Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design
Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure...
Uloženo v:
| Vydáno v: | AIChE journal Ročník 62; číslo 9; s. 3484 - 3504 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Blackwell Publishing Ltd
01.09.2016
American Institute of Chemical Engineers |
| Témata: | |
| ISSN: | 0001-1541, 1547-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484–3504, 2016 |
|---|---|
| AbstractList | Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC + group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J , 62: 3484–3504, 2016 Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer-approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group-contribution version of the statistical associating fluid theory (SAFT-[gamma] Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher-fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484-3504, 2016 Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer-approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group-contribution version of the statistical associating fluid theory (SAFT- gamma Mie) and on the GC super(+) group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher-fidelity nonlinear models in molecular and process design. copyright 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484-3504, 2016 |
| Author | Jackson, George Galindo, Amparo Adjiman, Claire S. Gopinath, Smitha |
| Author_xml | – sequence: 1 givenname: Smitha surname: Gopinath fullname: Gopinath, Smitha organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K – sequence: 2 givenname: George surname: Jackson fullname: Jackson, George organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K – sequence: 3 givenname: Amparo surname: Galindo fullname: Galindo, Amparo organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K – sequence: 4 givenname: Claire S. surname: Adjiman fullname: Adjiman, Claire S. email: c.adjiman@imperial.ac.uk organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K |
| BookMark | eNqNkU1r3DAQhkVJIZu0h_wDQS_twYk-LEs-hm2-IDSXlh7FrCQnSmXLlWw2---j3U16CC30okHM877DzHuEDoY4OIROKDmlhLAz8OaUiprSd2hRqqxES8QBWhBCaLVtHKKjnB_Lj0nFFmh9N08uYRjHFJ98D5OPA4ZwH5OfHnq8Li8eHzbZGwjYxh78gJOzs9mBXUzYxH7celTgrbO4j8GZOUDxHCzOboS0Ny0DjMsZW5f9_fABve8gZPfxpR6jH5cX35fX1e3d1c3y_LYyteS0Yi2tnV1xDoJw03SN5cxKoCtQDVsZYVtGHTWuVTWorulqw1fMsg54bVTTEH6MPu99y_jfs8uT7n02LgQYXJyzpooLIcvl5H-gVDStVLIt6Kc36GOc01AW2VK0ZTWntFBne8qkmHNynTZ-2h1jSuCDpkRvM9MlM73LrCi-vFGMqYSSNn9lX9zXPrjNv0F9frN8VVR7hc-Te_qjgPRLN5JLoX9-uypi9VVdXlNd82esLrgn |
| CODEN | AICEAC |
| CitedBy_id | crossref_primary_10_1039_D4ME00127C crossref_primary_10_1039_C9ME00089E crossref_primary_10_1016_j_cherd_2016_10_014 crossref_primary_10_1016_j_enconman_2017_03_048 crossref_primary_10_1016_j_fluid_2022_113674 crossref_primary_10_1016_j_pecs_2024_101201 crossref_primary_10_1016_j_compchemeng_2021_107522 crossref_primary_10_1016_j_compchemeng_2020_107005 crossref_primary_10_1016_j_compchemeng_2025_109232 crossref_primary_10_1016_j_coche_2017_05_005 crossref_primary_10_1016_j_cherd_2017_03_009 crossref_primary_10_1016_j_rser_2020_110179 crossref_primary_10_1016_j_compchemeng_2025_109266 crossref_primary_10_1063_5_0087125 crossref_primary_10_1016_j_compchemeng_2024_108972 crossref_primary_10_1002_aic_18236 crossref_primary_10_1016_j_compchemeng_2019_106518 crossref_primary_10_3390_pr7120882 crossref_primary_10_1016_j_egypro_2017_09_179 crossref_primary_10_1016_j_compchemeng_2018_01_016 crossref_primary_10_1002_cite_202200098 crossref_primary_10_1021_acs_iecr_4c04993 crossref_primary_10_1016_j_compchemeng_2021_107252 crossref_primary_10_1002_ente_202200182 crossref_primary_10_1016_j_cherd_2023_11_007 crossref_primary_10_1016_j_coche_2021_100724 crossref_primary_10_1016_j_compchemeng_2025_109138 crossref_primary_10_1002_aic_16903 crossref_primary_10_1016_j_compchemeng_2023_108204 crossref_primary_10_1002_cite_202000001 crossref_primary_10_1002_cite_202200172 crossref_primary_10_1016_j_compchemeng_2020_106802 crossref_primary_10_1016_j_compchemeng_2019_06_022 |
| Cites_doi | 10.1016/j.cej.2010.06.018 10.1002/aic.10715 10.1021/ie901281w 10.1021/ie9906520 10.1016/S1004-9541(08)60100-7 10.1590/S0104-66322010000300008 10.1016/j.ces.2016.04.042 10.1016/j.compchemeng.2012.02.021 10.1016/0098-1354(95)87087-3 10.1063/1.4851455 10.1002/aic.14630 10.1021/ie400968j 10.1016/S0098-1354(94)85027-5 10.1111/j.1475-3995.1997.tb00061.x 10.1007/BF00934810 10.1016/j.ces.2006.06.006 10.1007/BF01581153 10.1016/0009-2509(94)00216-E 10.1016/j.compchemeng.2010.07.028 10.1063/1.473101 10.1007/s11590-006-0026-1 10.1021/ie302516v 10.1021/ie049328h 10.1016/S0378-3812(99)00089-8 10.1016/j.compchemeng.2011.07.009 10.1002/aic.14112 10.1002/aic.14838 10.1002/aic.690491211 10.1002/aic.690450415 10.1038/nchem.1755 10.1021/ie0003887 10.1016/j.compchemeng.2015.04.008 10.1039/tf9231900038 10.1039/9781849730983-00215 10.1016/j.compchemeng.2010.06.016 10.1016/0378-3812(93)87127-M 10.1016/j.ces.2016.08.008 10.1016/j.fluid.2012.02.010 10.1016/B978-0-444-63433-7.50007-9 10.1021/ie00104a021 10.1016/j.cep.2003.03.002 10.1016/0378-3812(89)80308-5 10.1016/j.cherd.2008.01.008 10.1002/aic.690400808 10.1016/B978-0-444-59519-5.50115-5 10.1016/S0098-1354(99)00300-2 10.1002/9780470747537 10.1002/aic.15122 10.1016/S1570-7946(09)70356-6 10.1007/BF02592064 10.1080/00268979809482207 10.1021/acs.iecr.5b01995 10.1016/S0098-1354(97)00255-X 10.1016/0300-9467(92)80002-R 10.1016/j.ces.2016.04.048 10.1016/j.compchemeng.2014.03.012 10.1016/B978-0-444-63472-6.00011-2 10.1016/j.ijggc.2014.12.020 10.1016/j.ces.2016.03.011 10.1002/aic.690210607 10.1205/cherd.04349 |
