Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier
The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic appli...
Uloženo v:
| Vydáno v: | Biomaterials Ročník 192; s. 500 - 509 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Ltd
01.02.2019
|
| Témata: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients. |
|---|---|
| AbstractList | The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients. The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients.The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients. |
| Author | Kwon, Youngeun Kwon, Yoo-Wook Chang, Yujung Lee, Euiyeon Kim, Junyeop Kim, Jongpil |
| Author_xml | – sequence: 1 givenname: Yujung surname: Chang fullname: Chang, Yujung organization: Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea – sequence: 2 givenname: Euiyeon surname: Lee fullname: Lee, Euiyeon organization: Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea – sequence: 3 givenname: Junyeop surname: Kim fullname: Kim, Junyeop organization: Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea – sequence: 4 givenname: Yoo-Wook surname: Kwon fullname: Kwon, Yoo-Wook email: ywkwon@snu.ac.kr organization: Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea – sequence: 5 givenname: Youngeun surname: Kwon fullname: Kwon, Youngeun email: ykwon@dongguk.edu organization: Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea – sequence: 6 givenname: Jongpil surname: Kim fullname: Kim, Jongpil email: jk2316@gmail.com, jpkim153@dongguk.edu organization: Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30513475$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhi1URNPCX0AWJy67eLz2fnACSvmQKnGBs-X1zlYTNnawnUj59zhKK6FeyMka6ZnXo_e5Yhc-eGTsDYgaBLTv1vVIYWMzRrJLqqWAvgaoRaOesRX0XV_pQegLthKgZDW0IC_ZVUprUWah5At22QgNjer0ivnbeSZH6DMnz_e0D3yiiC5zF_weY6LgeZj5TGMM42JTTgXMgTsbp3LFIbhDxsR3ifw9t9xbH7Y2ZnILVqNNOPF79HjEI2F8yZ7P5WZ89fBes19fbn_efKvufnz9fvPxrnKqk7lCPatJ96DQ2qlvVdtIQKucFK4XrXYtwtx1rhPK2bZXk21aHAaYtBB6mHvdXLO3p9xtDH92mLLZUHK4LNZj2CUjpQQhddP0_0dBCy07pWRBXz-gu3GDk9lG2th4MI91FuDDCXAxpBRxNo6yzaXDHC0tBoQ5GjRr869BczRoAEwxWCLeP4l4_OWs5c-nZSzd7kvfJh3dOjw5NVOg82I-PYlxC3lydvmNh3ND_gJveNbd |
| CitedBy_id | crossref_primary_10_1016_j_yjmcc_2023_03_002 crossref_primary_10_1016_j_mtchem_2020_100281 crossref_primary_10_3389_fchem_2022_943009 crossref_primary_10_1039_D3BM01275A crossref_primary_10_1016_j_ejphar_2025_177786 crossref_primary_10_1093_stmcls_sxaf002 crossref_primary_10_1186_s40580_022_00320_y crossref_primary_10_1016_j_semcdb_2021_05_028 crossref_primary_10_1016_j_ceb_2019_06_002 crossref_primary_10_3389_fphys_2020_583191 crossref_primary_10_1016_j_cis_2024_103119 crossref_primary_10_3390_cells10123297 crossref_primary_10_3389_fcell_2022_929256 crossref_primary_10_1002_adma_202108757 crossref_primary_10_1016_j_semcdb_2021_06_019 crossref_primary_10_3390_life13040903 crossref_primary_10_1186_s12967_024_06060_3 crossref_primary_10_3233_STJ_200003 crossref_primary_10_3389_fcell_2021_608367 crossref_primary_10_1016_j_actbio_2022_07_058 crossref_primary_10_3390_cells11233914 crossref_primary_10_3390_bioengineering12090940 crossref_primary_10_1016_j_jconrel_2019_09_015 crossref_primary_10_1016_j_pharmr_2025_100077 crossref_primary_10_1016_j_bioactmat_2023_07_025 crossref_primary_10_3390_pharmaceutics14040711 crossref_primary_10_3390_app12094688 crossref_primary_10_1208_s12248_022_00692_3 crossref_primary_10_3390_ijms21207662 crossref_primary_10_1007_s00011_025_02079_4 crossref_primary_10_1038_s44161_023_00377_w crossref_primary_10_3390_ijms22179517 crossref_primary_10_3390_ijms26073063 crossref_primary_10_3390_ijms22179206 crossref_primary_10_1139_cjpp_2023_0088 crossref_primary_10_1242_dev_200433 crossref_primary_10_1002_adhm_202001175 crossref_primary_10_3390_ijms21217950 crossref_primary_10_1016_j_biomaterials_2020_120201 crossref_primary_10_2147_IJN_S304873 crossref_primary_10_1089_cell_2023_0123 crossref_primary_10_1172_JCI152185 crossref_primary_10_3390_cells12081166 crossref_primary_10_3390_cells8070679 crossref_primary_10_3389_fbioe_2021_686684 crossref_primary_10_1155_2019_5982047 crossref_primary_10_1016_j_cellin_2022_100058 crossref_primary_10_1016_j_gde_2023_102116 crossref_primary_10_1038_s41392_020_00413_2 crossref_primary_10_1039_C9NR09934D crossref_primary_10_1002_adfm_202105346 crossref_primary_10_3390_jcdd8070072 crossref_primary_10_1111_acel_13825 crossref_primary_10_3390_nano13101680 crossref_primary_10_1089_cell_2018_0052 crossref_primary_10_1016_j_aca_2019_06_043 crossref_primary_10_1016_j_yjmcc_2023_03_008 crossref_primary_10_2147_IJN_S467219 crossref_primary_10_1016_j_yjmcc_2022_08_004 crossref_primary_10_1016_j_gene_2023_147598 crossref_primary_10_1038_s41580_021_00335_z crossref_primary_10_4070_kcj_2025_0021 |
| Cites_doi | 10.1161/CIRCULATIONAHA.104.527937 10.1038/nature11044 10.1038/cr.2015.99 10.1002/smll.200901158 10.1016/j.ejpb.2013.03.021 10.1038/nature11139 10.1038/nnano.2017.133 10.1021/la981598f 10.1016/j.scr.2016.02.037 10.1166/jbn.2017.2347 10.1038/ncb1696 10.1089/hum.2007.152 10.1007/s10126-013-9509-0 10.1073/pnas.75.8.3867 10.1016/j.stemcr.2015.10.019 10.1080/10611860701231810 10.1161/CIRCRESAHA.116.304510 10.1016/j.addr.2008.03.016 10.1371/journal.pone.0066434 10.1002/ar.23051 10.1080/10717540490433895 10.1038/nature08039 10.1039/c3bm60079c 10.1016/j.yexmp.2008.12.004 10.1038/mt.2012.109 10.1161/CIRCRESAHA.112.271148 10.1093/hmg/ddu215 10.4274/balkanmedj.2017.0910 10.1074/jbc.M211891200 10.1021/acsnano.6b02086 10.1172/JCI119030 10.1038/sj.gt.3300900 10.1038/mtm.2016.23 10.1161/CIRCRESAHA.112.269035 10.1016/j.stem.2017.11.010 10.1039/df9511100055 10.1016/j.whi.2016.08.002 10.1093/eurheartj/ehx628 10.1152/jappl.2002.92.1.288 10.1161/CIR.0000000000000558 10.1016/j.cell.2010.07.002 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2018.11.034 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| EndPage | 509 |
| ExternalDocumentID | 30513475 10_1016_j_biomaterials_2018_11_034 S0142961218308196 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c472t-e5f4d5814eaad8646321ea4c20c8065c6e1f77c704ca684da36e991d50059f853 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456902000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Sep 28 13:05:57 EDT 2025 Thu Oct 02 12:10:16 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Sat Nov 29 07:24:55 EST 2025 Tue Nov 18 21:21:52 EST 2025 Fri Feb 23 02:49:01 EST 2024 Tue Oct 14 19:30:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cardiac reprogramming In vivo reprogramming Heart regeneration Cardiomyocytes Gold nanoparticles |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c472t-e5f4d5814eaad8646321ea4c20c8065c6e1f77c704ca684da36e991d50059f853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30513475 |
| PQID | 2150527442 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2221025338 proquest_miscellaneous_2150527442 pubmed_primary_30513475 crossref_citationtrail_10_1016_j_biomaterials_2018_11_034 crossref_primary_10_1016_j_biomaterials_2018_11_034 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_11_034 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_11_034 |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 2019-02-00 20190201 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fu, Huang, Xu, Gu, Ye, Jiang, Qiu, Xie (bib13) 2015; 25 Hostetler, Templeton, Murray (bib28) 1999; 15 Liu, Chen, Zheng, Wang, Zhou, Yin, Liu, Qian (bib31) 2016; 16 Verma, Stellacci (bib36) 2010; 6 Benjamin, Virani, Callaway, Chamberlain, Chang, Cheng, Chiuve, Cushman, Delling, Deo, de Ferranti, Ferguson, Fornage, Gillespie, Isasi, Jimenez, Jordan, Judd, Lackland, Lichtman, Lisabeth, Liu, Longenecker, Lutsey, Mackey, Matchar, Matsushita, Mussolino, Nasir, O'Flaherty, Palaniappan, Pandey, Pandey, Reeves, Ritchey, Rodriguez, Roth, Rosamond, Sampson, Satou, Shah, Spartano, Tirschwell, Tsao, Voeks, Willey, Wilkins, Wu, Alger, Wong, Muntner (bib2) 2018; 137 Paciotti, Myer, Weinreich, Goia, Pavel, McLaughlin, Tamarkin (bib19) 2004; 11 Pathak (bib4) 2016; 26 Takeuchi, Bruneau (bib12) 2009; 459 Yamakawa, Muraoka, Miyamoto, Sadahiro, Isomi, Haginiwa, Kojima, Umei, Akiyama, Kuishi, Kurokawa, Furukawa, Fukuda, Ieda (bib42) 2015; 5 Misra, Chang, Basu, Huang, Garg (bib33) 2014; 23 Rudolph, Plank, Lausier, Schillinger, Muller, Rosenecker (bib22) 2003; 278 Yoo, Lee, Kim, Youn, Jung, Kim, Chang, Lee, Shin, Baek, Jang, Jun, Kim, Hong, Park, Lengner, Moh, Kwon, Kim (bib24) 2017; 12 Mutluer, Celiker (bib3) 2018; 35 Cho, Lee, Youn, Koh, Won, Chung, Cho, Yoon, Lee, Lee, Kwon, Lee, Lee, Ho, Park, Kim (bib29) 2012; 20 Inagawa, Miyamoto, Yamakawa, Muraoka, Sadahiro, Umei, Wada, Katsumata, Kaneda, Nakade, Kurihara, Obata, Miyake, Fukuda, Ieda (bib16) 2012; 111 Singh, Lillard (bib35) 2009; 86 Qian, Huang, Spencer, Foley, Vedantham, Liu, Conway, Fu, Srivastava (bib8) 2012; 485 Jayawardena, Finch, Zhang, Zhang, Hodgkinson, Pratt, Rosenberg, Mirotsou, Dzau (bib15) 2015; 116 Carlson, Schellinger, Pahang, Johnson, Pun (bib37) 2013; 1 Chang, Chen, Yeh, Chang, Liang, Chiu, Lin, Liaw (bib26) 2008; 19 Turkevich, Stevenson, Hillier (bib27) 1951; 11 Yoo, Chang, Kim, Baek, Choi, Jeong, Shin, Kim, Kim, Kim (bib32) 2017; 13 Ieda, Fu, Delgado-Olguin, Vedantham, Hayashi, Bruneau, Srivastava (bib7) 2010; 142 David, Brenner, Stieber, Schwarz, Brunner, Vollmer, Mentele, Muller-Hocker, Kitajima, Lickert, Rupp, Franz (bib11) 2008; 10 Lee, Castagner, Leroux (bib20) 2013; 85 Dai, Hale, Martin, Kuang, Dow, Wold, Kloner (bib5) 2005; 112 Jayawardena, Egemnazarov, Finch, Zhang, Payne, Pandya, Zhang, Rosenberg, Mirotsou, Dzau (bib14) 2012; 110 Liu, Liou, Chen, Huang, Lee (bib21) 2013; 15 Murry, Kay, Bartosek, Hauschka, Schwartz (bib9) 1996; 98 Tandon, Sharma, Rodier, Klibanov, Rieger, Mohan (bib25) 2013; 8 Chen, Guo, Tian, Chen (bib40) 2016; 3 Ghosh, Han, De, Kim, Rotello (bib18) 2008; 60 Ogris, Brunner, Schuller, Kircheis, Wagner (bib39) 1999; 6 Miyamoto, Akiyama, Tamura, Isomi, Yamakawa, Sadahiro, Muraoka, Kojima, Haginiwa, Kurotsu, Tani, Wang, Qian, Inoue, Ide, Kurokawa, Yamamoto, Seki, Aeba, Yamagishi, Fukuda, Ieda (bib17) 2018; 22 Ryser, Shen (bib23) 1978; 75 Ng, Tang, Li, Ong, Yung, Bay (bib30) 2015; 298 Qian, Huang, Foley, Vedantham, Spencer, Conway, Fu, Srivastava (bib41) 2011; 124 Atlas Writing, Timmis, Townsend, Gale, Grobbee, Maniadakis, Flather, Wilkins, Wright, Vos, Bax, Blum, Pinto, Vardas (bib1) 2018; 39 Elci, Jiang, Yan, Kim, Saha, Moyano, Yesilbag Tonga, Jackson, Rotello, Vachet (bib38) 2016; 10 Emerich, Thanos (bib34) 2007; 15 Song, Nam, Luo, Qi, Tan, Huang, Acharya, Smith, Tallquist, Neilson, Hill, Bassel-Duby, Olson (bib10) 2012; 485 Min, Yang, Converso, Liu, Huang, Morgan, Xiao (bib6) 1985; 92 Misra (10.1016/j.biomaterials.2018.11.034_bib33) 2014; 23 Ogris (10.1016/j.biomaterials.2018.11.034_bib39) 1999; 6 Singh (10.1016/j.biomaterials.2018.11.034_bib35) 2009; 86 Yamakawa (10.1016/j.biomaterials.2018.11.034_bib42) 2015; 5 Ieda (10.1016/j.biomaterials.2018.11.034_bib7) 2010; 142 David (10.1016/j.biomaterials.2018.11.034_bib11) 2008; 10 Qian (10.1016/j.biomaterials.2018.11.034_bib41) 2011; 124 Cho (10.1016/j.biomaterials.2018.11.034_bib29) 2012; 20 Ng (10.1016/j.biomaterials.2018.11.034_bib30) 2015; 298 Yoo (10.1016/j.biomaterials.2018.11.034_bib24) 2017; 12 Min (10.1016/j.biomaterials.2018.11.034_bib6) 1985; 92 Lee (10.1016/j.biomaterials.2018.11.034_bib20) 2013; 85 Paciotti (10.1016/j.biomaterials.2018.11.034_bib19) 2004; 11 Liu (10.1016/j.biomaterials.2018.11.034_bib31) 2016; 16 Yoo (10.1016/j.biomaterials.2018.11.034_bib32) 2017; 13 Murry (10.1016/j.biomaterials.2018.11.034_bib9) 1996; 98 Pathak (10.1016/j.biomaterials.2018.11.034_bib4) 2016; 26 Chang (10.1016/j.biomaterials.2018.11.034_bib26) 2008; 19 Verma (10.1016/j.biomaterials.2018.11.034_bib36) 2010; 6 Tandon (10.1016/j.biomaterials.2018.11.034_bib25) 2013; 8 Jayawardena (10.1016/j.biomaterials.2018.11.034_bib15) 2015; 116 Inagawa (10.1016/j.biomaterials.2018.11.034_bib16) 2012; 111 Liu (10.1016/j.biomaterials.2018.11.034_bib21) 2013; 15 Rudolph (10.1016/j.biomaterials.2018.11.034_bib22) 2003; 278 Atlas Writing (10.1016/j.biomaterials.2018.11.034_bib1) 2018; 39 Mutluer (10.1016/j.biomaterials.2018.11.034_bib3) 2018; 35 Hostetler (10.1016/j.biomaterials.2018.11.034_bib28) 1999; 15 Dai (10.1016/j.biomaterials.2018.11.034_bib5) 2005; 112 Elci (10.1016/j.biomaterials.2018.11.034_bib38) 2016; 10 Turkevich (10.1016/j.biomaterials.2018.11.034_bib27) 1951; 11 Ryser (10.1016/j.biomaterials.2018.11.034_bib23) 1978; 75 Jayawardena (10.1016/j.biomaterials.2018.11.034_bib14) 2012; 110 Emerich (10.1016/j.biomaterials.2018.11.034_bib34) 2007; 15 Song (10.1016/j.biomaterials.2018.11.034_bib10) 2012; 485 Carlson (10.1016/j.biomaterials.2018.11.034_bib37) 2013; 1 Miyamoto (10.1016/j.biomaterials.2018.11.034_bib17) 2018; 22 Chen (10.1016/j.biomaterials.2018.11.034_bib40) 2016; 3 Qian (10.1016/j.biomaterials.2018.11.034_bib8) 2012; 485 Ghosh (10.1016/j.biomaterials.2018.11.034_bib18) 2008; 60 Fu (10.1016/j.biomaterials.2018.11.034_bib13) 2015; 25 Benjamin (10.1016/j.biomaterials.2018.11.034_bib2) 2018; 137 Takeuchi (10.1016/j.biomaterials.2018.11.034_bib12) 2009; 459 |
| References_xml | – volume: 10 start-page: 338 year: 2008 end-page: 345 ident: bib11 article-title: MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling publication-title: Nat. Cell Biol. – volume: 142 start-page: 375 year: 2010 end-page: 386 ident: bib7 article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors publication-title: Cell – volume: 1 start-page: 736 year: 2013 end-page: 744 ident: bib37 article-title: Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery publication-title: Biomater. Sci. – volume: 298 start-page: 418 year: 2015 end-page: 427 ident: bib30 article-title: Clathrin-mediated endocytosis of gold nanoparticles in vitro publication-title: Anat. Rec. – volume: 25 start-page: 1013 year: 2015 end-page: 1024 ident: bib13 article-title: Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails publication-title: Cell Res. – volume: 20 start-page: 1750 year: 2012 end-page: 1766 ident: bib29 article-title: Secondary sphere formation enhances the functionality of cardiac progenitor cells publication-title: Mol. Ther. – volume: 92 start-page: 288 year: 1985 end-page: 296 ident: bib6 article-title: Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats publication-title: J. Appl. Physiol. – volume: 5 start-page: 1128 year: 2015 end-page: 1142 ident: bib42 article-title: Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions publication-title: Stem Cell Rep. – volume: 19 start-page: 391 year: 2008 end-page: 395 ident: bib26 article-title: Gene gun bombardment with DNA-Coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes publication-title: Hum. Gene Ther. – volume: 35 start-page: 18 year: 2018 end-page: 29 ident: bib3 article-title: General concepts in adult congenital heart disease publication-title: Balkan Med. J. – volume: 459 start-page: 708 year: 2009 end-page: 711 ident: bib12 article-title: Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors publication-title: Nature – volume: 112 start-page: 214 year: 2005 end-page: 223 ident: bib5 article-title: Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects publication-title: Circulation – volume: 3 start-page: 16023 year: 2016 ident: bib40 article-title: Production and clinical development of nanoparticles for gene delivery publication-title: Mol. Ther. Methods Clin. Dev. – volume: 116 start-page: 418 year: 2015 end-page: 424 ident: bib15 article-title: MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function publication-title: Circ. Res. – volume: 16 start-page: 507 year: 2016 end-page: 518 ident: bib31 article-title: Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes publication-title: Stem Cell Res. – volume: 39 start-page: 508 year: 2018 end-page: 579 ident: bib1 article-title: European society of cardiology: cardiovascular disease statistics 2017 publication-title: Eur. Heart J. – volume: 13 start-page: 269 year: 2017 end-page: 279 ident: bib32 article-title: Efficient direct lineage reprogramming of fibroblasts into induced cardiomyocytes using nanotopographical cues publication-title: J. Biomed. Nanotechnol. – volume: 60 start-page: 1307 year: 2008 end-page: 1315 ident: bib18 article-title: Gold nanoparticles in delivery applications publication-title: Adv. Drug Deliv. Rev. – volume: 86 start-page: 215 year: 2009 end-page: 223 ident: bib35 article-title: Nanoparticle-based targeted drug delivery publication-title: Exp. Mol. Pathol. – volume: 6 start-page: 595 year: 1999 end-page: 605 ident: bib39 article-title: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery publication-title: Gene Ther. – volume: 485 start-page: 599 year: 2012 end-page: 604 ident: bib10 article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors publication-title: Nature – volume: 6 start-page: 12 year: 2010 end-page: 21 ident: bib36 article-title: Effect of surface properties on nanoparticle-cell interactions publication-title: Small – volume: 15 start-page: 584 year: 2013 end-page: 595 ident: bib21 article-title: Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers publication-title: Mar. Biotechnol. (NY) – volume: 278 start-page: 11411 year: 2003 end-page: 11418 ident: bib22 article-title: Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells publication-title: J. Biol. Chem. – volume: 137 start-page: e67 year: 2018 end-page: e492 ident: bib2 article-title: Heart disease and stroke statistics-2018 update: a report from the American heart association publication-title: Circulation – volume: 485 start-page: 593 year: 2012 end-page: 598 ident: bib8 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature – volume: 98 start-page: 2209 year: 1996 end-page: 2217 ident: bib9 article-title: Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD publication-title: J. Clin. Invest. – volume: 15 start-page: 163 year: 2007 end-page: 183 ident: bib34 article-title: Targeted nanoparticle-based drug delivery and diagnosis publication-title: J. Drug Target. – volume: 85 start-page: 5 year: 2013 end-page: 11 ident: bib20 article-title: Is there a future for cell-penetrating peptides in oligonucleotide delivery? publication-title: Eur. J. Pharm. Biopharm. – volume: 124 year: 2011 ident: bib41 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Circulation – volume: 111 start-page: 1147 year: 2012 end-page: 1156 ident: bib16 article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5 publication-title: Circ. Res. – volume: 8 year: 2013 ident: bib25 article-title: BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo publication-title: PloS One – volume: 75 start-page: 3867 year: 1978 end-page: 3870 ident: bib23 article-title: Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 589 year: 2016 end-page: 594 ident: bib4 article-title: Is heart disease or cancer the leading cause of death in United States women? publication-title: Wom. Health Issues – volume: 15 start-page: 3782 year: 1999 end-page: 3789 ident: bib28 article-title: Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules publication-title: Langmuir – volume: 23 start-page: 5025 year: 2014 end-page: 5035 ident: bib33 article-title: Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation publication-title: Hum. Mol. Genet. – volume: 10 start-page: 5536 year: 2016 end-page: 5542 ident: bib38 article-title: Surface charge controls the suborgan biodistributions of gold nanoparticles publication-title: ACS Nano – volume: 110 start-page: 1465 year: 2012 end-page: 1473 ident: bib14 article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes publication-title: Circ. Res. – volume: 12 start-page: 1006 year: 2017 end-page: 1014 ident: bib24 article-title: Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy publication-title: Nat. Nanotechnol. – volume: 22 start-page: 91 year: 2018 end-page: 103 ident: bib17 article-title: Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction publication-title: Cell Stem Cell – volume: 11 start-page: 169 year: 2004 end-page: 183 ident: bib19 article-title: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery publication-title: Drug Deliv. – volume: 11 start-page: 55 year: 1951 end-page: 75 ident: bib27 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss. Faraday Soc. – volume: 112 start-page: 214 issue: 2 year: 2005 ident: 10.1016/j.biomaterials.2018.11.034_bib5 article-title: Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.104.527937 – volume: 485 start-page: 593 issue: 7400 year: 2012 ident: 10.1016/j.biomaterials.2018.11.034_bib8 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature doi: 10.1038/nature11044 – volume: 25 start-page: 1013 issue: 9 year: 2015 ident: 10.1016/j.biomaterials.2018.11.034_bib13 article-title: Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails publication-title: Cell Res. doi: 10.1038/cr.2015.99 – volume: 6 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2018.11.034_bib36 article-title: Effect of surface properties on nanoparticle-cell interactions publication-title: Small doi: 10.1002/smll.200901158 – volume: 85 start-page: 5 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2018.11.034_bib20 article-title: Is there a future for cell-penetrating peptides in oligonucleotide delivery? publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2013.03.021 – volume: 485 start-page: 599 issue: 7400 year: 2012 ident: 10.1016/j.biomaterials.2018.11.034_bib10 article-title: Heart repair by reprogramming non-myocytes with cardiac transcription factors publication-title: Nature doi: 10.1038/nature11139 – volume: 12 start-page: 1006 issue: 10 year: 2017 ident: 10.1016/j.biomaterials.2018.11.034_bib24 article-title: Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.133 – volume: 15 start-page: 3782 issue: 11 year: 1999 ident: 10.1016/j.biomaterials.2018.11.034_bib28 article-title: Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules publication-title: Langmuir doi: 10.1021/la981598f – volume: 16 start-page: 507 issue: 2 year: 2016 ident: 10.1016/j.biomaterials.2018.11.034_bib31 article-title: Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes publication-title: Stem Cell Res. doi: 10.1016/j.scr.2016.02.037 – volume: 13 start-page: 269 issue: 3 year: 2017 ident: 10.1016/j.biomaterials.2018.11.034_bib32 article-title: Efficient direct lineage reprogramming of fibroblasts into induced cardiomyocytes using nanotopographical cues publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2017.2347 – volume: 10 start-page: 338 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2018.11.034_bib11 article-title: MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb1696 – volume: 19 start-page: 391 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2018.11.034_bib26 article-title: Gene gun bombardment with DNA-Coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes publication-title: Hum. Gene Ther. doi: 10.1089/hum.2007.152 – volume: 15 start-page: 584 issue: 5 year: 2013 ident: 10.1016/j.biomaterials.2018.11.034_bib21 article-title: Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers publication-title: Mar. Biotechnol. (NY) doi: 10.1007/s10126-013-9509-0 – volume: 75 start-page: 3867 issue: 8 year: 1978 ident: 10.1016/j.biomaterials.2018.11.034_bib23 article-title: Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.75.8.3867 – volume: 5 start-page: 1128 issue: 6 year: 2015 ident: 10.1016/j.biomaterials.2018.11.034_bib42 article-title: Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2015.10.019 – volume: 15 start-page: 163 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2018.11.034_bib34 article-title: Targeted nanoparticle-based drug delivery and diagnosis publication-title: J. Drug Target. doi: 10.1080/10611860701231810 – volume: 116 start-page: 418 issue: 3 year: 2015 ident: 10.1016/j.biomaterials.2018.11.034_bib15 article-title: MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.304510 – volume: 60 start-page: 1307 issue: 11 year: 2008 ident: 10.1016/j.biomaterials.2018.11.034_bib18 article-title: Gold nanoparticles in delivery applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.016 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.biomaterials.2018.11.034_bib25 article-title: BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo publication-title: PloS One doi: 10.1371/journal.pone.0066434 – volume: 298 start-page: 418 issue: 2 year: 2015 ident: 10.1016/j.biomaterials.2018.11.034_bib30 article-title: Clathrin-mediated endocytosis of gold nanoparticles in vitro publication-title: Anat. Rec. doi: 10.1002/ar.23051 – volume: 11 start-page: 169 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2018.11.034_bib19 article-title: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery publication-title: Drug Deliv. doi: 10.1080/10717540490433895 – volume: 459 start-page: 708 issue: 7247 year: 2009 ident: 10.1016/j.biomaterials.2018.11.034_bib12 article-title: Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors publication-title: Nature doi: 10.1038/nature08039 – volume: 1 start-page: 736 issue: 7 year: 2013 ident: 10.1016/j.biomaterials.2018.11.034_bib37 article-title: Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery publication-title: Biomater. Sci. doi: 10.1039/c3bm60079c – volume: 86 start-page: 215 issue: 3 year: 2009 ident: 10.1016/j.biomaterials.2018.11.034_bib35 article-title: Nanoparticle-based targeted drug delivery publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2008.12.004 – volume: 20 start-page: 1750 issue: 9 year: 2012 ident: 10.1016/j.biomaterials.2018.11.034_bib29 article-title: Secondary sphere formation enhances the functionality of cardiac progenitor cells publication-title: Mol. Ther. doi: 10.1038/mt.2012.109 – volume: 111 start-page: 1147 issue: 9 year: 2012 ident: 10.1016/j.biomaterials.2018.11.034_bib16 article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.271148 – volume: 124 issue: 21 year: 2011 ident: 10.1016/j.biomaterials.2018.11.034_bib41 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Circulation – volume: 23 start-page: 5025 issue: 19 year: 2014 ident: 10.1016/j.biomaterials.2018.11.034_bib33 article-title: Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu215 – volume: 35 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2018.11.034_bib3 article-title: General concepts in adult congenital heart disease publication-title: Balkan Med. J. doi: 10.4274/balkanmedj.2017.0910 – volume: 278 start-page: 11411 issue: 13 year: 2003 ident: 10.1016/j.biomaterials.2018.11.034_bib22 article-title: Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211891200 – volume: 10 start-page: 5536 issue: 5 year: 2016 ident: 10.1016/j.biomaterials.2018.11.034_bib38 article-title: Surface charge controls the suborgan biodistributions of gold nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.6b02086 – volume: 98 start-page: 2209 issue: 10 year: 1996 ident: 10.1016/j.biomaterials.2018.11.034_bib9 article-title: Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD publication-title: J. Clin. Invest. doi: 10.1172/JCI119030 – volume: 6 start-page: 595 issue: 4 year: 1999 ident: 10.1016/j.biomaterials.2018.11.034_bib39 article-title: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery publication-title: Gene Ther. doi: 10.1038/sj.gt.3300900 – volume: 3 start-page: 16023 year: 2016 ident: 10.1016/j.biomaterials.2018.11.034_bib40 article-title: Production and clinical development of nanoparticles for gene delivery publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1038/mtm.2016.23 – volume: 110 start-page: 1465 issue: 11 year: 2012 ident: 10.1016/j.biomaterials.2018.11.034_bib14 article-title: MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.269035 – volume: 22 start-page: 91 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2018.11.034_bib17 article-title: Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.010 – volume: 11 start-page: 55 year: 1951 ident: 10.1016/j.biomaterials.2018.11.034_bib27 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss. Faraday Soc. doi: 10.1039/df9511100055 – volume: 26 start-page: 589 issue: 6 year: 2016 ident: 10.1016/j.biomaterials.2018.11.034_bib4 article-title: Is heart disease or cancer the leading cause of death in United States women? publication-title: Wom. Health Issues doi: 10.1016/j.whi.2016.08.002 – volume: 39 start-page: 508 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2018.11.034_bib1 article-title: European society of cardiology: cardiovascular disease statistics 2017 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehx628 – volume: 92 start-page: 288 issue: 1 year: 1985 ident: 10.1016/j.biomaterials.2018.11.034_bib6 article-title: Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2002.92.1.288 – volume: 137 start-page: e67 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2018.11.034_bib2 article-title: Heart disease and stroke statistics-2018 update: a report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000558 – volume: 142 start-page: 375 issue: 3 year: 2010 ident: 10.1016/j.biomaterials.2018.11.034_bib7 article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors publication-title: Cell doi: 10.1016/j.cell.2010.07.002 |
| SSID | ssj0014042 |
| Score | 2.5320785 |
| Snippet | The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 500 |
| SubjectTerms | Animals cardiac output Cardiac reprogramming Cardiomyocytes Cell Line Cellular Reprogramming Cellular Reprogramming Techniques - methods cytotoxicity fibroblasts Fibroblasts - cytology GATA transcription factors gene transfer Gene Transfer Techniques genes Gold - chemistry Gold nanoparticles Heart regeneration humans In vivo reprogramming Metal Nanoparticles - chemistry Mice Mice, Inbred C57BL myocardial infarction Myocytes, Cardiac - cytology nanocarriers nanogold patients somatic cells |
| Title | Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218308196 https://dx.doi.org/10.1016/j.biomaterials.2018.11.034 https://www.ncbi.nlm.nih.gov/pubmed/30513475 https://www.proquest.com/docview/2150527442 https://www.proquest.com/docview/2221025338 |
| Volume | 192 |
| WOSCitedRecordID | wos000456902000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XYTggGB5lcfKSNyqrJLUiR0hDitUBAhWHBboniLHcaRWi1OVpmx_AP-bmdhJU62KihCXqLXipu589Tz8zQwhL0fKF0qAp8pkUsAl0l6Gb7MwA4Xrq4LVedxfP_KzMzGZJJ97vV9NLszqkhsjrq6S-X8VNYyBsDF19i_E3X4oDMBrEDpcQexw3Uvw47ooBB7xT81wNV2VQ6u2LMG8jo6hhViAn1xmYDsvkZEFFqiqmanf16VaYyy2qoMIcmikAb_aPsZDnZdj12Vkiy2w2d3WoTBMl0u7xg5twO4mF9Wsclpyw_8ZV9O17hIBXM62gdF5O_rTMgMuytL71vgELlCBuVFbpI82g2ZDV7IBzdBL4mB7R7bt8dyeGvl-Rz1HdTWF6zu_DULMTrLOUpG5J06wSKsLmG5X1kZiW4jPhm0NLaP4gByGPEpEnxyevh9PPrTHUcyvuzC1X7apXlsTBXc9cZels8uTqS2a87vkjnNF6KmV7T3S0-aI3O4UqDwiNz856sV9Ylpc0amhiCtqcUU3uKJlQTu4oogruo0rWuOKSnodVxRxRR2uHpAvb8fnb955rlmHpxgPl56OCpZHImBaylzELB6FgZZMhT5uBZGKdVBwrrjPlIwFy-Uo1uCb5BGmPxdgND4kfVMa_ZhQEWFVQ1-DZyJZwnORZDwvpB_LIvCLkRyQpPlhU-Uq2WNDlcu0oSzO0q5QUhQKuLopCGVARu3cua3nstesV4380iZjGXRsCuDba_brdraza62A9p7_ooFMCps_nuhJo8sKbgqwDyVnLPzDPSFGdcCrEwPyyOKtXTkoe0wlj5780_qeklub__sz0l8uKv2c3FCr5fTH4pgc8Ik4dv-o3-JD9Kw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+in+vivo+direct+conversion+of+fibroblasts+into+cardiomyocytes+using+a+nanoparticle-based+gene+carrier&rft.jtitle=Biomaterials&rft.au=Chang%2C+Yujung&rft.au=Lee%2C+Euiyeon&rft.au=Kim%2C+Junyeop&rft.au=Kwon%2C+Yoo-Wook&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=192&rft.spage=500&rft.epage=509&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.11.034&rft.externalDocID=S0142961218308196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |