Automatic fuzzy ontology generation for semantic Web

Ontology is an effective conceptualism commonly used for the semantic Web. Fuzzy logic can be incorporated to ontology to represent uncertainty information. Typically, fuzzy ontology is generated from a predefined concept hierarchy. However, to construct a concept hierarchy for a certain domain can...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 18; no. 6; pp. 842 - 856
Main Authors: Tho, Q.T., Hui, S.C., Fong, A.C.M., Tru Hoang Cao
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.06.2006
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ontology is an effective conceptualism commonly used for the semantic Web. Fuzzy logic can be incorporated to ontology to represent uncertainty information. Typically, fuzzy ontology is generated from a predefined concept hierarchy. However, to construct a concept hierarchy for a certain domain can be a difficult and tedious task. To tackle this problem, this paper proposes the FOGA (fuzzy ontology generation framework) for automatic generation of fuzzy ontology on uncertainty information. The FOGA framework comprises the following components: fuzzy formal concept analysis, concept hierarchy generation, and fuzzy ontology generation. We also discuss approximating reasoning for incremental enrichment of the ontology with new upcoming data. Finally, a fuzzy-based technique for integrating other attributes of database to the ontology is proposed
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2006.87