| ContentType | Journal Article |
| Copyright | 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers 2016 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers – notice: 2016 American Institute of Chemical Engineers |
| DBID | BSCLL 24P AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.15411 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 3504 |
| ExternalDocumentID | 4149588471 10_1002_aic_15411 AIC15411 ark_67375_WNG_108D8FH1_4 |
| Genre | article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council (EPSRC) funderid: EP/E016340, EP/J014958/1 and EP/J003840/1 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 24P ALUQN PUEGO AAYXX CITATION O8X 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c4731-2914edb33a503c6f6d32d7a1ba862bc5d921e1ce984a8f6f4c3b2d2fa34c86603 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382987000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Thu Jul 10 23:12:06 EDT 2025 Tue Oct 07 09:39:13 EDT 2025 Mon Nov 10 03:05:50 EST 2025 Sat Nov 29 07:21:03 EST 2025 Tue Nov 18 21:07:14 EST 2025 Sun Sep 21 06:26:16 EDT 2025 Tue Nov 11 03:31:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4731-2914edb33a503c6f6d32d7a1ba862bc5d921e1ce984a8f6f4c3b2d2fa34c86603 |
| Notes | Engineering and Physical Sciences Research Council (EPSRC) - No. EP/E016340, EP/J014958/1 and EP/J003840/1 istex:BB9F49911758B0C5C33FEA329B7C377FE79E0255 ark:/67375/WNG-108D8FH1-4 ArticleID:AIC15411 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4573-7722 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15411 |
| PQID | 1811924311 |
| PQPubID | 7879 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1835570027 proquest_miscellaneous_1815697879 proquest_journals_1811924311 crossref_citationtrail_10_1002_aic_15411 crossref_primary_10_1002_aic_15411 wiley_primary_10_1002_aic_15411_AIC15411 istex_primary_ark_67375_WNG_108D8FH1_4 |
| PublicationCentury | 2000 |
| PublicationDate | September 2016 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationTitleAlternate | AIChE J |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
| References | Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Design. 2008;86(7):781-792. Eljack FT, Solvason CC, Chemmangattuvalappil N, Eden MR. A property based approach for simultaneous process and molecular design. Chin J Chem Eng. 2008;16:424-434. Zhou T, Zhou Y, Sundmacher K. A hybrid stochastic-deterministic optimization approach for integrated solvent and process design. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916301348 Harper PM, Gani R, Kolar P, Ishikawa T. Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib. 1999;158160(0):337-347. Hukkerikar AS, Sarup B, Kate AT, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Phase Equilibria. 2012;321:25-43. Henley EJ, Seader JD, Roper DK. Separation Process Principles, 3rd ed, International student version. John Wiley & Sons, Asia, 2011. Lampe M, Stavrou M, Schilling J, Sauer E, Gross J, Bardow A. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng. 2015;81:278-287. Kravanja Z, Grossmann IE. New developments and capabilities in PROSYN-an automated topology and parameter process synthesizer. Comput Chem Eng. 1994;18(1112):1097-1114. Jonuzaj S, Adjiman CS. Designing optimal mixtures using generalized disjunctive programming: hull relaxations. Chem Eng Sci. In press 2016. Exler O, Schittkowski K. A trust region sqp algorithm for mixed-integer nonlinear programming. Optim Lett. 2007;1(3):269-280. Samudra AP, Sahinidis NV. Optimization-based framework for computer-aided molecular design. AIChE J. 2013;59:3686-3701. Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106:4168-4186. Tan L, Shariff A, Lau K, Bustam M. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n-methyl-2-pyrrolidone solvent in absorption packed column. Int J Greenhouse Gas Control. 2015;34:25-30. Bommareddy S, Chemmangattuvalappil NG, Solvason CC, Eden MR. An algebraic approach for simultaneous solution of process and molecular design problems. Braz J Chem Eng. 2010;27:441-450. Schilling J, Lampe M, Gross J, Bardow A. 1-stage CoMT-CAMD: an approach for integrated design of ORC process and working fluid using PC-SAFT. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302196 Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29:1709-1721. Zhou T, McBride K, Zhang X, Qi Z, Sundmacher K. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE J. 2015;61(1):147-158. Chemmangattuvalappil NG, Eden MR. A novel methodology for property-based molecular design using multiple topological indices. Ind Eng Chem Res. 2013;52(22):7090-7103. Struebing H, Ganase Z, Karamertzanis P, Siougkrou E, Haycock P, Piccione P, Armstrong A, Galindo A, Adjiman C. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem. 2013;5:952-957. Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989;52:31-38. Eden MR, Jørgensen SB, Gani R, El-Halwagi MM. A novel framework for simultaneous separation process and product design. Chem Eng Process. 2004;43:595-608. Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation. Math Program. 1994;66(1-3):327-349. Papadopoulos AI, Linke P. Efficient integration of optimal solvent and process design using molecular clustering. Chem Eng Sci. 2006;61:6316-6336. Geoffrion A. Generalized benders decomposition. J Optim Theory Appl. 1972;10(4):237-260. Papadopoulos A, Linke P. A unified framework for integrated process and molecular design. Chem Eng Res Design. 2005;83:674-678. Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program. 1986;36(3):307-339. Papadopoulos AI, Seferlis P, Linke P. A framework for the integration of solvent and process design with controllability assessment. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302135 Burger J, Papaioannou V, Gopinath S, Jackson G, Galindo A, Adjiman CS. A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT-γ Mie approach. AIChE J. 2015;61:3249-3269. Kontogeorgis GM, Folas GK. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. New York: Wiley, 2010. Odele O, Macchietto S. Computer aided molecular design: a novel method for optimal solvent selection. Fluid Phase Equilib. 1993;82(0):47-54. Pistikopoulos EN, Stefanis SK. Optimal solvent design for environmental impact minimization. Comput Chem Eng. 1998;22(6):717-733. Skiborowski M, Harwardt A, Marquardt W. Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Comput Chem Eng. 2015;72:34-51. Kamath RS, Biegler LT, Grossmann IE. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Comput Chem Eng. 2010;34(12):2085-2096. Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G, Müller EA, Galindo A. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J Chem Phys. 2014;140(5):054107. Yeomans H, Grossmann IE. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Ind Eng Chem Res. 2000;39(6):1637-1648. Jaksland CA, Gani R, Lien KM. Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci. 1995;50(3):511-530. Lampe M, Gross J, Bardow A. Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC-SAFT. Comput Aided Chem Eng. 2012;30:572-576. Roughton BC, Christian B, White J, Camarda KV, Gani R. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng. 2012;42:248-262. Hostrup M, Harper PM, Gani R. Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng. 1999;23:1395-1414. Buxton A, Livingston AG, Pistikopoulos EN. Optimal design of solvent blends for environmental impact minimization. AIChE J. 1999;45(4):817-843. Papadopoulos AI, Stijepovic M, Linke P, Seferlis P, Voutetakis S. Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis. Ind Eng Chem Res. 2013;52(34):12116-12133. Majer C, Marquardt W, Gilles E. Reinitialization of DAE's after discontinuities. Comput Chem Eng. 1995;19(Supplement 1):507-512. Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975;21(6):1086-1099. Cheng HC, Wang FS. Computer-aided biocompatible solvent design for an integrated extractive fermentation-separation process. Chem Eng J. 2010;162(2):809-820. Churi N, Achenie LEK. On the use of a mixed integer nonlinear programming model for refrigerant design. Int Trans Oper Res. 1997;4:45-54. Pretel EJ, Lpez PA, Bottini SB, Brignole EA. Computer-aided molecular design of solvents for separation processes. AIChE J. 1994;40(8):1349-1360. Jonuzaj S, Akula PT, Kleniati PM, Adjiman CS. The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study. AIChE J. In press 2016. doi:10.1002/aic.15122 Papadopoulos AI, Linke P. Multiobjective molecular design for integrated process-solvent systems synthesis. AIChE J. 2006;52(3):1057-1070. Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244-1260. Skiborowski M, Rautenberg M, Marquardt W. A hybrid evolutionary-deterministic optimization approach for conceptual design. Ind Eng Chem Res. 2015;54(41):10054-10072. Bardow A, Steur K, Gross J. Continuous-molecular targeting for integrated solvent and process design. Ind Eng Chem Res. 2010;49(6):2834-2840. Karunanithi AT, Achenie LEK, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind Eng Chem Res. 2005;44(13):4785-4797. Galindo A, Davies LA, Gil-Villegas A, Jackson G. The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. Mol Phys. 1998;93:241-252. Giovanoglou A, Barlatier J, Adjiman CS, Pistikopoulos EN, Cordiner JL. Optimal solvent design for batch separation based on economic performance. AIChE J. 2003;49(12):3095-3109. Sastri S, Rao K. A new group contribution method for predicting viscosity of organic liquids. Chem Eng J. 1992;50:9-25. Pereira FE, Keskes E, Galindo A, Jackson G, Adjiman CS. Integrated solvent and process design using a SAFT-VR thermodynamic description: high-pressure separation of carbon dioxide and methane. Comput Chem Eng. 2011;35:474-491. Macleod DB. On a relation between surface tension and density. Trans Faraday Soc. 1923;19:38-41. Pereira FE, Jackson G, Galindo A, Adjiman CS. The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state. Comput Chem Eng. 2012;36:99-118. Hunter TG, Nash AW. The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II. Application of phase-rule graphical methods. J Soc Chem Ind. 1934. 2015; 34 2015; 36 2012; 321 2015; 72 2002; 12 1986; 36 1923; 19 1999; 45 1994; 66 2013; 5 1997; 4 2001; 40 1992; 50 1934 2010; 27 1997; 106 2013; 59 2006; 61 2015; 81 2013; 52 2003; 49 1972; 10 1999; 158160 1998; 93 2007; 1 2004; 43 2010; 34 1995; 50 2006; 52 2011 1993; 82 2010 2008; 16 2015; 54 1999; 23 1997 2011; 35 2010; 162 1995; 19 2005; 83 2012; 36 2009; 27 2005; 44 1998; 22 1994; 40 2012; 30 1989; 52 2010; 49 2000; 39 2015; 61 1990; 29 2016 2014; 140 2015 1994; 18 1975; 21 2008; 86 2014; 34 2012; 42 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Gopinath S (e_1_2_10_49_1) 2016 Hunter TG (e_1_2_10_61_1) 1934 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Henley EJ (e_1_2_10_62_1) 2011 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Apostolakou A (e_1_2_10_11_1) 2002 e_1_2_10_60_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
| References_xml | – reference: Yeomans H, Grossmann IE. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Ind Eng Chem Res. 2000;39(6):1637-1648. – reference: Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29:1709-1721. – reference: Pereira FE, Jackson G, Galindo A, Adjiman CS. The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state. Comput Chem Eng. 2012;36:99-118. – reference: Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G, Müller EA, Galindo A. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J Chem Phys. 2014;140(5):054107. – reference: Hukkerikar AS, Sarup B, Kate AT, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Phase Equilibria. 2012;321:25-43. – reference: Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989;52:31-38. – reference: Bommareddy S, Chemmangattuvalappil NG, Solvason CC, Eden MR. An algebraic approach for simultaneous solution of process and molecular design problems. Braz J Chem Eng. 2010;27:441-450. – reference: Papadopoulos AI, Stijepovic M, Linke P, Seferlis P, Voutetakis S. Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis. Ind Eng Chem Res. 2013;52(34):12116-12133. – reference: Lampe M, Gross J, Bardow A. Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC-SAFT. Comput Aided Chem Eng. 2012;30:572-576. – reference: Kravanja Z, Grossmann IE. New developments and capabilities in PROSYN-an automated topology and parameter process synthesizer. Comput Chem Eng. 1994;18(1112):1097-1114. – reference: Jaksland CA, Gani R, Lien KM. Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci. 1995;50(3):511-530. – reference: Harper PM, Gani R, Kolar P, Ishikawa T. Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib. 1999;158160(0):337-347. – reference: Tan L, Shariff A, Lau K, Bustam M. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n-methyl-2-pyrrolidone solvent in absorption packed column. Int J Greenhouse Gas Control. 2015;34:25-30. – reference: Sastri S, Rao K. A new group contribution method for predicting viscosity of organic liquids. Chem Eng J. 1992;50:9-25. – reference: Kontogeorgis GM, Folas GK. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. New York: Wiley, 2010. – reference: Hunter TG, Nash AW. The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II. Application of phase-rule graphical methods. J Soc Chem Ind. 1934. – reference: Cheng HC, Wang FS. Computer-aided biocompatible solvent design for an integrated extractive fermentation-separation process. Chem Eng J. 2010;162(2):809-820. – reference: Chemmangattuvalappil NG, Eden MR. A novel methodology for property-based molecular design using multiple topological indices. Ind Eng Chem Res. 2013;52(22):7090-7103. – reference: Majer C, Marquardt W, Gilles E. Reinitialization of DAE's after discontinuities. Comput Chem Eng. 1995;19(Supplement 1):507-512. – reference: Eljack FT, Solvason CC, Chemmangattuvalappil N, Eden MR. A property based approach for simultaneous process and molecular design. Chin J Chem Eng. 2008;16:424-434. – reference: Buxton A, Livingston AG, Pistikopoulos EN. Optimal design of solvent blends for environmental impact minimization. AIChE J. 1999;45(4):817-843. – reference: Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program. 1986;36(3):307-339. – reference: Papadopoulos AI, Seferlis P, Linke P. A framework for the integration of solvent and process design with controllability assessment. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302135 – reference: Lampe M, Stavrou M, Schilling J, Sauer E, Gross J, Bardow A. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng. 2015;81:278-287. – reference: Pistikopoulos EN, Stefanis SK. Optimal solvent design for environmental impact minimization. Comput Chem Eng. 1998;22(6):717-733. – reference: Hostrup M, Harper PM, Gani R. Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng. 1999;23:1395-1414. – reference: Macleod DB. On a relation between surface tension and density. Trans Faraday Soc. 1923;19:38-41. – reference: Struebing H, Ganase Z, Karamertzanis P, Siougkrou E, Haycock P, Piccione P, Armstrong A, Galindo A, Adjiman C. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem. 2013;5:952-957. – reference: Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Design. 2008;86(7):781-792. – reference: Giovanoglou A, Barlatier J, Adjiman CS, Pistikopoulos EN, Cordiner JL. Optimal solvent design for batch separation based on economic performance. AIChE J. 2003;49(12):3095-3109. – reference: Karunanithi AT, Achenie LEK, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind Eng Chem Res. 2005;44(13):4785-4797. – reference: Bardow A, Steur K, Gross J. Continuous-molecular targeting for integrated solvent and process design. Ind Eng Chem Res. 2010;49(6):2834-2840. – reference: Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation. Math Program. 1994;66(1-3):327-349. – reference: Odele O, Macchietto S. Computer aided molecular design: a novel method for optimal solvent selection. Fluid Phase Equilib. 1993;82(0):47-54. – reference: Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244-1260. – reference: Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106:4168-4186. – reference: Skiborowski M, Harwardt A, Marquardt W. Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Comput Chem Eng. 2015;72:34-51. – reference: Geoffrion A. Generalized benders decomposition. J Optim Theory Appl. 1972;10(4):237-260. – reference: Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975;21(6):1086-1099. – reference: Zhou T, Zhou Y, Sundmacher K. A hybrid stochastic-deterministic optimization approach for integrated solvent and process design. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916301348 – reference: Jonuzaj S, Akula PT, Kleniati PM, Adjiman CS. The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study. AIChE J. In press 2016. doi:10.1002/aic.15122 – reference: Churi N, Achenie LEK. On the use of a mixed integer nonlinear programming model for refrigerant design. Int Trans Oper Res. 1997;4:45-54. – reference: Papadopoulos AI, Linke P. Multiobjective molecular design for integrated process-solvent systems synthesis. AIChE J. 2006;52(3):1057-1070. – reference: Pereira FE, Keskes E, Galindo A, Jackson G, Adjiman CS. Integrated solvent and process design using a SAFT-VR thermodynamic description: high-pressure separation of carbon dioxide and methane. Comput Chem Eng. 2011;35:474-491. – reference: Jonuzaj S, Adjiman CS. Designing optimal mixtures using generalized disjunctive programming: hull relaxations. Chem Eng Sci. In press 2016. – reference: Eden MR, Jørgensen SB, Gani R, El-Halwagi MM. A novel framework for simultaneous separation process and product design. Chem Eng Process. 2004;43:595-608. – reference: Papadopoulos A, Linke P. A unified framework for integrated process and molecular design. Chem Eng Res Design. 2005;83:674-678. – reference: Exler O, Schittkowski K. A trust region sqp algorithm for mixed-integer nonlinear programming. Optim Lett. 2007;1(3):269-280. – reference: Zhou T, McBride K, Zhang X, Qi Z, Sundmacher K. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE J. 2015;61(1):147-158. – reference: Pretel EJ, Lpez PA, Bottini SB, Brignole EA. Computer-aided molecular design of solvents for separation processes. AIChE J. 1994;40(8):1349-1360. – reference: Roughton BC, Christian B, White J, Camarda KV, Gani R. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng. 2012;42:248-262. – reference: Samudra AP, Sahinidis NV. Optimization-based framework for computer-aided molecular design. AIChE J. 2013;59:3686-3701. – reference: Henley EJ, Seader JD, Roper DK. Separation Process Principles, 3rd ed, International student version. John Wiley & Sons, Asia, 2011. – reference: Kamath RS, Biegler LT, Grossmann IE. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Comput Chem Eng. 2010;34(12):2085-2096. – reference: Papadopoulos AI, Linke P. Efficient integration of optimal solvent and process design using molecular clustering. Chem Eng Sci. 2006;61:6316-6336. – reference: Schilling J, Lampe M, Gross J, Bardow A. 1-stage CoMT-CAMD: an approach for integrated design of ORC process and working fluid using PC-SAFT. Chem Eng Sci. In press 2016. Available at: http://www.sciencedirect.com/science/article/pii/S0009250916302196 – reference: Skiborowski M, Rautenberg M, Marquardt W. A hybrid evolutionary-deterministic optimization approach for conceptual design. Ind Eng Chem Res. 2015;54(41):10054-10072. – reference: Burger J, Papaioannou V, Gopinath S, Jackson G, Galindo A, Adjiman CS. A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT-γ Mie approach. AIChE J. 2015;61:3249-3269. – reference: Galindo A, Davies LA, Gil-Villegas A, Jackson G. The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. Mol Phys. 1998;93:241-252. – year: 2011 – year: 2016 article-title: A framework for the integration of solvent and process design with controllability assessment publication-title: Chem Eng Sci. – volume: 66 start-page: 327 issue: 1‐3 year: 1994 end-page: 349 article-title: Solving mixed integer nonlinear programs by outer approximation publication-title: Math Program. – volume: 34 start-page: 25 year: 2015 end-page: 30 article-title: Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n‐methyl‐2‐pyrrolidone solvent in absorption packed column publication-title: Int J Greenhouse Gas Control. – volume: 158160 start-page: 337 issue: 0 year: 1999 end-page: 347 article-title: Computer‐aided molecular design with combined molecular modeling and group contribution publication-title: Fluid Phase Equilib. – year: 2016 article-title: The formulation of optimal mixtures with generalized disjunctive programming: a solvent design case study publication-title: AIChE J. – volume: 40 start-page: 1349 issue: 8 year: 1994 end-page: 1360 article-title: Computer‐aided molecular design of solvents for separation processes publication-title: AIChE J. – volume: 29 start-page: 1709 year: 1990 end-page: 1721 article-title: New reference equation of state for associating liquids publication-title: Ind Eng Chem Res. – volume: 35 start-page: 474 year: 2011 end-page: 491 article-title: Integrated solvent and process design using a SAFT‐VR thermodynamic description: high‐pressure separation of carbon dioxide and methane publication-title: Comput Chem Eng. – volume: 61 start-page: 6316 year: 2006 end-page: 6336 article-title: Efficient integration of optimal solvent and process design using molecular clustering publication-title: Chem Eng Sci. – year: 2016 article-title: A hybrid stochastic‐deterministic optimization approach for integrated solvent and process design publication-title: Chem Eng Sci. – volume: 162 start-page: 809 issue: 2 year: 2010 end-page: 820 article-title: Computer‐aided biocompatible solvent design for an integrated extractive fermentation‐separation process publication-title: Chem Eng J. – volume: 19 start-page: 38 year: 1923 end-page: 41 article-title: On a relation between surface tension and density publication-title: Trans Faraday Soc. – volume: 49 start-page: 2834 issue: 6 year: 2010 end-page: 2840 article-title: Continuous‐molecular targeting for integrated solvent and process design publication-title: Ind Eng Chem Res. – volume: 140 start-page: 054107 issue: 5 year: 2014 article-title: Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments publication-title: J Chem Phys. – volume: 36 start-page: 307 issue: 3 year: 1986 end-page: 339 article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs publication-title: Math Program. – volume: 30 start-page: 572 year: 2012 end-page: 576 article-title: Simultaneous process and working fluid optimisation for organic rankine cycles (ORC) using PC‐SAFT publication-title: Comput Aided Chem Eng. – volume: 82 start-page: 47 issue: 0 year: 1993 end-page: 54 article-title: Computer aided molecular design: a novel method for optimal solvent selection publication-title: Fluid Phase Equilib. – volume: 86 start-page: 781 issue: 7 year: 2008 end-page: 792 article-title: A systematic synthesis framework for extractive distillation processes publication-title: Chem Eng Res Design. – volume: 5 start-page: 952 year: 2013 end-page: 957 article-title: Computer‐aided molecular design of solvents for accelerated reaction kinetics publication-title: Nat Chem. – volume: 72 start-page: 34 year: 2015 end-page: 51 article-title: Efficient optimization‐based design for the separation of heterogeneous azeotropic mixtures publication-title: Comput Chem Eng. – year: 2016 article-title: 1‐stage CoMT‐CAMD: an approach for integrated design of ORC process and working fluid using PC‐SAFT publication-title: Chem Eng Sci. – volume: 52 start-page: 31 year: 1989 end-page: 38 article-title: SAFT: equation‐of‐state solution model for associating fluids publication-title: Fluid Phase Equilib. – year: 1997 – year: 1934 article-title: The application of physico‐chemical principles to the design of liquid‐liquid contact equipment. Part II. Application of phase‐rule graphical methods publication-title: J Soc Chem Ind. – volume: 50 start-page: 511 issue: 3 year: 1995 end-page: 530 article-title: Separation process design and synthesis based on thermodynamic insights publication-title: Chem Eng Sci. – volume: 106 start-page: 4168 year: 1997 end-page: 4186 article-title: Statistical associating fluid theory for chain molecules with attractive potentials of variable range publication-title: J Chem Phys. – volume: 36 start-page: 99 year: 2012 end-page: 118 article-title: The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state publication-title: Comput Chem Eng. – volume: 36 start-page: 279 year: 2015 end-page: 310 – volume: 49 start-page: 3095 issue: 12 year: 2003 end-page: 3109 article-title: Optimal solvent design for batch separation based on economic performance publication-title: AIChE J. – volume: 22 start-page: 717 issue: 6 year: 1998 end-page: 733 article-title: Optimal solvent design for environmental impact minimization publication-title: Comput Chem Eng. – volume: 42 start-page: 248 year: 2012 end-page: 262 article-title: Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes publication-title: Comput Chem Eng. – volume: 43 start-page: 595 year: 2004 end-page: 608 article-title: A novel framework for simultaneous separation process and product design publication-title: Chem Eng Process. – volume: 52 start-page: 7090 issue: 22 year: 2013 end-page: 7103 article-title: A novel methodology for property‐based molecular design using multiple topological indices publication-title: Ind Eng Chem Res. – volume: 12 start-page: 63 year: 2002 end-page: 93 – year: 2015 – year: 2016 article-title: Designing optimal mixtures using generalized disjunctive programming: hull relaxations publication-title: Chem Eng Sci. – volume: 61 start-page: 147 issue: 1 year: 2015 end-page: 158 article-title: Integrated solvent and process design exemplified for a Diels‐Alder reaction publication-title: AIChE J. – volume: 81 start-page: 278 year: 2015 end-page: 287 article-title: Computer‐aided molecular design in the continuous‐molecular targeting framework using group‐contribution PC‐SAFT publication-title: Comput Chem Eng. – volume: 27 start-page: 441 year: 2010 end-page: 450 article-title: An algebraic approach for simultaneous solution of process and molecular design problems publication-title: Braz J Chem Eng. – volume: 4 start-page: 45 year: 1997 end-page: 54 article-title: On the use of a mixed integer nonlinear programming model for refrigerant design publication-title: Int Trans Oper Res. – volume: 45 start-page: 817 issue: 4 year: 1999 end-page: 843 article-title: Optimal design of solvent blends for environmental impact minimization publication-title: AIChE J. – volume: 52 start-page: 1057 issue: 3 year: 2006 end-page: 1070 article-title: Multiobjective molecular design for integrated process‐solvent systems synthesis publication-title: AIChE J. – year: 2016 – volume: 21 start-page: 1086 issue: 6 year: 1975 end-page: 1099 article-title: Group‐contribution estimation of activity coefficients in nonideal liquid mixtures publication-title: AIChE J. – volume: 16 start-page: 424 year: 2008 end-page: 434 article-title: A property based approach for simultaneous process and molecular design publication-title: Chin J Chem Eng. – volume: 19 start-page: 507 issue: Supplement 1 year: 1995 end-page: 512 article-title: Reinitialization of DAE's after discontinuities publication-title: Comput Chem Eng. – volume: 40 start-page: 1244 issue: 4 year: 2001 end-page: 1260 article-title: Perturbed‐chain SAFT: An equation of state based on a perturbation theory for chain molecules publication-title: Ind Eng Chem Res. – year: 2010 – volume: 34 start-page: 2085 issue: 12 year: 2010 end-page: 2096 article-title: An equation‐oriented approach for handling thermodynamics based on cubic equation of state in process optimization publication-title: Comput Chem Eng. – volume: 321 start-page: 25 year: 2012 end-page: 43 article-title: Group‐contribution (GC ) based estimation of properties of pure components: Improved property estimation and uncertainty analysis publication-title: Fluid Phase Equilibria – volume: 83 start-page: 674 year: 2005 end-page: 678 article-title: A unified framework for integrated process and molecular design publication-title: Chem Eng Res Design. – volume: 59 start-page: 3686 year: 2013 end-page: 3701 article-title: Optimization‐based framework for computer‐aided molecular design publication-title: AIChE J. – volume: 52 start-page: 12116 issue: 34 year: 2013 end-page: 12133 article-title: Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis publication-title: Ind Eng Chem Res. – volume: 61 start-page: 3249 year: 2015 end-page: 3269 article-title: A hierarchical method to integrated solvent and process design of physical CO absorption using the SAFT‐ Mie approach publication-title: AIChE J. – volume: 44 start-page: 4785 issue: 13 year: 2005 end-page: 4797 article-title: A new decomposition‐based computer‐aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures publication-title: Ind Eng Chem Res. – volume: 50 start-page: 9 year: 1992 end-page: 25 article-title: A new group contribution method for predicting viscosity of organic liquids publication-title: Chem Eng J. – volume: 27 start-page: 813 year: 2009 end-page: 818 – volume: 18 start-page: 1097 issue: 1112 year: 1994 end-page: 1114 article-title: New developments and capabilities in PROSYN‐an automated topology and parameter process synthesizer publication-title: Comput Chem Eng. – start-page: 215 year: 2010 end-page: 279 – volume: 54 start-page: 10054 issue: 41 year: 2015 end-page: 10072 article-title: A hybrid evolutionary‐deterministic optimization approach for conceptual design publication-title: Ind Eng Chem Res. – volume: 39 start-page: 1637 issue: 6 year: 2000 end-page: 1648 article-title: Disjunctive programming models for the optimal design of distillation columns and separation sequences publication-title: Ind Eng Chem Res. – volume: 23 start-page: 1395 year: 1999 end-page: 1414 article-title: Design of environmentally benign processes: integration of solvent design and separation process synthesis publication-title: Comput Chem Eng. – volume: 1 start-page: 269 issue: 3 year: 2007 end-page: 280 article-title: A trust region sqp algorithm for mixed‐integer nonlinear programming publication-title: Optim Lett. – volume: 10 start-page: 237 issue: 4 year: 1972 end-page: 260 article-title: Generalized benders decomposition publication-title: J Optim Theory Appl. – volume: 34 start-page: 55 year: 2014 end-page: 64 – volume: 93 start-page: 241 year: 1998 end-page: 252 article-title: The thermodynamics of mixtures and the corresponding mixing rules in the SAFT‐VR approach for potentials of variable range publication-title: Mol Phys. – ident: e_1_2_10_43_1 doi: 10.1016/j.cej.2010.06.018 – ident: e_1_2_10_33_1 doi: 10.1002/aic.10715 – ident: e_1_2_10_25_1 doi: 10.1021/ie901281w – ident: e_1_2_10_19_1 doi: 10.1021/ie9906520 – ident: e_1_2_10_22_1 doi: 10.1016/S1004-9541(08)60100-7 – ident: e_1_2_10_23_1 doi: 10.1590/S0104-66322010000300008 – ident: e_1_2_10_37_1 doi: 10.1016/j.ces.2016.04.042 – ident: e_1_2_10_31_1 doi: 10.1016/j.compchemeng.2012.02.021 – ident: e_1_2_10_18_1 doi: 10.1016/0098-1354(95)87087-3 – ident: e_1_2_10_17_1 doi: 10.1063/1.4851455 – ident: e_1_2_10_42_1 doi: 10.1002/aic.14630 – volume-title: Separation Process Principles, 3rd ed, International student version year: 2011 ident: e_1_2_10_62_1 – ident: e_1_2_10_13_1 doi: 10.1021/ie400968j – ident: e_1_2_10_63_1 doi: 10.1016/S0098-1354(94)85027-5 – ident: e_1_2_10_12_1 doi: 10.1111/j.1475-3995.1997.tb00061.x – ident: e_1_2_10_46_1 doi: 10.1007/BF00934810 – ident: e_1_2_10_35_1 doi: 10.1016/j.ces.2006.06.006 – ident: e_1_2_10_51_1 doi: 10.1007/BF01581153 – ident: e_1_2_10_39_1 doi: 10.1016/0009-2509(94)00216-E – ident: e_1_2_10_20_1 doi: 10.1016/j.compchemeng.2010.07.028 – year: 1934 ident: e_1_2_10_61_1 article-title: The application of physico‐chemical principles to the design of liquid‐liquid contact equipment. Part II. Application of phase‐rule graphical methods publication-title: J Soc Chem Ind. – ident: e_1_2_10_40_1 doi: 10.1063/1.473101 – ident: e_1_2_10_44_1 doi: 10.1007/s11590-006-0026-1 – ident: e_1_2_10_24_1 doi: 10.1021/ie302516v – ident: e_1_2_10_30_1 doi: 10.1021/ie049328h – ident: e_1_2_10_59_1 – ident: e_1_2_10_60_1 doi: 10.1016/S0378-3812(99)00089-8 – volume-title: Proceedings of the 26th European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering year: 2016 ident: e_1_2_10_49_1 – ident: e_1_2_10_67_1 – ident: e_1_2_10_68_1 doi: 10.1016/j.compchemeng.2011.07.009 – ident: e_1_2_10_64_1 doi: 10.1002/aic.14112 – ident: e_1_2_10_48_1 doi: 10.1002/aic.14838 – ident: e_1_2_10_47_1 doi: 10.1002/aic.690491211 – ident: e_1_2_10_9_1 doi: 10.1002/aic.690450415 – ident: e_1_2_10_10_1 doi: 10.1038/nchem.1755 – ident: e_1_2_10_27_1 doi: 10.1021/ie0003887 – ident: e_1_2_10_29_1 doi: 10.1016/j.compchemeng.2015.04.008 – ident: e_1_2_10_58_1 doi: 10.1039/tf9231900038 – ident: e_1_2_10_54_1 doi: 10.1039/9781849730983-00215 – ident: e_1_2_10_6_1 doi: 10.1016/j.compchemeng.2010.06.016 – ident: e_1_2_10_7_1 doi: 10.1016/0378-3812(93)87127-M – ident: e_1_2_10_15_1 doi: 10.1016/j.ces.2016.08.008 – ident: e_1_2_10_56_1 doi: 10.1016/j.fluid.2012.02.010 – ident: e_1_2_10_2_1 doi: 10.1016/B978-0-444-63433-7.50007-9 – ident: e_1_2_10_52_1 doi: 10.1021/ie00104a021 – ident: e_1_2_10_3_1 doi: 10.1016/j.cep.2003.03.002 – ident: e_1_2_10_53_1 doi: 10.1016/0378-3812(89)80308-5 – ident: e_1_2_10_32_1 doi: 10.1016/j.cherd.2008.01.008 – ident: e_1_2_10_8_1 doi: 10.1002/aic.690400808 – ident: e_1_2_10_28_1 doi: 10.1016/B978-0-444-59519-5.50115-5 – ident: e_1_2_10_4_1 doi: 10.1016/S0098-1354(99)00300-2 – ident: e_1_2_10_55_1 doi: 10.1002/9780470747537 – ident: e_1_2_10_14_1 doi: 10.1002/aic.15122 – ident: e_1_2_10_65_1 – ident: e_1_2_10_26_1 doi: 10.1016/S1570-7946(09)70356-6 – ident: e_1_2_10_50_1 doi: 10.1007/BF02592064 – ident: e_1_2_10_41_1 doi: 10.1080/00268979809482207 – ident: e_1_2_10_69_1 doi: 10.1021/acs.iecr.5b01995 – ident: e_1_2_10_5_1 doi: 10.1016/S0098-1354(97)00255-X – ident: e_1_2_10_57_1 doi: 10.1016/0300-9467(92)80002-R – ident: e_1_2_10_45_1 doi: 10.1016/j.ces.2016.04.048 – ident: e_1_2_10_21_1 doi: 10.1016/j.compchemeng.2014.03.012 – ident: e_1_2_10_34_1 doi: 10.1016/B978-0-444-63472-6.00011-2 – ident: e_1_2_10_66_1 doi: 10.1016/j.ijggc.2014.12.020 – ident: e_1_2_10_38_1 doi: 10.1016/j.ces.2016.03.011 – ident: e_1_2_10_16_1 doi: 10.1002/aic.690210607 – ident: e_1_2_10_36_1 doi: 10.1205/cherd.04349 – start-page: 63 volume-title: Computer Aided Molecular Design: Theory and Practice year: 2002 ident: e_1_2_10_11_1 |
| SSID | ssj0012782 |
| Score | 2.4091434 |
| Snippet | Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure... Integrated approaches to the design of separation systems based on computer-aided molecular and process design (CAMPD) can yield an optimal solvent structure... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3484 |
| SubjectTerms | absorption Algorithms CAD Carbon dioxide carbon dioxide capture Chemical engineering Computer aided design Constraint modelling Design Design engineering Energy balance High pressure Mathematical models mixed-integer optimization Molecular chemistry molecular design Nonlinearity SAFT equation of state Separation Solvents |
| Title | Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design |
| URI | https://api.istex.fr/ark:/67375/WNG-108D8FH1-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15411 https://www.proquest.com/docview/1811924311 https://www.proquest.com/docview/1815697879 https://www.proquest.com/docview/1835570027 |
| Volume | 62 |
| WOSCitedRecordID | wos000382987000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKlwMc-EYslMoghLhE3diOP8SpalmKhJYKUdGb5dhOiehmV9ktKjd-Ar-RX4LHTkIrAULiFikvkWPPxG9szxuEnqnCCVkqmznuqowp6TMZoJm0QjmjKqJKG4tNiNlMHh-rww30ss-FSfoQw4IbeEb8X4ODm3K180s01NQWlkUgr3cESVUh8hrtv58evR02EYiQSSw8RMyA7IWFJmRnePjSdDSCnj2_xDUvMtY45Uxv_ldjb6EbHdPEu8k0bqMN39xB1y_oD95FX99BQQccdcXP65TEiM3pyaKt15_mGNZo8bIbSOwWc1M3uAWt1wgMdBfbrijEj2_fQWvS4XlfbhebxuGVT9LiAb1MGQnYxSMj99DR9NWHvYOsq8WQWSZonhGVM-9KSk0xoZZX3FHihMlLE0Ki0hZOkdzn1ivJjKx4xSwtiSOVocxKzif0PtpsFo1_gDCXrHJEmGAjFTMsMMhgIcqTEtict8UYveiHRNtOqBzqZZzqJLFMdOhNHXtzjJ4O0GVS5_gd6Hkc1wFh2s9wnE0U-uPsNSik7svpQa7ZGG31A687T17pwIAgRqXwnifD7eCDsLFiGr84i5iCh3BcqL9hKKidBTsN3xdN5c8t1rtv9uLFw3-HPkLXApfj6fjbFtpct2f-Mbpqv6zrVbuNrhB2uN05yE9WjBVX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqthL0AOWn6tICBiHEJerGdmJb4lIVlq0oSw9F9GY5tgMR3ewqu0XtjUfgGXkSPHYSWgkQErdI-RI5npl4xp75BqFnMrNcFNIkNrdlwqRwifDQRBgurZYlkYUJzSb4ZCJOT-XxCnrZ1cJEfoh-ww0sI_yvwcBhQ3rvF2uorgzsi0Bh7xrzqxIk9BF23J8hEC4iV7gPmAHX8QoNyV7_6LXVaA0m9uKaq3nVYQ0rzuj2_411E91qPU28H1XjDlpx9V20cYV_8B66fA8NHXDgFb-oYhEj1mefZk21_DzFsEeL560gsZ1NdVXjBrheA9C7u9i0TSF-fPsOXJMWT7t2u1jXFi9cpBb36HmsSMA2pIzcRx9Gr08OxknbiyExjNM0ITJlzhaU6mxITV7mlhLLdVpoHxIVJrOSpC41TgqmRZmXzNCCWFJqyozI8yHdQqv1rHbbCOeClZZw7XWkZJp5D9JriHSkAG_OmWyAXnQyUaYlKod-GWcqUiwT5WdThdkcoKc9dB7ZOX4Heh4E2yN08wXS2XimPk7eAEPqKzEap4oN0G4nedVa8kJ5DwhiVArvedLf9jYIByu6drPzgMlyH45z-TcMBbazIeH--4Ku_HnEav_wIFw8-HfoY3RjfPLuSB0dTt7uoJver8tjKtwuWl025-4hWjdfl9WieRSs5CdKZhbV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqFiFY8K4YKGAQQmyiTmzHD4lN1TK0Ag2zANGd5fgBEZ3MKDNFZccn8I18Cb7Og1YChMQuUk4ix_fe-Phxz0XoqSqckKWymeMuZExJn8kIzaQVyhkViCptKjYhplN5fKxmG-hFnwvT6kMMC24QGel_DQHuly7s_lINNZWFdRFI7N1ihUhhSdhs2EMgQrZa4XHCDLheV2hMdodHL4xGW9CxZxeo5nnCmkacyfX_a-sNdK1jmnivdY2baMPXt9DVc_qDt9HXt1DQASdd8bOqTWLE5uTjoqnWn-YY1mjxsjMkdou5qWrcgNZrAka6i21XFOLHt--gNenwvC-3i03t8Mq30uIRvWwzErBLR0buoPeTl-_2D7OuFkNmmaB5RlTOvCspNcWYWh64o8QJk5cmTolKWzhFcp9bryQzMvDALC2JI8FQZiXnY7qNNutF7e8izCULjggTfSQwwyKDjB6iPCmBzXlbjNDz3ibadkLlUC_jRLcSy0TH3tSpN0foyQBdtuocvwM9S4YdEKb5DMfZRKE_TF-BQuqBnBzmmo3QTm953UXySkcGBHNUCu95PNyOMQgbK6b2i9OEKXicjgv1NwwFtbMxEfH7kq_8ucV672g_Xdz7d-gjdHl2MNFvjqav76Mrkdbx9iTcDtpcN6f-Abpkv6yrVfMwBclPtQQWUA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outer+approximation+algorithm+with+physical+domain+reduction+for+computer%E2%80%90aided+molecular+and+separation+process+design&rft.jtitle=AIChE+journal&rft.au=Gopinath%2C+Smitha&rft.au=Jackson%2C+George&rft.au=Galindo%2C+Amparo&rft.au=Adjiman%2C+Claire+S.&rft.date=2016-09-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=9&rft.spage=3484&rft.epage=3504&rft_id=info:doi/10.1002%2Faic.15411&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_15411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |