.048
10.1016/j.compchemeng.2014.03.012
10.1016/B978-0-444-63472-6.00011-2
10.1016/j.ijggc.2014.12.020
10.1016/j.ces.2016.03.011
10.1002/aic.690210607
10.1205/cherd.04349
ContentType Journal Article
Copyright 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers
2016 American Institute of Chemical Engineers
Copyright_xml – notice: 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers
– notice: 2016 American Institute of Chemical Engineers
DBID BSCLL
24P
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15411
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database

Environment Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 3504
ExternalDocumentID 4149588471
10_1002_aic_15411
AIC15411
ark_67375_WNG_108D8FH1_4
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council (EPSRC)
  funderid: EP/E016340, EP/J014958/1 and EP/J003840/1
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
24P
ALUQN
PUEGO
AAYXX
CITATION
O8X
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4731-2914edb33a503c6f6d32d7a1ba862bc5d921e1ce984a8f6f4c3b2d2fa34c86603
IEDL.DBID DRFUL
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382987000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Thu Jul 10 23:12:06 EDT 2025
Tue Oct 07 09:39:13 EDT 2025
Mon Nov 10 03:05:50 EST 2025
Sat Nov 29 07:21:03 EST 2025
Tue Nov 18 21:07:14 EST 2025
Sun Sep 21 06:26:16 EDT 2025
Tue Nov 11 03:31:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4731-2914edb33a503c6f6d32d7a1ba862bc5d921e1ce984a8f6f4c3b2d2fa34c86603
Notes Engineering and Physical Sciences Research Council (EPSRC) - No. EP/E016340, EP/J014958/1 and EP/J003840/1
istex:BB9F49911758B0C5C33FEA329B7C377FE79E0255
ark:/67375/WNG-108D8FH1-4
ArticleID:AIC15411
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4573-7722
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15411
PQID 1811924311
PQPubID 7879
PageCount 21
ParticipantIDs proquest_miscellaneous_1835570027
proquest_miscellaneous_1815697879
proquest_journals_1811924311
crossref_citationtrail_10_1002_aic_15411
crossref_primary_10_1002_aic_15411
wiley_primary_10_1002_aic_15411_AIC15411
istex_primary_ark_67375_WNG_108D8FH1_4
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Design. 2008;86(7):781-792.
Eljack FT, Solvason CC, Chemmangattuvalappil N, Eden MR. A property based approach for simultaneous process and molecular design. Chin J Chem Eng. 2008;16:424-434.
Zhou T, Zhou Y, Sundmacher K. A hybrid stochastic-deterministic optimization approach for integrated solvent and process design. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916301348
Harper PM, Gani R, Kolar P, Ishikawa T. Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib. 1999;158160(0):337-347.
Hukkerikar AS, Sarup B, Kate AT, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Phase Equilibria. 2012;321:25-43.
Henley EJ, Seader JD, Roper DK. Separation Process Principles, 3rd ed, International student version. John Wiley & Sons, Asia, 2011.
Lampe M, Stavrou M, Schilling J, Sauer E, Gross J, Bardow A. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng. 2015;81:278-287.
Kravanja Z, Grossmann IE. New developments and capabilities in PROSYN-an automated topology and parameter process synthesizer. Comput Chem Eng. 1994;18(1112):1097-1114.
Jonuzaj S, Adjiman CS. Designing optimal mixtures using generalized disjunctive programming: hull relaxations. Chem Eng Sci. In press 2016.
Exler O, Schittkowski K. A trust region sqp algorithm for mixed-integer nonlinear programming. Optim Lett. 2007;1(3):269-280.
Samudra AP, Sahinidis NV. Optimization-based framework for computer-aided molecular design. AIChE J. 2013;59:3686-3701.
Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106:4168-4186.
Tan L, Shariff A, Lau K, Bustam M. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n-methyl-2-pyrrolidone solvent in absorption packed column. Int J Greenhouse Gas Control. 2015;34:25-30.
Bommareddy S, Chemmangattuvalappil NG, Solvason CC, Eden MR. An algebraic approach for simultaneous solution of process and molecular design problems. Braz J Chem Eng. 2010;27:441-450.
Schilling J, Lampe M, Gross J, Bardow A. 1-stage CoMT-CAMD: an approach for integrated design of ORC process and working fluid using PC-SAFT. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302196
Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29:1709-1721.
Zhou T, McBride K, Zhang X, Qi Z, Sundmacher K. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE J. 2015;61(1):147-158.
Chemmangattuvalappil NG, Eden MR. A novel methodology for property-based molecular design using multiple topological indices. Ind Eng Chem Res. 2013;52(22):7090-7103.
Struebing H, Ganase Z, Karamertzanis P, Siougkrou E, Haycock P, Piccione P, Armstrong A, Galindo A, Adjiman C. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem. 2013;5:952-957.
Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989;52:31-38.
Eden MR, Jørgensen SB, Gani R, El-Halwagi MM. A novel framework for simultaneous separation process and product design. Chem Eng Process. 2004;43:595-608.
Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation. Math Program. 1994;66(1-3):327-349.
Papadopoulos AI, Linke P. Efficient integration of optimal solvent and process design using molecular clustering. Chem Eng Sci. 2006;61:6316-6336.
Geoffrion A. Generalized benders decomposition. J Optim Theory Appl. 1972;10(4):237-260.
Papadopoulos A, Linke P. A unified framework for integrated process and molecular design. Chem Eng Res Design. 2005;83:674-678.
Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program. 1986;36(3):307-339.
Papadopoulos AI, Seferlis P, Linke P. A framework for the integration of solvent and process design with controllability assessment. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302135
Burger J, Papaioannou V, Gopinath S, Jackson G, Galindo A, Adjiman CS. A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT-γ Mie approach. AIChE J. 2015;61:3249-3269.
Kontogeorgis GM, Folas GK. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. New York: Wiley, 2010.
Odele O, Macchietto S. Computer aided molecular design: a novel method for optimal solvent selection. Fluid Phase Equilib. 1993;82(0):47-54.
Pistikopoulos EN, Stefanis SK. Optimal solvent design for environmental impact minimization. Comput Chem Eng. 1998;22(6):717-733.
Skiborowski M, Harwardt A, Marquardt W. Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Comput Chem Eng. 2015;72:34-51.
Kamath RS, Biegler LT, Grossmann IE. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Comput Chem Eng. 2010;34(12):2085-2096.
Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G, Müller EA, Galindo A. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J Chem Phys. 2014;140(5):054107.
Yeomans H, Grossmann IE. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Ind Eng Chem Res. 2000;39(6):1637-1648.
Jaksland CA, Gani R, Lien KM. Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci. 1995;50(3):511-530.
Lampe M, Gross J, Bardow A. Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC-SAFT. Comput Aided Chem Eng. 2012;30:572-576.
Roughton BC, Christian B, White J, Camarda KV, Gani R. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng. 2012;42:248-262.
Hostrup M, Harper PM, Gani R. Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng. 1999;23:1395-1414.
Buxton A, Livingston AG, Pistikopoulos EN. Optimal design of solvent blends for environmental impact minimization. AIChE J. 1999;45(4):817-843.
Papadopoulos AI, Stijepovic M, Linke P, Seferlis P, Voutetakis S. Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis. Ind Eng Chem Res. 2013;52(34):12116-12133.
Majer C, Marquardt W, Gilles E. Reinitialization of DAE's after discontinuities. Comput Chem Eng. 1995;19(Supplement 1):507-512.
Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975;21(6):1086-1099.
Cheng HC, Wang FS. Computer-aided biocompatible solvent design for an integrated extractive fermentation-separation process. Chem Eng J. 2010;162(2):809-820.
Churi N, Achenie LEK. On the use of a mixed integer nonlinear programming model for refrigerant design. Int Trans Oper Res. 1997;4:45-54.
Pretel EJ, Lpez PA, Bottini SB, Brignole EA. Computer-aided molecular design of solvents for separation processes. AIChE J. 1994;40(8):1349-1360.
Jonuzaj S, Akula PT, Kleniati PM, Adjiman CS. The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study. AIChE J. In press 2016. doi:10.1002/aic.15122
Papadopoulos AI, Linke P. Multiobjective molecular design for integrated process-solvent systems synthesis. AIChE J. 2006;52(3):1057-1070.
Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244-1260.
Skiborowski M, Rautenberg M, Marquardt W. A hybrid evolutionary-deterministic optimization approach for conceptual design. Ind Eng Chem Res. 2015;54(41):10054-10072.
Bardow A, Steur K, Gross J. Continuous-molecular targeting for integrated solvent and process design. Ind Eng Chem Res. 2010;49(6):2834-2840.
Karunanithi AT, Achenie LEK, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind Eng Chem Res. 2005;44(13):4785-4797.
Galindo A, Davies LA, Gil-Villegas A, Jackson G. The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. Mol Phys. 1998;93:241-252.
Giovanoglou A, Barlatier J, Adjiman CS, Pistikopoulos EN, Cordiner JL. Optimal solvent design for batch separation based on economic performance. AIChE J. 2003;49(12):3095-3109.
Sastri S, Rao K. A new group contribution method for predicting viscosity of organic liquids. Chem Eng J. 1992;50:9-25.
Pereira FE, Keskes E, Galindo A, Jackson G, Adjiman CS. Integrated solvent and process design using a SAFT-VR thermodynamic description: high-pressure separation of carbon dioxide and methane. Comput Chem Eng. 2011;35:474-491.
Macleod DB. On a relation between surface tension and density. Trans Faraday Soc. 1923;19:38-41.
Pereira FE, Jackson G, Galindo A, Adjiman CS. The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state. Comput Chem Eng. 2012;36:99-118.
Hunter TG, Nash AW. The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II. Application of phase-rule graphical methods. J Soc Chem Ind. 1934.
2015; 34
2015; 36
2012; 321
2015; 72
2002; 12
1986; 36
1923; 19
1999; 45
1994; 66
2013; 5
1997; 4
2001; 40
1992; 50
1934
2010; 27
1997; 106
2013; 59
2006; 61
2015; 81
2013; 52
2003; 49
1972; 10
1999; 158160
1998; 93
2007; 1
2004; 43
2010; 34
1995; 50
2006; 52
2011
1993; 82
2010
2008; 16
2015; 54
1999; 23
1997
2011; 35
2010; 162
1995; 19
2005; 83
2012; 36
2009; 27
2005; 44
1998; 22
1994; 40
2012; 30
1989; 52
2010; 49
2000; 39
2015; 61
1990; 29
2016
2014; 140
2015
1994; 18
1975; 21
2008; 86
2014; 34
2012; 42
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Gopinath S (e_1_2_10_49_1) 2016
Hunter TG (e_1_2_10_61_1) 1934
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Henley EJ (e_1_2_10_62_1) 2011
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Apostolakou A (e_1_2_10_11_1) 2002
e_1_2_10_60_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – reference: Yeomans H, Grossmann IE. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Ind Eng Chem Res. 2000;39(6):1637-1648.
– reference: Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29:1709-1721.
– reference: Pereira FE, Jackson G, Galindo A, Adjiman CS. The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state. Comput Chem Eng. 2012;36:99-118.
– reference: Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G, Müller EA, Galindo A. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J Chem Phys. 2014;140(5):054107.
– reference: Hukkerikar AS, Sarup B, Kate AT, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Phase Equilibria. 2012;321:25-43.
– reference: Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989;52:31-38.
– reference: Bommareddy S, Chemmangattuvalappil NG, Solvason CC, Eden MR. An algebraic approach for simultaneous solution of process and molecular design problems. Braz J Chem Eng. 2010;27:441-450.
– reference: Papadopoulos AI, Stijepovic M, Linke P, Seferlis P, Voutetakis S. Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis. Ind Eng Chem Res. 2013;52(34):12116-12133.
– reference: Lampe M, Gross J, Bardow A. Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC-SAFT. Comput Aided Chem Eng. 2012;30:572-576.
– reference: Kravanja Z, Grossmann IE. New developments and capabilities in PROSYN-an automated topology and parameter process synthesizer. Comput Chem Eng. 1994;18(1112):1097-1114.
– reference: Jaksland CA, Gani R, Lien KM. Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci. 1995;50(3):511-530.
– reference: Harper PM, Gani R, Kolar P, Ishikawa T. Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib. 1999;158160(0):337-347.
– reference: Tan L, Shariff A, Lau K, Bustam M. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n-methyl-2-pyrrolidone solvent in absorption packed column. Int J Greenhouse Gas Control. 2015;34:25-30.
– reference: Sastri S, Rao K. A new group contribution method for predicting viscosity of organic liquids. Chem Eng J. 1992;50:9-25.
– reference: Kontogeorgis GM, Folas GK. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. New York: Wiley, 2010.
– reference: Hunter TG, Nash AW. The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II. Application of phase-rule graphical methods. J Soc Chem Ind. 1934.
– reference: Cheng HC, Wang FS. Computer-aided biocompatible solvent design for an integrated extractive fermentation-separation process. Chem Eng J. 2010;162(2):809-820.
– reference: Chemmangattuvalappil NG, Eden MR. A novel methodology for property-based molecular design using multiple topological indices. Ind Eng Chem Res. 2013;52(22):7090-7103.
– reference: Majer C, Marquardt W, Gilles E. Reinitialization of DAE's after discontinuities. Comput Chem Eng. 1995;19(Supplement 1):507-512.
– reference: Eljack FT, Solvason CC, Chemmangattuvalappil N, Eden MR. A property based approach for simultaneous process and molecular design. Chin J Chem Eng. 2008;16:424-434.
– reference: Buxton A, Livingston AG, Pistikopoulos EN. Optimal design of solvent blends for environmental impact minimization. AIChE J. 1999;45(4):817-843.
– reference: Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program. 1986;36(3):307-339.
– reference: Papadopoulos AI, Seferlis P, Linke P. A framework for the integration of solvent and process design with controllability assessment. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302135
– reference: Lampe M, Stavrou M, Schilling J, Sauer E, Gross J, Bardow A. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng. 2015;81:278-287.
– reference: Pistikopoulos EN, Stefanis SK. Optimal solvent design for environmental impact minimization. Comput Chem Eng. 1998;22(6):717-733.
– reference: Hostrup M, Harper PM, Gani R. Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng. 1999;23:1395-1414.
– reference: Macleod DB. On a relation between surface tension and density. Trans Faraday Soc. 1923;19:38-41.
– reference: Struebing H, Ganase Z, Karamertzanis P, Siougkrou E, Haycock P, Piccione P, Armstrong A, Galindo A, Adjiman C. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem. 2013;5:952-957.
– reference: Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Design. 2008;86(7):781-792.
– reference: Giovanoglou A, Barlatier J, Adjiman CS, Pistikopoulos EN, Cordiner JL. Optimal solvent design for batch separation based on economic performance. AIChE J. 2003;49(12):3095-3109.
– reference: Karunanithi AT, Achenie LEK, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind Eng Chem Res. 2005;44(13):4785-4797.
– reference: Bardow A, Steur K, Gross J. Continuous-molecular targeting for integrated solvent and process design. Ind Eng Chem Res. 2010;49(6):2834-2840.
– reference: Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation. Math Program. 1994;66(1-3):327-349.
– reference: Odele O, Macchietto S. Computer aided molecular design: a novel method for optimal solvent selection. Fluid Phase Equilib. 1993;82(0):47-54.
– reference: Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244-1260.
– reference: Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106:4168-4186.
– reference: Skiborowski M, Harwardt A, Marquardt W. Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Comput Chem Eng. 2015;72:34-51.
– reference: Geoffrion A. Generalized benders decomposition. J Optim Theory Appl. 1972;10(4):237-260.
– reference: Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975;21(6):1086-1099.
– reference: Zhou T, Zhou Y, Sundmacher K. A hybrid stochastic-deterministic optimization approach for integrated solvent and process design. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916301348
– reference: Jonuzaj S, Akula PT, Kleniati PM, Adjiman CS. The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study. AIChE J. In press 2016. doi:10.1002/aic.15122
– reference: Churi N, Achenie LEK. On the use of a mixed integer nonlinear programming model for refrigerant design. Int Trans Oper Res. 1997;4:45-54.
– reference: Papadopoulos AI, Linke P. Multiobjective molecular design for integrated process-solvent systems synthesis. AIChE J. 2006;52(3):1057-1070.
– reference: Pereira FE, Keskes E, Galindo A, Jackson G, Adjiman CS. Integrated solvent and process design using a SAFT-VR thermodynamic description: high-pressure separation of carbon dioxide and methane. Comput Chem Eng. 2011;35:474-491.
– reference: Jonuzaj S, Adjiman CS. Designing optimal mixtures using generalized disjunctive programming: hull relaxations. Chem Eng Sci. In press 2016.
– reference: Eden MR, Jørgensen SB, Gani R, El-Halwagi MM. A novel framework for simultaneous separation process and product design. Chem Eng Process. 2004;43:595-608.
– reference: Papadopoulos A, Linke P. A unified framework for integrated process and molecular design. Chem Eng Res Design. 2005;83:674-678.
– reference: Exler O, Schittkowski K. A trust region sqp algorithm for mixed-integer nonlinear programming. Optim Lett. 2007;1(3):269-280.
– reference: Zhou T, McBride K, Zhang X, Qi Z, Sundmacher K. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE J. 2015;61(1):147-158.
– reference: Pretel EJ, Lpez PA, Bottini SB, Brignole EA. Computer-aided molecular design of solvents for separation processes. AIChE J. 1994;40(8):1349-1360.
– reference: Roughton BC, Christian B, White J, Camarda KV, Gani R. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng. 2012;42:248-262.
– reference: Samudra AP, Sahinidis NV. Optimization-based framework for computer-aided molecular design. AIChE J. 2013;59:3686-3701.
– reference: Henley EJ, Seader JD, Roper DK. Separation Process Principles, 3rd ed, International student version. John Wiley & Sons, Asia, 2011.
– reference: Kamath RS, Biegler LT, Grossmann IE. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Comput Chem Eng. 2010;34(12):2085-2096.
– reference: Papadopoulos AI, Linke P. Efficient integration of optimal solvent and process design using molecular clustering. Chem Eng Sci. 2006;61:6316-6336.
– reference: Schilling J, Lampe M, Gross J, Bardow A. 1-stage CoMT-CAMD: an approach for integrated design of ORC process and working fluid using PC-SAFT. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302196
– reference: Skiborowski M, Rautenberg M, Marquardt W. A hybrid evolutionary-deterministic optimization approach for conceptual design. Ind Eng Chem Res. 2015;54(41):10054-10072.
– reference: Burger J, Papaioannou V, Gopinath S, Jackson G, Galindo A, Adjiman CS. A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT-γ Mie approach. AIChE J. 2015;61:3249-3269.
– reference: Galindo A, Davies LA, Gil-Villegas A, Jackson G. The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. Mol Phys. 1998;93:241-252.
– year: 2011
– year: 2016
  article-title: A framework for the integration of solvent and process design with controllability assessment
  publication-title: Chem Eng Sci.
– volume: 66
  start-page: 327
  issue: 1‐3
  year: 1994
  end-page: 349
  article-title: Solving mixed integer nonlinear programs by outer approximation
  publication-title: Math Program.
– volume: 34
  start-page: 25
  year: 2015
  end-page: 30
  article-title: Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n‐methyl‐2‐pyrrolidone solvent in absorption packed column
  publication-title: Int J Greenhouse Gas Control.
– volume: 158160
  start-page: 337
  issue: 0
  year: 1999
  end-page: 347
  article-title: Computer‐aided molecular design with combined molecular modeling and group contribution
  publication-title: Fluid Phase Equilib.
– year: 2016
  article-title: The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study
  publication-title: AIChE J.
– volume: 40
  start-page: 1349
  issue: 8
  year: 1994
  end-page: 1360
  article-title: Computer‐aided molecular design of solvents for separation processes
  publication-title: AIChE J.
– volume: 29
  start-page: 1709
  year: 1990
  end-page: 1721
  article-title: New reference equation of state for associating liquids
  publication-title: Ind Eng Chem Res.
– volume: 35
  start-page: 474
  year: 2011
  end-page: 491
  article-title: Integrated solvent and process design using a SAFT‐VR thermodynamic description: high‐pressure separation of carbon dioxide and methane
  publication-title: Comput Chem Eng.
– volume: 61
  start-page: 6316
  year: 2006
  end-page: 6336
  article-title: Efficient integration of optimal solvent and process design using molecular clustering
  publication-title: Chem Eng Sci.
– year: 2016
  article-title: A hybrid stochastic‐deterministic optimization approach for integrated solvent and process design
  publication-title: Chem Eng Sci.
– volume: 162
  start-page: 809
  issue: 2
  year: 2010
  end-page: 820
  article-title: Computer‐aided biocompatible solvent design for an integrated extractive fermentation‐separation process
  publication-title: Chem Eng J.
– volume: 19
  start-page: 38
  year: 1923
  end-page: 41
  article-title: On a relation between surface tension and density
  publication-title: Trans Faraday Soc.
– volume: 49
  start-page: 2834
  issue: 6
  year: 2010
  end-page: 2840
  article-title: Continuous‐molecular targeting for integrated solvent and process design
  publication-title: Ind Eng Chem Res.
– volume: 140
  start-page: 054107
  issue: 5
  year: 2014
  article-title: Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments
  publication-title: J Chem Phys.
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  end-page: 339
  article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs
  publication-title: Math Program.
– volume: 30
  start-page: 572
  year: 2012
  end-page: 576
  article-title: Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC‐SAFT
  publication-title: Comput Aided Chem Eng.
– volume: 82
  start-page: 47
  issue: 0
  year: 1993
  end-page: 54
  article-title: Computer aided molecular design: a novel method for optimal solvent selection
  publication-title: Fluid Phase Equilib.
– volume: 86
  start-page: 781
  issue: 7
  year: 2008
  end-page: 792
  article-title: A systematic synthesis framework for extractive distillation processes
  publication-title: Chem Eng Res Design.
– volume: 5
  start-page: 952
  year: 2013
  end-page: 957
  article-title: Computer‐aided molecular design of solvents for accelerated reaction kinetics
  publication-title: Nat Chem.
– volume: 72
  start-page: 34
  year: 2015
  end-page: 51
  article-title: Efficient optimization‐based design for the separation of heterogeneous azeotropic mixtures
  publication-title: Comput Chem Eng.
– year: 2016
  article-title: 1‐stage CoMT‐CAMD: an approach for integrated design of ORC process and working fluid using PC‐SAFT
  publication-title: Chem Eng Sci.
– volume: 52
  start-page: 31
  year: 1989
  end-page: 38
  article-title: SAFT: equation‐of‐state solution model for associating fluids
  publication-title: Fluid Phase Equilib.
– year: 1997
– year: 1934
  article-title: The application of physico‐chemical principles to the design of liquid‐liquid contact equipment. Part II. Application of phase‐rule graphical methods
  publication-title: J Soc Chem Ind.
– volume: 50
  start-page: 511
  issue: 3
  year: 1995
  end-page: 530
  article-title: Separation process design and synthesis based on thermodynamic insights
  publication-title: Chem Eng Sci.
– volume: 106
  start-page: 4168
  year: 1997
  end-page: 4186
  article-title: Statistical associating fluid theory for chain molecules with attractive potentials of variable range
  publication-title: J Chem Phys.
– volume: 36
  start-page: 99
  year: 2012
  end-page: 118
  article-title: The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state
  publication-title: Comput Chem Eng.
– volume: 36
  start-page: 279
  year: 2015
  end-page: 310
– volume: 49
  start-page: 3095
  issue: 12
  year: 2003
  end-page: 3109
  article-title: Optimal solvent design for batch separation based on economic performance
  publication-title: AIChE J.
– volume: 22
  start-page: 717
  issue: 6
  year: 1998
  end-page: 733
  article-title: Optimal solvent design for environmental impact minimization
  publication-title: Comput Chem Eng.
– volume: 42
  start-page: 248
  year: 2012
  end-page: 262
  article-title: Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes
  publication-title: Comput Chem Eng.
– volume: 43
  start-page: 595
  year: 2004
  end-page: 608
  article-title: A novel framework for simultaneous separation process and product design
  publication-title: Chem Eng Process.
– volume: 52
  start-page: 7090
  issue: 22
  year: 2013
  end-page: 7103
  article-title: A novel methodology for property‐based molecular design using multiple topological indices
  publication-title: Ind Eng Chem Res.
– volume: 12
  start-page: 63
  year: 2002
  end-page: 93
– year: 2015
– year: 2016
  article-title: Designing optimal mixtures using generalized disjunctive programming: hull relaxations
  publication-title: Chem Eng Sci.
– volume: 61
  start-page: 147
  issue: 1
  year: 2015
  end-page: 158
  article-title: Integrated solvent and process design exemplified for a Diels‐Alder reaction
  publication-title: AIChE J.
– volume: 81
  start-page: 278
  year: 2015
  end-page: 287
  article-title: Computer‐aided molecular design in the continuous‐molecular targeting framework using group‐contribution PC‐SAFT
  publication-title: Comput Chem Eng.
– volume: 27
  start-page: 441
  year: 2010
  end-page: 450
  article-title: An algebraic approach for simultaneous solution of process and molecular design problems
  publication-title: Braz J Chem Eng.
– volume: 4
  start-page: 45
  year: 1997
  end-page: 54
  article-title: On the use of a mixed integer nonlinear programming model for refrigerant design
  publication-title: Int Trans Oper Res.
– volume: 45
  start-page: 817
  issue: 4
  year: 1999
  end-page: 843
  article-title: Optimal design of solvent blends for environmental impact minimization
  publication-title: AIChE J.
– volume: 52
  start-page: 1057
  issue: 3
  year: 2006
  end-page: 1070
  article-title: Multiobjective molecular design for integrated process‐solvent systems synthesis
  publication-title: AIChE J.
– year: 2016
– volume: 21
  start-page: 1086
  issue: 6
  year: 1975
  end-page: 1099
  article-title: Group‐contribution estimation of activity coefficients in nonideal liquid mixtures
  publication-title: AIChE J.
– volume: 16
  start-page: 424
  year: 2008
  end-page: 434
  article-title: A property based approach for simultaneous process and molecular design
  publication-title: Chin J Chem Eng.
– volume: 19
  start-page: 507
  issue: Supplement 1
  year: 1995
  end-page: 512
  article-title: Reinitialization of DAE's after discontinuities
  publication-title: Comput Chem Eng.
– volume: 40
  start-page: 1244
  issue: 4
  year: 2001
  end-page: 1260
  article-title: Perturbed‐chain SAFT: An equation of state based on a perturbation theory for chain molecules
  publication-title: Ind Eng Chem Res.
– year: 2010
– volume: 34
  start-page: 2085
  issue: 12
  year: 2010
  end-page: 2096
  article-title: An equation‐oriented approach for handling thermodynamics based on cubic equation of state in process optimization
  publication-title: Comput Chem Eng.
– volume: 321
  start-page: 25
  year: 2012
  end-page: 43
  article-title: Group‐contribution (GC ) based estimation of properties of pure components: Improved property estimation and uncertainty analysis
  publication-title: Fluid Phase Equilibria
– volume: 83
  start-page: 674
  year: 2005
  end-page: 678
  article-title: A unified framework for integrated process and molecular design
  publication-title: Chem Eng Res Design.
– volume: 59
  start-page: 3686
  year: 2013
  end-page: 3701
  article-title: Optimization‐based framework for computer‐aided molecular design
  publication-title: AIChE J.
– volume: 52
  start-page: 12116
  issue: 34
  year: 2013
  end-page: 12133
  article-title: Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis
  publication-title: Ind Eng Chem Res.
– volume: 61
  start-page: 3249
  year: 2015
  end-page: 3269
  article-title: A hierarchical method to integrated solvent and process design of physical CO absorption using the SAFT‐ Mie approach
  publication-title: AIChE J.
– volume: 44
  start-page: 4785
  issue: 13
  year: 2005
  end-page: 4797
  article-title: A new decomposition‐based computer‐aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures
  publication-title: Ind Eng Chem Res.
– volume: 50
  start-page: 9
  year: 1992
  end-page: 25
  article-title: A new group contribution method for predicting viscosity of organic liquids
  publication-title: Chem Eng J.
– volume: 27
  start-page: 813
  year: 2009
  end-page: 818
– volume: 18
  start-page: 1097
  issue: 1112
  year: 1994
  end-page: 1114
  article-title: New developments and capabilities in PROSYN‐an automated topology and parameter process synthesizer
  publication-title: Comput Chem Eng.
– start-page: 215
  year: 2010
  end-page: 279
– volume: 54
  start-page: 10054
  issue: 41
  year: 2015
  end-page: 10072
  article-title: A hybrid evolutionary‐deterministic optimization approach for conceptual design
  publication-title: Ind Eng Chem Res.
– volume: 39
  start-page: 1637
  issue: 6
  year: 2000
  end-page: 1648
  article-title: Disjunctive programming models for the optimal design of distillation columns and separation sequences
  publication-title: Ind Eng Chem Res.
– volume: 23
  start-page: 1395
  year: 1999
  end-page: 1414
  article-title: Design of environmentally benign processes: integration of solvent design and separation process synthesis
  publication-title: Comput Chem Eng.
– volume: 1
  start-page: 269
  issue: 3
  year: 2007
  end-page: 280
  article-title: A trust region sqp algorithm for mixed‐integer nonlinear programming
  publication-title: Optim Lett.
– volume: 10
  start-page: 237
  issue: 4
  year: 1972
  end-page: 260
  article-title: Generalized benders decomposition
  publication-title: J Optim Theory Appl.
– volume: 34
  start-page: 55
  year: 2014
  end-page: 64
– volume: 93
  start-page: 241
  year: 1998
  end-page: 252
  article-title: The thermodynamics of mixtures and the corresponding mixing rules in the SAFT‐VR approach for potentials of variable range
  publication-title: Mol Phys.
– ident: e_1_2_10_43_1
  doi: 10.1016/j.cej.2010.06.018
– ident: e_1_2_10_33_1
  doi: 10.1002/aic.10715
– ident: e_1_2_10_25_1
  doi: 10.1021/ie901281w
– ident: e_1_2_10_19_1
  doi: 10.1021/ie9906520
– ident: e_1_2_10_22_1
  doi: 10.1016/S1004-9541(08)60100-7
– ident: e_1_2_10_23_1
  doi: 10.1590/S0104-66322010000300008
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ces.2016.04.042
– ident: e_1_2_10_31_1
  doi: 10.1016/j.compchemeng.2012.02.021
– ident: e_1_2_10_18_1
  doi: 10.1016/0098-1354(95)87087-3
– ident: e_1_2_10_17_1
  doi: 10.1063/1.4851455
– ident: e_1_2_10_42_1
  doi: 10.1002/aic.14630
– volume-title: Separation Process Principles, 3rd ed, International student version
  year: 2011
  ident: e_1_2_10_62_1
– ident: e_1_2_10_13_1
  doi: 10.1021/ie400968j
– ident: e_1_2_10_63_1
  doi: 10.1016/S0098-1354(94)85027-5
– ident: e_1_2_10_12_1
  doi: 10.1111/j.1475-3995.1997.tb00061.x
– ident: e_1_2_10_46_1
  doi: 10.1007/BF00934810
– ident: e_1_2_10_35_1
  doi: 10.1016/j.ces.2006.06.006
– ident: e_1_2_10_51_1
  doi: 10.1007/BF01581153
– ident: e_1_2_10_39_1
  doi: 10.1016/0009-2509(94)00216-E
– ident: e_1_2_10_20_1
  doi: 10.1016/j.compchemeng.2010.07.028
– year: 1934
  ident: e_1_2_10_61_1
  article-title: The application of physico‐chemical principles to the design of liquid‐liquid contact equipment. Part II. Application of phase‐rule graphical methods
  publication-title: J Soc Chem Ind.
– ident: e_1_2_10_40_1
  doi: 10.1063/1.473101
– ident: e_1_2_10_44_1
  doi: 10.1007/s11590-006-0026-1
– ident: e_1_2_10_24_1
  doi: 10.1021/ie302516v
– ident: e_1_2_10_30_1
  doi: 10.1021/ie049328h
– ident: e_1_2_10_59_1
– ident: e_1_2_10_60_1
  doi: 10.1016/S0378-3812(99)00089-8
– volume-title: Proceedings of the 26th European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering
  year: 2016
  ident: e_1_2_10_49_1
– ident: e_1_2_10_67_1
– ident: e_1_2_10_68_1
  doi: 10.1016/j.compchemeng.2011.07.009
– ident: e_1_2_10_64_1
  doi: 10.1002/aic.14112
– ident: e_1_2_10_48_1
  doi: 10.1002/aic.14838
– ident: e_1_2_10_47_1
  doi: 10.1002/aic.690491211
– ident: e_1_2_10_9_1
  doi: 10.1002/aic.690450415
– ident: e_1_2_10_10_1
  doi: 10.1038/nchem.1755
– ident: e_1_2_10_27_1
  doi: 10.1021/ie0003887
– ident: e_1_2_10_29_1
  doi: 10.1016/j.compchemeng.2015.04.008
– ident: e_1_2_10_58_1
  doi: 10.1039/tf9231900038
– ident: e_1_2_10_54_1
  doi: 10.1039/9781849730983-00215
– ident: e_1_2_10_6_1
  doi: 10.1016/j.compchemeng.2010.06.016
– ident: e_1_2_10_7_1
  doi: 10.1016/0378-3812(93)87127-M
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ces.2016.08.008
– ident: e_1_2_10_56_1
  doi: 10.1016/j.fluid.2012.02.010
– ident: e_1_2_10_2_1
  doi: 10.1016/B978-0-444-63433-7.50007-9
– ident: e_1_2_10_52_1
  doi: 10.1021/ie00104a021
– ident: e_1_2_10_3_1
  doi: 10.1016/j.cep.2003.03.002
– ident: e_1_2_10_53_1
  doi: 10.1016/0378-3812(89)80308-5
– ident: e_1_2_10_32_1
  doi: 10.1016/j.cherd.2008.01.008
– ident: e_1_2_10_8_1
  doi: 10.1002/aic.690400808
– ident: e_1_2_10_28_1
  doi: 10.1016/B978-0-444-59519-5.50115-5
– ident: e_1_2_10_4_1
  doi: 10.1016/S0098-1354(99)00300-2
– ident: e_1_2_10_55_1
  doi: 10.1002/9780470747537
– ident: e_1_2_10_14_1
  doi: 10.1002/aic.15122
– ident: e_1_2_10_65_1
– ident: e_1_2_10_26_1
  doi: 10.1016/S1570-7946(09)70356-6
– ident: e_1_2_10_50_1
  doi: 10.1007/BF02592064
– ident: e_1_2_10_41_1
  doi: 10.1080/00268979809482207
– ident: e_1_2_10_69_1
  doi: 10.1021/acs.iecr.5b01995
– ident: e_1_2_10_5_1
  doi: 10.1016/S0098-1354(97)00255-X
– ident: e_1_2_10_57_1
  doi: 10.1016/0300-9467(92)80002-R
– ident: e_1_2_10_45_1
  doi: 10.1016/j.ces.2016.04.048
– ident: e_1_2_10_21_1
  doi: 10.1016/j.compchemeng.2014.03.012
– ident: e_1_2_10_34_1
  doi: 10.1016/B978-0-444-63472-6.00011-2
– ident: e_1_2_10_66_1
  doi: 10.1016/j.ijggc.2014.12.020
– ident: e_1_2_10_38_1
  doi: 10.1016/j.ces.2016.03.011
– ident: e_1_2_10_16_1
  doi: 10.1002/aic.690210607
– ident: e_1_2_10_36_1
  doi: 10.1205/cherd.04349
– start-page: 63
  volume-title: Computer Aided Molecular Design: Theory and Practice
  year: 2002
  ident: e_1_2_10_11_1
SSID ssj0012782
Score 2.4091434
Snippet Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure...
Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3484
SubjectTerms absorption
Algorithms
CAD
Carbon dioxide
carbon dioxide capture
Chemical engineering
Computer aided design
Constraint modelling
Design
Design engineering
Energy balance
High pressure
Mathematical models
mixed-integer optimization
Molecular chemistry
molecular design
Nonlinearity
SAFT equation of state
Separation
Solvents
Title Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design
URI https://api.istex.fr/ark:/67375/WNG-108D8FH1-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15411
https://www.proquest.com/docview/1811924311
https://www.proquest.com/docview/1815697879
https://www.proquest.com/docview/1835570027
Volume 62
WOSCitedRecordID wos000382987000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKlwMc-EYslMoghLhE3diOP8SpalmKhJYKUdGb5dhOiehmV9ktKjd-Ar-RX4LHTkIrAULiFikvkWPPxG9szxuEnqnCCVkqmznuqowp6TMZoJm0QjmjKqJKG4tNiNlMHh-rww30ss-FSfoQw4IbeEb8X4ODm3K180s01NQWlkUgr3cESVUh8hrtv58evR02EYiQSSw8RMyA7IWFJmRnePjSdDSCnj2_xDUvMtY45Uxv_ldjb6EbHdPEu8k0bqMN39xB1y_oD95FX99BQQccdcXP65TEiM3pyaKt15_mGNZo8bIbSOwWc1M3uAWt1wgMdBfbrijEj2_fQWvS4XlfbhebxuGVT9LiAb1MGQnYxSMj99DR9NWHvYOsq8WQWSZonhGVM-9KSk0xoZZX3FHihMlLE0Ki0hZOkdzn1ivJjKx4xSwtiSOVocxKzif0PtpsFo1_gDCXrHJEmGAjFTMsMMhgIcqTEtict8UYveiHRNtOqBzqZZzqJLFMdOhNHXtzjJ4O0GVS5_gd6Hkc1wFh2s9wnE0U-uPsNSik7svpQa7ZGG31A687T17pwIAgRqXwnifD7eCDsLFiGr84i5iCh3BcqL9hKKidBTsN3xdN5c8t1rtv9uLFw3-HPkLXApfj6fjbFtpct2f-Mbpqv6zrVbuNrhB2uN05yE9WjBVX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqthL0AOWn6tICBiHEJerGdmJb4lIVlq0oSw9F9GY5tgMR3ewqu0XtjUfgGXkSPHYSWgkQErdI-RI5npl4xp75BqFnMrNcFNIkNrdlwqRwifDQRBgurZYlkYUJzSb4ZCJOT-XxCnrZ1cJEfoh-ww0sI_yvwcBhQ3rvF2uorgzsi0Bh7xrzqxIk9BF23J8hEC4iV7gPmAHX8QoNyV7_6LXVaA0m9uKaq3nVYQ0rzuj2_411E91qPU28H1XjDlpx9V20cYV_8B66fA8NHXDgFb-oYhEj1mefZk21_DzFsEeL560gsZ1NdVXjBrheA9C7u9i0TSF-fPsOXJMWT7t2u1jXFi9cpBb36HmsSMA2pIzcRx9Gr08OxknbiyExjNM0ITJlzhaU6mxITV7mlhLLdVpoHxIVJrOSpC41TgqmRZmXzNCCWFJqyozI8yHdQqv1rHbbCOeClZZw7XWkZJp5D9JriHSkAG_OmWyAXnQyUaYlKod-GWcqUiwT5WdThdkcoKc9dB7ZOX4Heh4E2yN08wXS2XimPk7eAEPqKzEap4oN0G4nedVa8kJ5DwhiVArvedLf9jYIByu6drPzgMlyH45z-TcMBbazIeH--4Ku_HnEav_wIFw8-HfoY3RjfPLuSB0dTt7uoJver8tjKtwuWl025-4hWjdfl9WieRSs5CdKZhbV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqFiFY8K4YKGAQQmyiTmzHD4lN1TK0Ag2zANGd5fgBEZ3MKDNFZccn8I18Cb7Og1YChMQuUk4ix_fe-Phxz0XoqSqckKWymeMuZExJn8kIzaQVyhkViCptKjYhplN5fKxmG-hFnwvT6kMMC24QGel_DQHuly7s_lINNZWFdRFI7N1ihUhhSdhs2EMgQrZa4XHCDLheV2hMdodHL4xGW9CxZxeo5nnCmkacyfX_a-sNdK1jmnivdY2baMPXt9DVc_qDt9HXt1DQASdd8bOqTWLE5uTjoqnWn-YY1mjxsjMkdou5qWrcgNZrAka6i21XFOLHt--gNenwvC-3i03t8Mq30uIRvWwzErBLR0buoPeTl-_2D7OuFkNmmaB5RlTOvCspNcWYWh64o8QJk5cmTolKWzhFcp9bryQzMvDALC2JI8FQZiXnY7qNNutF7e8izCULjggTfSQwwyKDjB6iPCmBzXlbjNDz3ibadkLlUC_jRLcSy0TH3tSpN0foyQBdtuocvwM9S4YdEKb5DMfZRKE_TF-BQuqBnBzmmo3QTm953UXySkcGBHNUCu95PNyOMQgbK6b2i9OEKXicjgv1NwwFtbMxEfH7kq_8ucV672g_Xdz7d-gjdHl2MNFvjqav76Mrkdbx9iTcDtpcN6f-Abpkv6yrVfMwBclPtQQWUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outer+approximation+algorithm+with+physical+domain+reduction+for+computer%E2%80%90aided+molecular+and+separation+process+design&rft.jtitle=AIChE+journal&rft.au=Gopinath%2C+Smitha&rft.au=Jackson%2C+George&rft.au=Galindo%2C+Amparo&rft.au=Adjiman%2C+Claire+S.&rft.date=2016-09-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=9&rft.spage=3484&rft.epage=3504&rft_id=info:doi/10.1002%2Faic.15411&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_15411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon