Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sul...
Saved in:
| Published in: | Carbon (New York) Vol. 141; pp. 400 - 416 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.01.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0008-6223, 1873-3891 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed.
[Display omitted] |
|---|---|
| AbstractList | Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed. Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed. [Display omitted] |
| Author | Chen, Jun Zhang, Linlin Niu, Zhiqiang Wang, Yijing |
| Author_xml | – sequence: 1 givenname: Linlin surname: Zhang fullname: Zhang, Linlin – sequence: 2 givenname: Yijing surname: Wang fullname: Wang, Yijing – sequence: 3 givenname: Zhiqiang surname: Niu fullname: Niu, Zhiqiang email: zqniu@nankai.edu.cn – sequence: 4 givenname: Jun surname: Chen fullname: Chen, Jun |
| BookMark | eNqFkctq3TAURUVJoTdJ_6ADQyed2NXLD3VQCCF9QKCTFDoTR9Jxo4uvlEpyIH8fGXeUQTsSG9beiHXOyVmIAQl5x2jHKBs-HjsLycTQccqmjqqODuMrcmDTKFoxKXZGDpTSqR04F2_Iec7HGuXE5IH8unKPECy6JkCIuaTVljXVuC-2BnINJyiYPCy5mWNqEtp7SL8RzILN4su9X09tXpd5TY2BsqGYL8nruRbw7d_3gvz8cnN3_a29_fH1-_XVbWvlyEuLDMeJT0YpRmXfG8HnwRhQZpAUuOMjddJVdGDoehi5E0BdP_cMpKPCUHFBPuy7Dyn-WTEXffLZ4rJAwLhmzdk4CDn2qq_o-xfoMa4p1N9VqldKCDls1KedsinmnHDW1hcoPoaSwC-aUb1J10e9K9KbdE2VrtJrWb4oPyR_gvT0v9rnvYbV1KPHpLP1uJ3FV9lFu-j_PfAMcuqg4g |
| CitedBy_id | crossref_primary_10_1007_s10853_022_07625_7 crossref_primary_10_1016_j_cej_2025_164222 crossref_primary_10_1016_j_jpowsour_2025_236682 crossref_primary_10_1016_j_jelechem_2020_114950 crossref_primary_10_1016_j_est_2024_110938 crossref_primary_10_1016_j_surfin_2023_103521 crossref_primary_10_1007_s11814_020_0693_0 crossref_primary_10_1002_celc_201900269 crossref_primary_10_1007_s12274_024_6879_8 crossref_primary_10_1016_j_surfcoat_2020_126580 crossref_primary_10_1038_s43246_025_00916_x crossref_primary_10_1002_aenm_202001683 crossref_primary_10_1016_j_cej_2024_153619 crossref_primary_10_1016_j_jallcom_2020_158287 crossref_primary_10_1016_j_cej_2021_129693 crossref_primary_10_1016_j_mtchem_2022_101240 crossref_primary_10_1002_smll_202309422 crossref_primary_10_3390_polym11111858 crossref_primary_10_1002_er_4911 crossref_primary_10_1039_D0NR05727D crossref_primary_10_1016_j_carbon_2019_07_094 crossref_primary_10_1016_j_jechem_2023_10_060 crossref_primary_10_1007_s10854_020_04034_x crossref_primary_10_1007_s11356_021_12416_9 crossref_primary_10_1002_anie_202211448 crossref_primary_10_1080_1536383X_2020_1775591 crossref_primary_10_1016_j_carbon_2019_05_018 crossref_primary_10_1016_j_carbon_2019_07_067 crossref_primary_10_1021_acs_langmuir_5c03455 crossref_primary_10_1016_j_jcis_2020_06_068 crossref_primary_10_1002_anie_201909339 crossref_primary_10_1088_1361_6528_ac1fb2 crossref_primary_10_1016_j_cej_2022_139566 crossref_primary_10_1016_j_jallcom_2022_166445 crossref_primary_10_1002_anie_202425037 crossref_primary_10_1016_j_electacta_2021_139311 crossref_primary_10_1016_j_jelechem_2020_114608 crossref_primary_10_1016_j_est_2021_103666 crossref_primary_10_1002_sus2_110 crossref_primary_10_1016_j_carbon_2019_05_008 crossref_primary_10_1039_D4RA06366J crossref_primary_10_1002_adma_201903955 crossref_primary_10_1002_adma_202200102 crossref_primary_10_1016_j_est_2024_112347 crossref_primary_10_1002_aenm_201904026 crossref_primary_10_1002_smll_202405148 crossref_primary_10_3390_nano12142403 crossref_primary_10_1016_j_compositesb_2023_110679 crossref_primary_10_1002_anie_202104401 crossref_primary_10_1088_1361_6528_ab475b crossref_primary_10_1038_s43246_025_00734_1 crossref_primary_10_1016_j_jechem_2020_06_018 crossref_primary_10_1002_adfm_202315178 crossref_primary_10_1007_s40242_020_0180_5 crossref_primary_10_1016_j_matlet_2024_136143 crossref_primary_10_1002_chem_202001282 crossref_primary_10_1016_j_cej_2021_130129 crossref_primary_10_1016_j_cej_2024_151501 crossref_primary_10_1002_pen_25298 crossref_primary_10_1007_s12274_024_6481_0 crossref_primary_10_1002_smll_202311799 crossref_primary_10_1016_j_jallcom_2022_166144 crossref_primary_10_1002_cssc_201902688 crossref_primary_10_1002_ente_202100268 crossref_primary_10_1016_j_carbon_2019_04_077 crossref_primary_10_1016_j_jcis_2020_09_020 crossref_primary_10_1002_cssc_202101231 crossref_primary_10_1016_j_jfca_2023_105480 crossref_primary_10_1016_j_energy_2020_118779 crossref_primary_10_3390_ijms23116329 crossref_primary_10_1016_j_carbon_2020_08_032 crossref_primary_10_3390_en14092649 crossref_primary_10_1016_j_jechem_2020_12_031 crossref_primary_10_1002_aenm_201900161 crossref_primary_10_1080_00268976_2023_2270075 crossref_primary_10_1002_ange_202425037 crossref_primary_10_1016_j_jcis_2022_10_039 crossref_primary_10_1002_chem_202402706 crossref_primary_10_1016_j_cej_2023_147518 crossref_primary_10_1016_j_jcis_2021_12_045 crossref_primary_10_1016_j_mtcomm_2021_102666 crossref_primary_10_1002_adfm_202006287 crossref_primary_10_1002_advs_202004036 crossref_primary_10_1002_celc_202000993 crossref_primary_10_1016_j_micromeso_2021_111558 crossref_primary_10_1002_cnma_202000120 crossref_primary_10_1016_j_cej_2025_159406 crossref_primary_10_1016_j_cclet_2025_110862 crossref_primary_10_1016_j_cej_2021_129388 crossref_primary_10_1016_j_jechem_2021_07_010 crossref_primary_10_1016_j_nanoen_2021_105891 crossref_primary_10_1002_marc_202200760 crossref_primary_10_1016_j_rser_2025_116206 crossref_primary_10_1002_adma_201906357 crossref_primary_10_1007_s10570_022_04722_3 crossref_primary_10_1007_s11581_019_02968_9 crossref_primary_10_3390_molecules25081989 crossref_primary_10_1007_s40820_021_00676_6 crossref_primary_10_1016_j_electacta_2023_142497 crossref_primary_10_1002_batt_202100302 crossref_primary_10_1007_s11581_022_04821_y crossref_primary_10_1016_j_mattod_2025_06_017 crossref_primary_10_1007_s12274_023_6169_x crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_1016_S1872_5805_21_60032_X crossref_primary_10_1007_s11581_024_05390_y crossref_primary_10_1016_j_pmatsci_2020_100716 crossref_primary_10_1016_j_carbon_2019_10_072 crossref_primary_10_1016_j_solidstatesciences_2023_107113 crossref_primary_10_1002_ente_201900470 crossref_primary_10_1016_j_cej_2020_126834 crossref_primary_10_1007_s40843_023_2654_5 crossref_primary_10_1002_smll_201907153 crossref_primary_10_1016_j_cclet_2022_107811 crossref_primary_10_1002_er_5070 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1016_j_enchem_2022_100096 crossref_primary_10_1016_j_measurement_2019_107087 crossref_primary_10_1016_j_mser_2025_100985 crossref_primary_10_1002_nano_202000157 crossref_primary_10_1016_j_est_2024_115015 crossref_primary_10_1016_j_electacta_2023_141857 crossref_primary_10_1016_j_apsusc_2021_149850 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1016_j_cclet_2021_11_043 crossref_primary_10_1007_s11664_024_11077_x crossref_primary_10_1016_j_compositesb_2022_110465 crossref_primary_10_1007_s11581_019_02969_8 crossref_primary_10_1002_cphc_202500315 crossref_primary_10_1007_s12274_024_6563_y crossref_primary_10_1016_j_cej_2019_02_150 crossref_primary_10_1002_celc_202200679 crossref_primary_10_1016_j_matchemphys_2022_126509 crossref_primary_10_1007_s10934_022_01337_8 crossref_primary_10_1002_ange_202104401 crossref_primary_10_1088_2631_7990_aca40b crossref_primary_10_1016_j_est_2024_114570 crossref_primary_10_3390_nano10091633 crossref_primary_10_1016_j_est_2021_102751 crossref_primary_10_1016_j_jcis_2022_07_054 crossref_primary_10_1016_j_fuel_2025_135761 crossref_primary_10_1016_j_mtsust_2023_100375 crossref_primary_10_1016_j_carbon_2024_119018 crossref_primary_10_1016_j_jechem_2023_02_009 crossref_primary_10_1007_s40843_023_2695_5 crossref_primary_10_1002_ente_202301452 crossref_primary_10_3390_nano12234341 crossref_primary_10_1016_j_electacta_2019_07_023 crossref_primary_10_1016_j_jcis_2021_12_004 crossref_primary_10_6023_A21080381 crossref_primary_10_1016_j_electacta_2019_04_157 crossref_primary_10_1002_aenm_202502553 crossref_primary_10_1016_j_jmst_2023_07_004 crossref_primary_10_1002_aenm_202301354 crossref_primary_10_1016_j_apsusc_2021_152237 crossref_primary_10_1039_D0SE00942C crossref_primary_10_1016_j_carbon_2022_08_087 crossref_primary_10_3390_cryst10121080 crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1016_j_carbon_2019_03_007 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1088_2053_1591_ad0af3 crossref_primary_10_1016_j_matpr_2021_11_369 crossref_primary_10_3389_fchem_2021_703354 crossref_primary_10_1016_j_est_2024_115205 crossref_primary_10_1016_j_electacta_2020_137454 crossref_primary_10_1002_chem_202100693 crossref_primary_10_1007_s11581_020_03798_w crossref_primary_10_1016_j_jelechem_2019_113797 crossref_primary_10_1016_j_jpowsour_2024_235689 crossref_primary_10_1016_S1872_5805_22_60614_0 crossref_primary_10_1002_ange_202211448 crossref_primary_10_1016_j_apsusc_2024_159714 crossref_primary_10_1016_j_jpowsour_2024_235322 crossref_primary_10_1016_j_jallcom_2024_173969 crossref_primary_10_1016_j_mtcomm_2022_104403 crossref_primary_10_1080_15567036_2023_2259836 crossref_primary_10_1002_adfm_202100457 crossref_primary_10_1002_cssc_202202095 crossref_primary_10_1039_D1SE02052H crossref_primary_10_1016_j_apsusc_2021_151843 crossref_primary_10_1002_er_8532 crossref_primary_10_1016_j_electacta_2019_134719 crossref_primary_10_1002_batt_202200167 crossref_primary_10_1016_j_mtsust_2022_100181 crossref_primary_10_1016_j_carbon_2019_08_021 crossref_primary_10_1016_j_jelechem_2023_117629 crossref_primary_10_1016_j_carbon_2020_06_017 crossref_primary_10_1002_smll_202410907 crossref_primary_10_1016_j_jallcom_2019_01_253 crossref_primary_10_1002_smll_202406087 crossref_primary_10_1016_j_apsusc_2021_151058 crossref_primary_10_1016_j_cej_2022_135823 crossref_primary_10_1016_j_jcis_2023_07_015 crossref_primary_10_1007_s11356_023_27234_4 crossref_primary_10_1016_j_cej_2020_128164 crossref_primary_10_1016_j_cej_2022_140178 crossref_primary_10_1016_j_jcis_2021_09_144 crossref_primary_10_1007_s11431_021_2019_4 crossref_primary_10_1016_j_cej_2020_125686 crossref_primary_10_1002_adfm_202104433 crossref_primary_10_1139_cjc_2023_0012 crossref_primary_10_1007_s10008_020_04610_5 crossref_primary_10_1002_batt_202300563 crossref_primary_10_1002_eem2_70032 crossref_primary_10_1016_j_elecom_2022_107325 crossref_primary_10_1002_ange_201909339 crossref_primary_10_1016_j_ssi_2020_115248 crossref_primary_10_3390_batteries9060295 crossref_primary_10_1016_j_carbon_2020_10_095 crossref_primary_10_1016_j_carbon_2019_04_108 crossref_primary_10_1002_slct_201901075 crossref_primary_10_1016_j_jechem_2025_03_076 crossref_primary_10_1134_S1023193520050110 crossref_primary_10_1002_aenm_202102739 crossref_primary_10_1039_C9QI00656G crossref_primary_10_1016_j_jcis_2022_01_165 crossref_primary_10_1016_j_jssc_2020_121731 crossref_primary_10_1002_chem_202101625 crossref_primary_10_3390_molecules28052108 crossref_primary_10_1016_j_electacta_2020_136561 crossref_primary_10_1016_j_cej_2022_136258 crossref_primary_10_3390_nano10040745 crossref_primary_10_1016_j_electacta_2021_138267 crossref_primary_10_1002_smll_202302548 crossref_primary_10_1039_C9EE00206E crossref_primary_10_1002_admi_202002106 crossref_primary_10_1016_j_est_2019_101104 crossref_primary_10_1016_j_cej_2023_148433 crossref_primary_10_1002_chem_202401124 crossref_primary_10_1002_adfm_202212600 crossref_primary_10_1016_j_jechem_2020_02_003 crossref_primary_10_1002_adma_202007549 crossref_primary_10_1016_j_carbon_2022_06_067 crossref_primary_10_1002_cssc_202100568 crossref_primary_10_1016_j_cej_2024_155120 crossref_primary_10_1016_j_est_2024_112027 crossref_primary_10_1002_cey2_185 crossref_primary_10_1016_j_nanoen_2020_104763 crossref_primary_10_1016_j_electacta_2019_06_165 crossref_primary_10_1080_25740881_2020_1867174 crossref_primary_10_3389_fchem_2021_653476 crossref_primary_10_1007_s40843_022_2387_1 crossref_primary_10_1021_acsanm_5c02661 crossref_primary_10_1002_admi_202001941 crossref_primary_10_1016_j_jelechem_2020_113963 crossref_primary_10_1016_S1872_5805_25_60944_9 |
| Cites_doi | 10.1039/C7DT04717G 10.1002/aenm.201502518 10.1016/j.nanoen.2016.12.049 10.1002/aenm.201702607 10.1016/j.carbon.2017.08.035 10.1021/acs.nanolett.5b00112 10.1002/adma.201504765 10.1021/acsami.7b10641 10.1039/c2cp43394j 10.1039/C6MH00426A 10.1021/cr020738u 10.1016/j.nanoen.2017.10.053 10.1021/acsnano.5b05068 10.1002/aenm.201401752 10.1021/nl200658a 10.1039/c2ee22294a 10.1021/ar3001348 10.1016/j.nanoen.2015.12.022 10.1021/nn401228t 10.1021/acs.nanolett.6b04433 10.1016/j.carbon.2015.10.062 10.1002/aenm.201500677 10.1002/adfm.201303296 10.1002/adfm.201604639 10.1002/aenm.201701527 10.1021/acssuschemeng.7b02322 10.1021/acsami.7b14195 10.1021/acsenergylett.7b00697 10.1038/ncomms9850 10.1038/nmat2460 10.1002/adma.201301579 10.1039/C4NR06863G 10.1002/adfm.201604265 10.1002/adma.201103392 10.1016/j.nanoen.2015.05.034 10.1002/adma.201400143 10.1021/acsami.7b05825 10.1021/acs.nanolett.7b03831 10.1021/nn404439r 10.1039/C6EE02364A 10.1016/j.carbon.2016.02.007 10.1016/j.nanoen.2015.01.007 10.1016/j.carbon.2014.12.001 10.1002/cssc.201600943 10.1016/j.nanoen.2014.11.062 10.1038/nmat3191 10.1021/nn503220h 10.1021/cm902050j 10.1039/C5CC04103A 10.1016/j.ensm.2017.05.001 10.1002/adma.201204003 10.1002/adma.201703324 10.1039/c4cc00850b 10.1016/j.electacta.2015.04.055 10.1021/acsami.7b00672 10.1039/C7TA05192A 10.1016/j.ensm.2018.01.007 10.1002/anie.201100637 10.1021/acsnano.5b03488 10.1016/j.nanoen.2016.09.044 10.1002/adma.201200197 10.1002/smll.201800280 10.1016/j.jpowsour.2017.03.063 10.1016/j.jpowsour.2015.11.077 10.1038/nnano.2016.32 10.1002/adma.201602913 10.1016/j.carbon.2014.10.024 10.1038/ncomms8760 10.1126/science.1102896 10.1039/C7CS00139H 10.1002/anie.201301250 10.1002/aenm.201502459 10.1021/nl400543y 10.1016/j.jpowsour.2015.10.097 10.1021/acs.nanolett.7b04425 10.1021/ja308170k 10.1002/adfm.201604815 10.1016/j.jpowsour.2015.03.085 10.1016/j.nanoen.2017.01.060 10.1002/adfm.201702573 10.1039/C4TA07133F 10.1039/c2cc17912a 10.1039/C6CS00041J 10.1039/C6TA05878G 10.1021/acsami.7b18894 10.1038/ncomms4015 10.1007/s12274-017-1749-2 10.1039/C6TA07620C 10.1002/aenm.201201080 10.1039/C4EE01377H 10.1007/s12274-016-1244-1 10.1021/ja206955k 10.1016/j.nanoen.2017.10.056 10.1039/C7EE01898C 10.1039/C6TA08557A 10.1021/nl504263m 10.1002/anie.201411109 10.1002/adma.201602262 10.1002/advs.201500268 10.1002/aenm.201600802 10.1016/j.ensm.2015.09.008 10.1016/j.chempr.2016.07.009 10.1021/nn507178a 10.1002/adfm.201705264 10.1038/nenergy.2017.90 10.1021/acsnano.7b01437 10.1002/adfm.201604069 10.1021/acsnano.6b06369 10.1016/j.ensm.2016.12.004 10.1002/adma.200902986 10.1021/acsenergylett.7b00886 10.1073/pnas.1615837114 10.1002/smll.201502505 10.1021/cr500062v 10.1002/adma.201302877 10.1002/adma.201506014 10.1002/aenm.201602014 10.1038/451652a 10.1002/adfm.201201532 10.1016/j.carbon.2016.11.019 10.1002/adma.201401191 10.1002/smll.201503133 10.1002/anie.201504514 10.1039/C3TA14921H 10.1002/adma.201700007 10.1016/j.carbon.2014.03.049 10.1002/adma.201404210 10.1016/j.electacta.2017.06.069 10.1021/acsnano.7b05869 10.1021/acsami.7b08833 10.1016/j.nantod.2018.02.006 10.1016/j.carbon.2017.06.017 10.1039/C6EE01674J 10.1021/am4000535 10.1002/adma.201401243 10.1002/adfm.201502251 10.1021/acsnano.5b06675 10.1038/ncomms2163 10.1016/j.jpowsour.2017.01.049 10.1021/jz5006913 10.1039/C7TA03301J 10.1016/j.jpowsour.2014.01.093 10.1038/ncomms14628 10.1002/anie.201511673 10.1002/adfm.201302631 10.1016/j.electacta.2016.11.179 10.1002/aenm.201501733 10.1126/science.aab3798 10.1002/adma.201401513 10.1002/adfm.201500983 10.1021/nn501284q 10.1021/nl2027684 10.1038/nnano.2014.152 10.1016/j.carbon.2018.01.100 10.1016/j.carbon.2017.08.027 10.1021/nl202297p 10.1016/j.jpowsour.2010.09.106 10.1016/j.jpowsour.2015.10.002 10.1016/j.nanoen.2014.11.025 10.1021/jacs.7b01763 10.1002/adma.201504241 10.1021/acsnano.5b01990 10.1021/acs.nanolett.5b01837 10.1039/C7TA01291H 10.1016/j.carbon.2016.10.035 10.1038/ncomms1293 10.1002/adma.201301332 10.1002/asia.201800326 10.1002/adfm.201401501 10.1039/c002639e 10.1039/c0ee00261e 10.1039/C5CS00410A 10.1039/c3ta11255a 10.1002/adfm.201707247 10.1039/C7NR00999B 10.1021/acs.nanolett.6b01981 10.1002/advs.201500071 10.1002/aenm.201402263 10.1021/acsami.8b00190 10.1021/acs.nanolett.5b03217 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jan 2019 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2019 |
| DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
| DOI | 10.1016/j.carbon.2018.09.067 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3891 |
| EndPage | 416 |
| ExternalDocumentID | 10_1016_j_carbon_2018_09_067 S0008622318308832 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 8FD AGCQF JG9 7S9 L.6 |
| ID | FETCH-LOGICAL-c472t-e1e7828b9910455b32f6bba9b640a2d270d4dc4761ed5a72d3a0d5f51a4d03b03 |
| ISICitedReferencesCount | 297 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450312600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-6223 |
| IngestDate | Sun Sep 28 11:26:58 EDT 2025 Sun Sep 07 03:47:54 EDT 2025 Tue Nov 18 22:40:09 EST 2025 Sat Nov 29 06:55:24 EST 2025 Fri Feb 23 02:49:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c472t-e1e7828b9910455b32f6bba9b640a2d270d4dc4761ed5a72d3a0d5f51a4d03b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2159933465 |
| PQPubID | 2045273 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2176347595 proquest_journals_2159933465 crossref_citationtrail_10_1016_j_carbon_2018_09_067 crossref_primary_10_1016_j_carbon_2018_09_067 elsevier_sciencedirect_doi_10_1016_j_carbon_2018_09_067 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Carbon (New York) |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Gao, Zhang, Song, Li (bib175) 2017; 246 Li, Cheng, Gao, Ren, Liu, Guo (bib18) 2017; 9 Wang, Wang, Wan, Chen, Niu, Chen (bib89) 2018; 14 Xiao, Bu, Yang, Zhang, Xu (bib116) 2017; 29 Zhang, Heim, Song, Bartlett, Li (bib164) 2017; 2 Ye, Xin, Yin, Li, Guo, Wan (bib166) 2017; 139 Liu, Liu, Chen, Kang, Wang, Zhou (bib179) 2017; 33 Su, Cortie, Wang (bib183) 2017; 7 Yuan, Guo, Wang, Hu, Wang, Xia (bib103) 2015; 2 Li, Wu, Lou (bib29) 2016; 9 Zhu, Zhu, Cheng, Huang, Peng, Yang (bib79) 2014; 75 Ji, Rao, Zheng, Zhang, Li, Duan (bib112) 2011; 133 Liu, Yang, Sun, Lai, Zhao, Peng (bib148) 2016; 9 Zhao, Ye, Peng, Divitini, Kim, Lao (bib138) 2016; 26 Li, Dai, Xiao, Yang, Shen, Zhang (bib22) 2016; 6 Sun, Fang, Weng, Deng, Chen, Ren (bib33) 2015; 54 Jiang, Lu, YanyingLu, Han, Li, Tao (bib165) 2018; 13 Li, Carter, Douglas, Oakes, Pint (bib66) 2017; 11 Stoeck, Balach, Klose, Wadewitz, Ahrens, Eckert (bib184) 2016; 309 Kong, Sun, Wu, Jiang, Li, Wang (bib174) 2016; 96 Zhao, Hu, Zhang, Zhang, Hu, Chen (bib47) 2015; 15 Zhu, You, Zhu, Shen, Yang, Xiao (bib145) 2017; 6 Chung, Manthiram (bib149) 2014; 5 Wang, Wang, Yang, Kushima, Chen, Huang (bib94) 2015; 15 Ponraj, Kannan, Ahn, Lee, Kang, Han (bib150) 2017; 9 Jayaprakash, Shen, Moganty, Corona, Archer (bib19) 2011; 50 Zhou, Wang, Li, Hou, Yin, Liu (bib68) 2012; 5 Qian, Gao, Li, Tian, Zhang, Zhang (bib124) 2017; 9 Qie, Zu, Manthiram (bib41) 2016; 6 Park, Lee, Hwang, Piao (bib123) 2017; 5 Qiang Sun, Zhang, Lu (bib36) 2015; 9 Zhu, Peng, Liang, Huang, Chen, Guo (bib84) 2015; 11 Niu, Chen, Hng, Ma, Chen (bib86) 2012; 24 Kim, Song, Jeong (bib67) 2017; 113 Sun, Wang, Luo, Wang, Kong, Wu (bib65) 2016; 10 Peng, Huang, Zhang (bib6) 2017; 46 Deng, Zhou, Fang, Liu (bib125) 2017; 5 Peng, Huang, Zhao, Zhang, Cheng, Liu (bib182) 2014; 24 Lu, Lu, Wang (bib115) 2013; 1 Peng, Wang, Huang, Cheng, Yuan, Wei (bib161) 2016; 3 Chen, Cheng, Zhu, Chen, Hu, Ma (bib80) 2017; 17 Zhuang, Huang, Peng, He, Cheng, Chen (bib152) 2016; 12 Chen, Cao, Lu, Wang, Song, Niu (bib58) 2017; 27 Zhang, Huang, Lv, Yun, Kang, Yang (bib168) 2017; 123 Wang, Lu, Choucair, Stride, Xu, Liu (bib85) 2011; 196 Seh, Sun, Zhang, Cui (bib1) 2016; 45 He, Qiao, Zhou (bib134) 2018; 47 Zhang, Wan, Wang, Cao, Dai, Niu (bib52) 2018; 10 Xiang, Wu, Liu, Huang, Zheng, Yang (bib128) 2017; 27 Wang, Zhang, Liu, Guo (bib140) 2016; 55 Zhang, Liu, Lv, Wang, Wei, Zhou (bib96) 2015; 7 Evers, Nazar (bib4) 2013; 46 Zhao, Wu, Li, Xu, Guan (bib82) 2014; 26 Yaohui Qu, Zhang, Ren, Lai, Liu, Li (bib20) 2015; 84 Zegeye, Tsai, Cheng, Lin, Chen, Rick (bib118) 2017; 353 Niu, Lv, Zhou, Shi, Qin, Zheng (bib37) 2016; 30 Lu, Cheng, Wu, Liu (bib129) 2013; 13 Park, Lee, Kang (bib49) 2018; 28 Xu, Lawson, Fan, Su, Wang (bib50) 2018; 8 Li, Zheng, Lu, Hu, Shen, Chang (bib99) 2012; 48 Wu, Li, Su, Wang, Yang, Li (bib113) 2016; 16 Rehman, Gu, Khan, Mahmood, Yang, Huang (bib21) 2016; 6 Manthiram, Fu, Chung, Zu, Su (bib2) 2014; 114 Armand, Tarascon (bib5) 2008; 451 Bruce, Freunberger, Hardwick, Tarascon (bib3) 2011; 11 Ji, Lee, Nazar (bib34) 2009; 8 Guang He, Liang, Cuisinier, Garsuch, Nazar (bib38) 2013; 7 Xu, Kushima, Yuan, Dou, Xue, Zhang (bib77) 2017; 10 Sun, Zheng, Zhi, Seh, Liu, Wang, Sun (bib167) 2016; 1 Yang, Zhang, Zhang, Huang, Chen (bib127) 2014; 8 Cai, Li, He, Jin, Liu, Li (bib136) 2015; 283 Cao, Chen, Zhao, Zhang, Lu, Wang (bib177) 2016; 28 Zhou, Li, Wang, Shan, Pei, Li (bib14) 2015; 27 Kim, Kim, Pol (bib76) 2018; 131 Zhang, Qin, Li, Gao (bib23) 2010; 3 Xu, Kim, Kang (bib11) 2018; 19 Zhu, Zhu, Zang, Chen, Lu, Jiang (bib156) 2017; 5 Wang, Su, Wan, Guo, Zhou, Chen (bib111) 2014; 8 Wang, Zhang, Chen, Liu, Guo (bib30) 2015; 81 Li, Zhang, Chen, Li, Lou (bib43) 2015; 6 Xu, Wen, Zhu, Gaskell, Cychosz, Eichhorn (bib24) 2015; 25 Lin, Chen, Liu, Yang, Bi, Xu (bib55) 2015; 350 Huang, Zhang, Wei (bib132) 2015; 1 Guangmin, Li-Chang, Da-Wei, Lu, Songfeng, Ross (bib106) 2013; 7 Fang, Weng, Ren, Peng (bib181) 2016; 28 Zheng, Lee, Liang, Lee, Yan, Yao (bib169) 2014; 9 Zhang, Yang, Yin, Wan, Guo (bib28) 2016; 28 Luo, Manthiram (bib45) 2017; 2 Wang, Lu, Chen, Han, Wang, Li (bib60) 2017; 9 Chen, Wang, Dai, Qiu, Yang, Lu (bib104) 2015; 15 Wang, Lai, Zhang, Li, Zhang (bib151) 2015; 3 Chung, Manthiram (bib143) 2014; 50 Yuan, Peng, Huang, Liu, Wang, Cheng (bib69) 2014; 24 Chung, Chang, Manthiram (bib48) 2016; 10 Zheng, Guo, Pei, Zhang, Chen, Fang (bib126) 2016; 26 Yun, Kim, Kim, Lee (bib44) 2017; 18 Xiang, Li, Lei, Liu, Xie, Qu (bib133) 2016; 9 Gueon, Hwang, Yang, Cho, Sohn, Yang (bib17) 2018; 12 Li, Cheng, Gao, Ren, Liu, Guo (bib39) 2017; 9 Niu, Liu, Zhang, Shao, Zhou, Chen (bib87) 2014; 26 Arora, Zhang (bib131) 2004; 104 Mao, Li, Guo, Li, Liang, Peng (bib15) 2017; 8 Luo, Yao, Lei, Yan, Wei, Wang (bib97) 2017; 9 Xiao, Cao, Xiao, Schwenzer, Engelhard, Saraf (bib8) 2012; 24 Wan, Shamsaei, Easton, Yu, Liang, Chen, Abbasi (bib73) 2017; 121 Niu, Zhou, Chen, Feng, Li, Ma (bib61) 2011; 4 Zhou, Pei, Li, Wang, Wang, Huang (bib157) 2014; 26 Tan, Xu, Xing, Yuan, Lu, Wen (bib12) 2017; 2 Gui, Wei, Wang, Cao, Zhu, Jia (bib64) 2010; 22 Novoselov, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib91) 2004; 306 Zhou, Li, Ma, Wang, Shi, Koratkar (bib101) 2015; 11 Zhou, Paek, Hwang, Manthiram (bib120) 2015; 6 Wang, Yang, Kang (bib144) 2015; 168 Jin, Zhang, Zhuang, Wang, Huang, Gan (bib75) 2017; 5 Liu, Niu, Zhang, Zhou, Chen, Xie (bib105) 2014; 26 Zheng, Yang, Cha, Hong, Cui (bib32) 2011; 11 Lu, Wang, Cao, Chen, Chen, Zhao (bib46) 2017; 8 Su, Manthiram (bib141) 2012; 3 Niu, Ma, Li, Dong, Ren, Zhao (bib62) 2012; 22 Shen, Mei, Li, Ding, Yang (bib114) 2018; 8 Song, Gordin, Xu, Chen, Yu, Sohn (bib56) 2015; 54 Zhen Li, Yuan, Yi, Wu, Liu, Strasser (bib35) 2014; 8 Lee, Manthiram (bib74) 2017; 343 Niu, Liu, Zhang, Zhou, Chen, Xie (bib93) 2015; 5 Mi, Chen, Xi, Kai, Jiang, Feng (bib51) 2016; 27 Zhou, Wang, Zhang, Abruña, He, Wang (bib54) 2015; 5 Xing, Xi, Li, Su, Lai, Zhao (bib160) 2016; 303 Zu, Su, Fu, Manthiram (bib142) 2013; 15 Chong, Huang, Xu, Qin, Wang, Kim (bib13) 2017; 27 Guo, Xu, Wang (bib72) 2011; 11 Chang, Chung, Manthiram (bib176) 2017; 4 Tang, Zhang, Zhao, Huang, Cheng, Tian (bib130) 2014; 26 Xin, Gu, Zhao, Yin, Zhou, Guo (bib71) 2012; 134 Bai, Li, Brushett, Bazant (bib162) 2016; 9 Yao, Yan, Li, Zheng, Kong, Seh (bib135) 2014; 7 Huang, Xiao, Shao, Zheng, Bennett, Lu (bib171) 2014; 5 Wang, Yang, Liang, Robinson, Li, Jackson (bib95) 2011; 11 Zhou, Tian, Jin, Tao, Liu, Zhang (bib10) 2017; 114 Han, Wang, Chen, Zou, Niu, Yang, Cao, Song, Chen, Xie (bib108) 2018; 13 Liu, Niu, Chen (bib154) 2016; 45 Zhai, Peng, Cheng, Zhu, Huang, Zhu (bib155) 2017; 7 Chen, Sun, Xie, Mondal, Huang, Wang (bib26) 2015; 16 Peng, Cheng, Huang, Zhang, Zhao, Zhang (bib172) 2015; 9 Lee, Zhao, Thieme, Kim, Oschatz, Borchardt (bib40) 2013; 25 Fu, Su, Manthiram (bib9) 2013; 52 Zuo, Zhang, Hua, Ma, Du, Cheng (bib100) 2016; 222 Hwa, Seo, Yuk, Cairns (bib81) 2017; 17 Li, Han, Wang, Cheng, Sun, Li (bib27) 2013; 5 Chen, Cao, Lu, Wang, Yao, Han (bib178) 2017; 11 Guo, Li, Zhai (bib163) 2017; 29 Xu, Su, Zhang, Bao, Wang (bib119) 2016; 4 Fang, Zhao, Hou, Cheng, Wang, Cheng (bib42) 2016; 28 Wang, Wan, Zhang, Zhao, Niu, Chen (bib88) 2018; 28 Zhai, Huang, Zhu, Shi, Zhu, Zhang (bib173) 2017; 111 Fang, Li, Zhao, Yin, Du, Hou (bib70) 2017; 42 Zu, Manthiram (bib110) 2013; 3 Song, Yu, Gordin, Wang (bib109) 2016; 16 Zhou, Zhao, Manthiram (bib122) 2015; 5 Song, Xu, Gordin, Zhu, Lv, Jiang (bib57) 2014; 24 Li, Wu, Sun, Chen, Gao, Suresh (bib180) 2015; 9 Zhu, Ge, Kim, Lu, Chen, Jiang (bib137) 2016; 20 Wang, Zhang, Qu, Lai, Li (bib117) 2014; 256 Niu, Dong, Zhu, Li, Hng, Zhou (bib63) 2013; 25 Zhu, Chen, Lu, Zang, Jiang, Kim (bib159) 2016; 101 Chen, Cao, Lu, Wang, Yao, Han (bib98) 2017; 11 Yuan, Bao, Wang, Xia, Truhlar, Wang (bib121) 2016; 6 Huang, Zhuang, Zhang, Peng, Chen, Wei (bib153) 2015; 9 Zheng, Zhang, Wang, Qu, Yang, Qu (bib16) 2016; 301 Zhang, Zhang, Liu, Li, Gao (bib83) 2018; 10 Ji, Evers, Black, Nazar (bib7) 2011; 2 Chen, Cao, Wang, Lu, Han, Wang (bib59) 2017; 42 Shao, Ai, Wang, Zhang, Wang, Feng (bib146) 2017; 5 Zhu, Zhao, An, Anasori, Wang, Xu (bib25) 2017; 33 Liang, Dudney, Howe (bib31) 2009; 21 Du, Guo, Wang, Hu, Jin, Zhang (bib158) 2017; 9 Kim, Fu, Choi, Sun, Kim, Hu (bib78) 2015; 51 Niu, Zhang, Liu, Zhu, Dong, Chen (bib90) 2013; 25 Peng, Zhang, Huang, Wang, Li, Hwang (bib53) 2017; 124 Hooch Antink, Choi, Seong, Kim, Piao (bib92) 2018; 5 Hu, Xu, Sun, Wang, Cheng, Li (bib102) 2016; 28 Balach, Jaumann, Klose, Oswald, Eckert, Giebeler (bib139) 2015; 25 Lin, Liu, Liang, Lee, Sun, Wang (bib170) 2016; 11 Li, Yang, Wang, Liu, Ye, Wang (bib107) 2015; 12 Chang, Chung, Manthiram (bib147) 2016; 12 Zhang (10.1016/j.carbon.2018.09.067_bib23) 2010; 3 Guo (10.1016/j.carbon.2018.09.067_bib72) 2011; 11 Wu (10.1016/j.carbon.2018.09.067_bib113) 2016; 16 Zheng (10.1016/j.carbon.2018.09.067_bib16) 2016; 301 Li (10.1016/j.carbon.2018.09.067_bib43) 2015; 6 Sun (10.1016/j.carbon.2018.09.067_bib65) 2016; 10 Guo (10.1016/j.carbon.2018.09.067_bib163) 2017; 29 Zhou (10.1016/j.carbon.2018.09.067_bib122) 2015; 5 Balach (10.1016/j.carbon.2018.09.067_bib139) 2015; 25 Xiao (10.1016/j.carbon.2018.09.067_bib116) 2017; 29 Zuo (10.1016/j.carbon.2018.09.067_bib100) 2016; 222 Zhou (10.1016/j.carbon.2018.09.067_bib101) 2015; 11 Zhu (10.1016/j.carbon.2018.09.067_bib137) 2016; 20 Chen (10.1016/j.carbon.2018.09.067_bib26) 2015; 16 Qie (10.1016/j.carbon.2018.09.067_bib41) 2016; 6 Fang (10.1016/j.carbon.2018.09.067_bib181) 2016; 28 Yang (10.1016/j.carbon.2018.09.067_bib127) 2014; 8 Niu (10.1016/j.carbon.2018.09.067_bib37) 2016; 30 Yun (10.1016/j.carbon.2018.09.067_bib44) 2017; 18 Sun (10.1016/j.carbon.2018.09.067_bib167) 2016; 1 Zegeye (10.1016/j.carbon.2018.09.067_bib118) 2017; 353 Yaohui Qu (10.1016/j.carbon.2018.09.067_bib20) 2015; 84 Peng (10.1016/j.carbon.2018.09.067_bib161) 2016; 3 Seh (10.1016/j.carbon.2018.09.067_bib1) 2016; 45 Tan (10.1016/j.carbon.2018.09.067_bib12) 2017; 2 Zhou (10.1016/j.carbon.2018.09.067_bib54) 2015; 5 Lee (10.1016/j.carbon.2018.09.067_bib74) 2017; 343 Zhang (10.1016/j.carbon.2018.09.067_bib164) 2017; 2 Guangmin (10.1016/j.carbon.2018.09.067_bib106) 2013; 7 Yao (10.1016/j.carbon.2018.09.067_bib135) 2014; 7 Liu (10.1016/j.carbon.2018.09.067_bib179) 2017; 33 Niu (10.1016/j.carbon.2018.09.067_bib93) 2015; 5 Niu (10.1016/j.carbon.2018.09.067_bib62) 2012; 22 Chung (10.1016/j.carbon.2018.09.067_bib143) 2014; 50 Zhang (10.1016/j.carbon.2018.09.067_bib28) 2016; 28 Wang (10.1016/j.carbon.2018.09.067_bib89) 2018; 14 Peng (10.1016/j.carbon.2018.09.067_bib182) 2014; 24 Zhao (10.1016/j.carbon.2018.09.067_bib47) 2015; 15 Chung (10.1016/j.carbon.2018.09.067_bib48) 2016; 10 Wang (10.1016/j.carbon.2018.09.067_bib94) 2015; 15 Gui (10.1016/j.carbon.2018.09.067_bib64) 2010; 22 Ye (10.1016/j.carbon.2018.09.067_bib166) 2017; 139 Li (10.1016/j.carbon.2018.09.067_bib22) 2016; 6 Jin (10.1016/j.carbon.2018.09.067_bib75) 2017; 5 Xiang (10.1016/j.carbon.2018.09.067_bib128) 2017; 27 Wang (10.1016/j.carbon.2018.09.067_bib95) 2011; 11 Kim (10.1016/j.carbon.2018.09.067_bib78) 2015; 51 Zhai (10.1016/j.carbon.2018.09.067_bib173) 2017; 111 Stoeck (10.1016/j.carbon.2018.09.067_bib184) 2016; 309 Fang (10.1016/j.carbon.2018.09.067_bib70) 2017; 42 Zu (10.1016/j.carbon.2018.09.067_bib142) 2013; 15 Cai (10.1016/j.carbon.2018.09.067_bib136) 2015; 283 Du (10.1016/j.carbon.2018.09.067_bib158) 2017; 9 Bruce (10.1016/j.carbon.2018.09.067_bib3) 2011; 11 Zheng (10.1016/j.carbon.2018.09.067_bib169) 2014; 9 Chung (10.1016/j.carbon.2018.09.067_bib149) 2014; 5 Kong (10.1016/j.carbon.2018.09.067_bib174) 2016; 96 Deng (10.1016/j.carbon.2018.09.067_bib125) 2017; 5 Tang (10.1016/j.carbon.2018.09.067_bib130) 2014; 26 Armand (10.1016/j.carbon.2018.09.067_bib5) 2008; 451 Zhen Li (10.1016/j.carbon.2018.09.067_bib35) 2014; 8 Peng (10.1016/j.carbon.2018.09.067_bib6) 2017; 46 Peng (10.1016/j.carbon.2018.09.067_bib53) 2017; 124 Zu (10.1016/j.carbon.2018.09.067_bib110) 2013; 3 Xu (10.1016/j.carbon.2018.09.067_bib77) 2017; 10 Li (10.1016/j.carbon.2018.09.067_bib107) 2015; 12 Chen (10.1016/j.carbon.2018.09.067_bib80) 2017; 17 Huang (10.1016/j.carbon.2018.09.067_bib153) 2015; 9 Fang (10.1016/j.carbon.2018.09.067_bib42) 2016; 28 Yuan (10.1016/j.carbon.2018.09.067_bib69) 2014; 24 Niu (10.1016/j.carbon.2018.09.067_bib63) 2013; 25 Zhou (10.1016/j.carbon.2018.09.067_bib157) 2014; 26 Guang He (10.1016/j.carbon.2018.09.067_bib38) 2013; 7 Rehman (10.1016/j.carbon.2018.09.067_bib21) 2016; 6 Zhu (10.1016/j.carbon.2018.09.067_bib159) 2016; 101 Peng (10.1016/j.carbon.2018.09.067_bib172) 2015; 9 Chen (10.1016/j.carbon.2018.09.067_bib58) 2017; 27 Li (10.1016/j.carbon.2018.09.067_bib18) 2017; 9 Zhou (10.1016/j.carbon.2018.09.067_bib120) 2015; 6 Jayaprakash (10.1016/j.carbon.2018.09.067_bib19) 2011; 50 Zhao (10.1016/j.carbon.2018.09.067_bib82) 2014; 26 Park (10.1016/j.carbon.2018.09.067_bib123) 2017; 5 Manthiram (10.1016/j.carbon.2018.09.067_bib2) 2014; 114 Zhou (10.1016/j.carbon.2018.09.067_bib10) 2017; 114 Kim (10.1016/j.carbon.2018.09.067_bib76) 2018; 131 Gao (10.1016/j.carbon.2018.09.067_bib175) 2017; 246 Park (10.1016/j.carbon.2018.09.067_bib49) 2018; 28 Lin (10.1016/j.carbon.2018.09.067_bib170) 2016; 11 Wang (10.1016/j.carbon.2018.09.067_bib60) 2017; 9 Yuan (10.1016/j.carbon.2018.09.067_bib103) 2015; 2 Zhuang (10.1016/j.carbon.2018.09.067_bib152) 2016; 12 Wang (10.1016/j.carbon.2018.09.067_bib144) 2015; 168 Niu (10.1016/j.carbon.2018.09.067_bib61) 2011; 4 Novoselov (10.1016/j.carbon.2018.09.067_bib91) 2004; 306 Lu (10.1016/j.carbon.2018.09.067_bib129) 2013; 13 Lu (10.1016/j.carbon.2018.09.067_bib46) 2017; 8 Hu (10.1016/j.carbon.2018.09.067_bib102) 2016; 28 Shen (10.1016/j.carbon.2018.09.067_bib114) 2018; 8 Zhou (10.1016/j.carbon.2018.09.067_bib14) 2015; 27 Lin (10.1016/j.carbon.2018.09.067_bib55) 2015; 350 Chen (10.1016/j.carbon.2018.09.067_bib59) 2017; 42 Zhao (10.1016/j.carbon.2018.09.067_bib138) 2016; 26 Gueon (10.1016/j.carbon.2018.09.067_bib17) 2018; 12 Ponraj (10.1016/j.carbon.2018.09.067_bib150) 2017; 9 Evers (10.1016/j.carbon.2018.09.067_bib4) 2013; 46 Ji (10.1016/j.carbon.2018.09.067_bib7) 2011; 2 Jiang (10.1016/j.carbon.2018.09.067_bib165) 2018; 13 Song (10.1016/j.carbon.2018.09.067_bib57) 2014; 24 Wan (10.1016/j.carbon.2018.09.067_bib73) 2017; 121 Chen (10.1016/j.carbon.2018.09.067_bib104) 2015; 15 Chen (10.1016/j.carbon.2018.09.067_bib178) 2017; 11 Hooch Antink (10.1016/j.carbon.2018.09.067_bib92) 2018; 5 Cao (10.1016/j.carbon.2018.09.067_bib177) 2016; 28 Xu (10.1016/j.carbon.2018.09.067_bib24) 2015; 25 Liu (10.1016/j.carbon.2018.09.067_bib105) 2014; 26 Wang (10.1016/j.carbon.2018.09.067_bib30) 2015; 81 Lee (10.1016/j.carbon.2018.09.067_bib40) 2013; 25 Qiang Sun (10.1016/j.carbon.2018.09.067_bib36) 2015; 9 Zhu (10.1016/j.carbon.2018.09.067_bib79) 2014; 75 Wang (10.1016/j.carbon.2018.09.067_bib85) 2011; 196 Wang (10.1016/j.carbon.2018.09.067_bib88) 2018; 28 Chang (10.1016/j.carbon.2018.09.067_bib176) 2017; 4 Zhu (10.1016/j.carbon.2018.09.067_bib25) 2017; 33 Xiao (10.1016/j.carbon.2018.09.067_bib8) 2012; 24 Arora (10.1016/j.carbon.2018.09.067_bib131) 2004; 104 Zhang (10.1016/j.carbon.2018.09.067_bib83) 2018; 10 Ji (10.1016/j.carbon.2018.09.067_bib112) 2011; 133 Huang (10.1016/j.carbon.2018.09.067_bib171) 2014; 5 Li (10.1016/j.carbon.2018.09.067_bib180) 2015; 9 Niu (10.1016/j.carbon.2018.09.067_bib90) 2013; 25 Zhang (10.1016/j.carbon.2018.09.067_bib96) 2015; 7 Zhai (10.1016/j.carbon.2018.09.067_bib155) 2017; 7 Song (10.1016/j.carbon.2018.09.067_bib56) 2015; 54 Zhang (10.1016/j.carbon.2018.09.067_bib168) 2017; 123 Niu (10.1016/j.carbon.2018.09.067_bib87) 2014; 26 Zheng (10.1016/j.carbon.2018.09.067_bib126) 2016; 26 Ji (10.1016/j.carbon.2018.09.067_bib34) 2009; 8 Yuan (10.1016/j.carbon.2018.09.067_bib121) 2016; 6 Hwa (10.1016/j.carbon.2018.09.067_bib81) 2017; 17 Chong (10.1016/j.carbon.2018.09.067_bib13) 2017; 27 Lu (10.1016/j.carbon.2018.09.067_bib115) 2013; 1 Chang (10.1016/j.carbon.2018.09.067_bib147) 2016; 12 Sun (10.1016/j.carbon.2018.09.067_bib33) 2015; 54 Li (10.1016/j.carbon.2018.09.067_bib66) 2017; 11 Han (10.1016/j.carbon.2018.09.067_bib108) 2018; 13 Bai (10.1016/j.carbon.2018.09.067_bib162) 2016; 9 Shao (10.1016/j.carbon.2018.09.067_bib146) 2017; 5 Chen (10.1016/j.carbon.2018.09.067_bib98) 2017; 11 Liu (10.1016/j.carbon.2018.09.067_bib148) 2016; 9 Liang (10.1016/j.carbon.2018.09.067_bib31) 2009; 21 Xu (10.1016/j.carbon.2018.09.067_bib119) 2016; 4 Su (10.1016/j.carbon.2018.09.067_bib141) 2012; 3 Luo (10.1016/j.carbon.2018.09.067_bib45) 2017; 2 Mao (10.1016/j.carbon.2018.09.067_bib15) 2017; 8 Mi (10.1016/j.carbon.2018.09.067_bib51) 2016; 27 He (10.1016/j.carbon.2018.09.067_bib134) 2018; 47 Wang (10.1016/j.carbon.2018.09.067_bib140) 2016; 55 Su (10.1016/j.carbon.2018.09.067_bib183) 2017; 7 Liu (10.1016/j.carbon.2018.09.067_bib154) 2016; 45 Qian (10.1016/j.carbon.2018.09.067_bib124) 2017; 9 Kim (10.1016/j.carbon.2018.09.067_bib67) 2017; 113 Zheng (10.1016/j.carbon.2018.09.067_bib32) 2011; 11 Xiang (10.1016/j.carbon.2018.09.067_bib133) 2016; 9 Li (10.1016/j.carbon.2018.09.067_bib27) 2013; 5 Xin (10.1016/j.carbon.2018.09.067_bib71) 2012; 134 Huang (10.1016/j.carbon.2018.09.067_bib132) 2015; 1 Fu (10.1016/j.carbon.2018.09.067_bib9) 2013; 52 Xu (10.1016/j.carbon.2018.09.067_bib50) 2018; 8 Li (10.1016/j.carbon.2018.09.067_bib39) 2017; 9 Wang (10.1016/j.carbon.2018.09.067_bib151) 2015; 3 Li (10.1016/j.carbon.2018.09.067_bib29) 2016; 9 Niu (10.1016/j.carbon.2018.09.067_bib86) 2012; 24 Zhu (10.1016/j.carbon.2018.09.067_bib84) 2015; 11 Li (10.1016/j.carbon.2018.09.067_bib99) 2012; 48 Song (10.1016/j.carbon.2018.09.067_bib109) 2016; 16 Wang (10.1016/j.carbon.2018.09.067_bib111) 2014; 8 Xing (10.1016/j.carbon.2018.09.067_bib160) 2016; 303 Zhu (10.1016/j.carbon.2018.09.067_bib145) 2017; 6 Zhou (10.1016/j.carbon.2018.09.067_bib68) 2012; 5 Wang (10.1016/j.carbon.2018.09.067_bib117) 2014; 256 Luo (10.1016/j.carbon.2018.09.067_bib97) 2017; 9 Zhu (10.1016/j.carbon.2018.09.067_bib156) 2017; 5 Xu (10.1016/j.carbon.2018.09.067_bib11) 2018; 19 Zhang (10.1016/j.carbon.2018.09.067_bib52) 2018; 10 |
| References_xml | – volume: 5 start-page: 2208 year: 2013 end-page: 2213 ident: bib27 article-title: High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1166 year: 2012 ident: bib141 article-title: Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. – volume: 26 year: 2016 ident: bib126 article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries publication-title: Adv. Funct. Mater. – volume: 2 start-page: 17090 year: 2017 ident: bib12 article-title: Burning lithium in CS publication-title: Nat. Energy – volume: 11 start-page: 356 year: 2015 end-page: 365 ident: bib101 article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries publication-title: Nano Energy – volume: 25 start-page: 4312 year: 2015 end-page: 4320 ident: bib24 article-title: Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries publication-title: Adv. Funct. Mater. – volume: 33 start-page: 325 year: 2017 end-page: 333 ident: bib179 article-title: Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action publication-title: Nano Energy – volume: 11 start-page: 1345 year: 2017 end-page: 1357 ident: bib98 article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries publication-title: Nano Res. – volume: 9 start-page: 38445 year: 2017 end-page: 38454 ident: bib150 article-title: Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 268 year: 2015 end-page: 280 ident: bib26 article-title: Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life publication-title: Nano Energy – volume: 54 start-page: 10539 year: 2015 end-page: 10544 ident: bib33 article-title: An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 175 year: 2018 end-page: 183 ident: bib76 article-title: Towards highly stable lithium sulfur batteries: surface functionalization of carbon nanotube scaffolds publication-title: Carbon – volume: 5 start-page: 15096 year: 2017 end-page: 15104 ident: bib156 article-title: A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 5 start-page: 19892 year: 2017 end-page: 19900 ident: bib146 article-title: Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 256 start-page: 361 year: 2014 end-page: 368 ident: bib117 article-title: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries publication-title: J. Power Sources – volume: 48 start-page: 4106 year: 2012 end-page: 4108 ident: bib99 article-title: High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating publication-title: Chem. Commun. – volume: 121 start-page: 330 year: 2017 end-page: 336 ident: bib73 article-title: ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor publication-title: Carbon – volume: 28 year: 2018 ident: bib88 article-title: Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors publication-title: Adv. Funct. Mater. – volume: 42 start-page: 187 year: 2017 end-page: 194 ident: bib59 article-title: Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector publication-title: Nano Energy – volume: 45 start-page: 4340 year: 2016 end-page: 434363 ident: bib154 article-title: Unconventional supercapacitors from nanocarbon based electrode materials to device configurations publication-title: Chem. Soc. Rev. – volume: 9 start-page: 3735 year: 2016 end-page: 3746 ident: bib148 article-title: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries publication-title: Nano Res. – volume: 46 start-page: 1135 year: 2013 end-page: 1143 ident: bib4 article-title: New approaches for high energy density lithium-sulfur battery cathodes publication-title: Acc. Chem. Res. – volume: 1 start-page: 127 year: 2015 end-page: 145 ident: bib132 article-title: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects publication-title: Energy Storage Mater. – volume: 3 year: 2016 ident: bib161 article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries publication-title: Adv. Sci. – volume: 9 start-page: 4646 year: 2017 end-page: 4651 ident: bib97 article-title: Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries publication-title: Nanoscale – volume: 9 start-page: 10717 year: 2017 end-page: 10729 ident: bib39 article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 5113 year: 2014 end-page: 5118 ident: bib82 article-title: Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries publication-title: Adv. Mater. – volume: 301 start-page: 312 year: 2016 end-page: 316 ident: bib16 article-title: Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide publication-title: J. Power Sources – volume: 46 start-page: 5237 year: 2017 end-page: 5288 ident: bib6 article-title: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries publication-title: Chem. Soc. Rev. – volume: 12 start-page: 174 year: 2016 end-page: 179 ident: bib147 article-title: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators publication-title: Small – volume: 139 start-page: 5916 year: 2017 end-page: 5922 ident: bib166 article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 6105 year: 2014 end-page: 6112 ident: bib69 article-title: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 28 year: 2018 ident: bib49 article-title: Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries publication-title: Adv. Funct. Mater. – volume: 55 start-page: 3992 year: 2016 end-page: 3996 ident: bib140 article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 3381 year: 2014 end-page: 3390 ident: bib135 article-title: Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface publication-title: Energy Environ. Sci. – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib5 article-title: Building better batteries publication-title: Nature – volume: 25 start-page: 4573 year: 2013 end-page: 4579 ident: bib40 article-title: Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries publication-title: Adv. Mater. – volume: 2 year: 2015 ident: bib103 article-title: Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery publication-title: Adv. Sci. – volume: 5 start-page: 632 year: 2017 end-page: 640 ident: bib75 article-title: Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 15 start-page: 1796 year: 2015 end-page: 1802 ident: bib94 article-title: Slurryless Li publication-title: Nano Lett. – volume: 2 start-page: 2696 year: 2017 end-page: 2705 ident: bib164 article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries publication-title: ACS Energy Lett. – volume: 1 start-page: 287 year: 2016 end-page: 297 ident: bib167 article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries publication-title: Chem – volume: 123 start-page: 744 year: 2017 end-page: 755 ident: bib168 article-title: Carbon enables the practical use of lithium metal in a battery publication-title: Carbon – volume: 45 start-page: 5605 year: 2016 end-page: 5634 ident: bib1 article-title: Designing high-energy lithium-sulfur batteries publication-title: Chem. Soc. Rev. – volume: 18 start-page: 475 year: 2017 end-page: 481 ident: bib44 article-title: Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries publication-title: Nano Lett. – volume: 96 start-page: 1053 year: 2016 end-page: 1059 ident: bib174 article-title: Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries publication-title: Carbon – volume: 6 year: 2016 ident: bib22 article-title: Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors publication-title: Adv. Energy Mater. – volume: 6 start-page: 1502459 year: 2016 ident: bib41 article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism publication-title: Adv. Energy Mater. – volume: 5 start-page: 13674 year: 2017 end-page: 13682 ident: bib125 article-title: A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 6 start-page: 248 year: 2017 end-page: 257 ident: bib145 article-title: High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator publication-title: ACS Sustain. Chem. Eng. – volume: 222 start-page: 1861 year: 2016 end-page: 1869 ident: bib100 article-title: A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries publication-title: Electrochim. Acta – volume: 8 start-page: 9295 year: 2014 end-page: 9303 ident: bib35 article-title: A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries publication-title: ACS Nano – volume: 343 start-page: 54 year: 2017 end-page: 59 ident: bib74 article-title: Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries publication-title: J. Power Sources – volume: 15 start-page: 5443 year: 2015 end-page: 5448 ident: bib104 article-title: Rational design of cathode structure for high rate performance lithium-sulfur batteries publication-title: Nano Lett. – volume: 2 start-page: 325 year: 2011 ident: bib7 article-title: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs publication-title: Nat. Commun. – volume: 4 start-page: 1440 year: 2011 end-page: 1446 ident: bib61 article-title: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films publication-title: Energy Environ. Sci. – volume: 7 year: 2017 ident: bib183 article-title: Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 28 start-page: 9539 year: 2016 end-page: 9544 ident: bib28 article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries publication-title: Adv. Mater. – volume: 51 start-page: 13682 year: 2015 end-page: 13685 ident: bib78 article-title: Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries publication-title: Chem. Commun. – volume: 27 year: 2017 ident: bib13 article-title: Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers publication-title: Adv. Funct. Mater. – volume: 353 start-page: 298 year: 2017 end-page: 311 ident: bib118 article-title: Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries publication-title: J. Power Sources – volume: 104 start-page: 4419 year: 2004 end-page: 4462 ident: bib131 article-title: Battery separator publication-title: Chem. Rev. – volume: 26 start-page: 6100 year: 2014 end-page: 6105 ident: bib130 article-title: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries publication-title: Adv. Mater. – volume: 9 start-page: 618 year: 2014 end-page: 623 ident: bib169 article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes publication-title: Nat. Nanotech. – volume: 5 year: 2015 ident: bib54 article-title: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 303 start-page: 22 year: 2016 end-page: 28 ident: bib160 article-title: Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries publication-title: J. Power Sources – volume: 30 start-page: 138 year: 2016 end-page: 145 ident: bib37 article-title: Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery publication-title: Nano Energy – volume: 50 start-page: 5904 year: 2011 end-page: 5908 ident: bib19 article-title: Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 4462 year: 2011 end-page: 44467 ident: bib32 article-title: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries publication-title: Nano Lett. – volume: 20 start-page: 176 year: 2016 end-page: 184 ident: bib137 article-title: A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries publication-title: Nano Energy – volume: 12 start-page: 381 year: 2016 end-page: 389 ident: bib152 article-title: Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries publication-title: Small – volume: 15 start-page: 2291 year: 2013 end-page: 2297 ident: bib142 article-title: Improved lithium-sulfur cells with a treated carbon paper interlayer publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 10717 year: 2017 end-page: 10729 ident: bib18 article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes, ACS publication-title: Appl. Mater. Interfaces – volume: 9 start-page: 28366 year: 2017 end-page: 28376 ident: bib124 article-title: Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 9173 year: 2013 end-page: 9181 ident: bib115 article-title: Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 24 start-page: 1176 year: 2012 end-page: 1181 ident: bib8 article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life publication-title: Adv. Mater. – volume: 6 year: 2016 ident: bib121 article-title: Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides publication-title: Adv. Energy Mater. – volume: 283 start-page: 524 year: 2015 end-page: 529 ident: bib136 article-title: A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries publication-title: J. Power Sources – volume: 29 year: 2017 ident: bib163 article-title: Reviving lithium-metal anodes for next-generation high-energy batteries publication-title: Adv. Mater. – volume: 27 start-page: 641 year: 2015 end-page: 647 ident: bib14 article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries publication-title: Adv. Mater. – volume: 6 year: 2016 ident: bib21 article-title: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 8 start-page: 77 year: 2017 end-page: 84 ident: bib46 article-title: Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries publication-title: Energy Storage Mater. – volume: 81 start-page: 782 year: 2015 end-page: 787 ident: bib30 article-title: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries publication-title: Carbon – volume: 12 start-page: 468 year: 2015 end-page: 475 ident: bib107 article-title: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode publication-title: Nano Energy – volume: 15 start-page: 721 year: 2015 end-page: 726 ident: bib47 article-title: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries publication-title: Nano Lett. – volume: 13 start-page: 119 year: 2018 end-page: 126 ident: bib108 article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance publication-title: Energy Storage Mater. – volume: 4 start-page: 249 year: 2017 end-page: 258 ident: bib176 article-title: Highly flexible, freestanding tandem sulfur cathodes for foldable Li-S batteries with a high areal capacity publication-title: Mater. Horiz. – volume: 9 start-page: 6373 year: 2015 end-page: 6382 ident: bib172 article-title: Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium sulfur batteries publication-title: ACS Nano – volume: 54 start-page: 4325 year: 2015 end-page: 4329 ident: bib56 article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes publication-title: Angew. Chem. Int. Ed. – volume: 246 start-page: 507 year: 2017 end-page: 516 ident: bib175 article-title: Towards flexible lithium-sulfur battery from natural cotton textile publication-title: Electrochim. Acta – volume: 114 start-page: 840 year: 2017 end-page: 845 ident: bib10 article-title: Catalytic oxidation of Li publication-title: P. Natl. Acad. Sci.the USA – volume: 8 year: 2018 ident: bib114 article-title: 3D Printing sulfur copolymer-graphene architectures for Li-S batteries publication-title: Adv. Energy Mater. – volume: 113 start-page: 371 year: 2017 end-page: 378 ident: bib67 article-title: Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery publication-title: Carbon – volume: 10 start-page: 10462 year: 2016 end-page: 10470 ident: bib48 article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries publication-title: ACS Nano – volume: 25 start-page: 1058 year: 2013 end-page: 1064 ident: bib63 article-title: Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture publication-title: Adv. Mater. – volume: 33 start-page: 402 year: 2017 end-page: 409 ident: bib25 article-title: Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery publication-title: Nano Energy – volume: 7 start-page: 10920 year: 2013 end-page: 10930 ident: bib38 article-title: Tailoring porosity in carbon nanospheres for lithium sulfur battery cathodes publication-title: ACS Nano – volume: 10 start-page: 2544 year: 2017 end-page: 2551 ident: bib77 article-title: Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries publication-title: Energy Environ. Sci. – volume: 17 start-page: 437 year: 2017 end-page: 444 ident: bib80 article-title: Highly efficient retention of polysulfides in "sea urchin"-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries publication-title: Nano Lett. – volume: 7 start-page: 5367 year: 2013 end-page: 5375 ident: bib106 article-title: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries publication-title: ACS Nano – volume: 9 start-page: 28612 year: 2017 end-page: 28619 ident: bib60 article-title: A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2205 year: 2017 end-page: 2211 ident: bib45 article-title: Rational design of high-loading sulfur cathodes with a poached-egg-shaped architecture for long-cycle lithium-sulfur batteries publication-title: ACS Energy Lett. – volume: 11 start-page: 1345 year: 2017 end-page: 1357 ident: bib178 article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries publication-title: Nano Res. – volume: 28 start-page: 3374 year: 2016 end-page: 3382 ident: bib42 article-title: 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries publication-title: Adv. Mater. – volume: 14 year: 2018 ident: bib89 article-title: An All-freeze-casting strategy to design typographical supercapacitors with integrated architectures publication-title: Small – volume: 6 start-page: 7760 year: 2015 ident: bib120 article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge publication-title: Nat. Commun. – volume: 28 start-page: 491 year: 2016 end-page: 496 ident: bib181 article-title: A cable-shaped lithium sulfur battery publication-title: Adv. Mater. – volume: 26 start-page: 8418 year: 2016 end-page: 8426 ident: bib138 article-title: Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1531 year: 2010 end-page: 1537 ident: bib23 article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres publication-title: Energy Environ. Sci. – volume: 25 start-page: 5285 year: 2015 end-page: 5291 ident: bib139 article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 5 year: 2015 ident: bib122 article-title: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries publication-title: Adv. Energy Mater. – volume: 24 start-page: 1243 year: 2014 end-page: 1250 ident: bib57 article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 114 start-page: 11751 year: 2014 end-page: 11787 ident: bib2 article-title: Rechargeable lithium-sulfur batteries publication-title: Chem. Rev. – volume: 111 start-page: 493 year: 2017 end-page: 501 ident: bib173 article-title: Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density publication-title: Carbon – volume: 27 year: 2016 ident: bib51 article-title: Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3002 year: 2015 end-page: 3011 ident: bib153 article-title: Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries publication-title: ACS Nano – volume: 13 start-page: 2485 year: 2013 end-page: 2489 ident: bib129 article-title: Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers publication-title: Nano Lett. – volume: 8 start-page: 500 year: 2009 end-page: 506 ident: bib34 article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries publication-title: Nat. Mater. – volume: 17 start-page: 7086 year: 2017 end-page: 7094 ident: bib81 article-title: Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells publication-title: Nano Lett. – volume: 8 start-page: 5018 year: 2014 end-page: 5023 ident: bib111 article-title: High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 9 start-page: 3023 year: 2016 end-page: 3039 ident: bib133 article-title: Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress publication-title: ChemSusChem – volume: 84 start-page: 399 year: 2015 end-page: 408 ident: bib20 article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries publication-title: Carbon – volume: 168 start-page: 271 year: 2015 end-page: 276 ident: bib144 article-title: Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries publication-title: Electrochim. Acta – volume: 11 start-page: 746 year: 2015 end-page: 755 ident: bib84 article-title: Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries publication-title: Nano Energy – volume: 3 start-page: 1008 year: 2013 end-page: 1012 ident: bib110 article-title: Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 6 start-page: 8850 year: 2015 ident: bib43 article-title: Pie-like electrode design for high-energy density lithium-sulfur batteries publication-title: Nat. Commun. – volume: 26 start-page: 4855 year: 2014 end-page: 4862 ident: bib105 article-title: Nanostructured graphene composite papers for highly flexible and foldable supercapacitors publication-title: Adv. Mater. – volume: 9 start-page: 11342 year: 2015 end-page: 11350 ident: bib180 article-title: A foldable lithium-sulfur battery publication-title: ACS Nano – volume: 124 start-page: 23 year: 2017 end-page: 33 ident: bib53 article-title: Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries publication-title: Carbon – volume: 4 start-page: 17381 year: 2016 end-page: 17393 ident: bib119 article-title: A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 3 start-page: 7139 year: 2015 end-page: 7144 ident: bib151 article-title: Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator publication-title: J. Mater. Chem. A – volume: 22 start-page: 5209 year: 2012 end-page: 5215 ident: bib62 article-title: High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture publication-title: Adv. Funct. Mater. – volume: 11 start-page: 19 year: 2011 end-page: 29 ident: bib3 article-title: Li-O publication-title: Nat. Mater. – volume: 5 year: 2018 ident: bib92 article-title: Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices publication-title: Adv. Mater. Interfaces – volume: 27 year: 2017 ident: bib58 article-title: Foldable All-solid-state supercapacitors integrated with photodetectors publication-title: Adv. Funct. Mater. – volume: 10 start-page: 5594 year: 2018 end-page: 5602 ident: bib52 article-title: Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 4877 year: 2017 end-page: 4884 ident: bib66 article-title: Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes publication-title: ACS Nano – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib91 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 75 start-page: 161 year: 2014 end-page: 168 ident: bib79 article-title: Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries publication-title: Carbon – volume: 28 start-page: 1603 year: 2016 end-page: 1609 ident: bib102 article-title: 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries publication-title: Adv. Mater. – volume: 16 start-page: 5488 year: 2016 end-page: 5494 ident: bib113 article-title: Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries publication-title: Nano Lett. – volume: 13 start-page: 1379 year: 2018 end-page: 1385 ident: bib165 article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries publication-title: Chem. Asian J. – volume: 5 year: 2015 ident: bib93 article-title: Programmable nanocarbon-based architectures for flexible supercapacitors publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: bib116 article-title: Integration of Graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices publication-title: Adv. Mater. – volume: 11 start-page: 4288 year: 2011 end-page: 4294 ident: bib72 article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries publication-title: Nano Lett. – volume: 25 start-page: 4035 year: 2013 end-page: 4042 ident: bib90 article-title: All-solid-state flexible ultrathin micro-supercapacitors based on graphene publication-title: Adv. Mater. – volume: 8 start-page: 14628 year: 2017 ident: bib15 article-title: Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries publication-title: Nat. Commun. – volume: 8 year: 2018 ident: bib50 article-title: Updated metal compounds (MOFs, S, OH, N, C) used as cathode materials for lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 5 start-page: 8901 year: 2012 end-page: 8906 ident: bib68 article-title: A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries publication-title: Energy Environ. Sci. – volume: 9 start-page: 8504 year: 2015 end-page: 8513 ident: bib36 article-title: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries publication-title: ACS Nano – volume: 5 start-page: 975 year: 2017 end-page: 981 ident: bib123 article-title: Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 134 start-page: 18510 year: 2012 end-page: 18513 ident: bib71 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 43696 year: 2017 end-page: 43703 ident: bib158 article-title: Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries publication-title: ACS Appl. Mater. Interfaces – volume: 350 start-page: 1508 year: 2015 end-page: 1513 ident: bib55 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science – volume: 27 year: 2017 ident: bib128 article-title: A flexible 3D multifunctional MgO-decorated carbon foam@CNT hybrid as self-supported cathode for high-performance lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2772 year: 2014 end-page: 2781 ident: bib182 article-title: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries publication-title: Adv. Funct. Mater. – volume: 101 start-page: 272 year: 2016 end-page: 280 ident: bib159 article-title: Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries publication-title: Carbon – volume: 16 start-page: 864 year: 2016 end-page: 870 ident: bib109 article-title: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries publication-title: Nano Lett. – volume: 52 start-page: 6930 year: 2013 end-page: 6935 ident: bib9 article-title: Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 3015 year: 2014 ident: bib171 article-title: Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures publication-title: Nat. Commun. – volume: 133 start-page: 18522 year: 2011 end-page: 18525 ident: bib112 article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 226 year: 2018 end-page: 233 ident: bib17 article-title: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes publication-title: ACS Nano – volume: 28 start-page: 9629 year: 2016 end-page: 9636 ident: bib177 article-title: A flexible nanostructured paper of a reduced graphene oxide sulfur composite for high performance lithium sulfur batteries with unconventional configurations publication-title: Adv. Mater. – volume: 42 start-page: 205 year: 2017 end-page: 214 ident: bib70 article-title: Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries publication-title: Nano Energy – volume: 11 start-page: 2644 year: 2011 end-page: 2647 ident: bib95 article-title: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability publication-title: Nano Lett. – volume: 9 start-page: 3221 year: 2016 end-page: 3229 ident: bib162 article-title: Transition of lithium growth mechanisms in liquid electrolytes publication-title: Energy Environ. Sci. – volume: 309 start-page: 76 year: 2016 end-page: 81 ident: bib184 article-title: Reconfiguration of lithium sulphur batteries: “Enhancement of Li-S cell performance by employing a highly porous conductive separator coating” publication-title: J. Power Sources – volume: 22 start-page: 617 year: 2010 end-page: 621 ident: bib64 article-title: Carbon nanotube sponges publication-title: Adv. Mater. – volume: 21 start-page: 4724 year: 2009 end-page: 4730 ident: bib31 article-title: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery publication-title: Chem. Mater. – volume: 7 start-page: 5592 year: 2015 end-page: 5597 ident: bib96 article-title: A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries publication-title: Nanoscale – volume: 26 start-page: 625 year: 2014 end-page: 631 ident: bib157 article-title: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries publication-title: Adv. Mater. – volume: 26 start-page: 3681 year: 2014 end-page: 3687 ident: bib87 article-title: A universal strategy to prepare functional porous graphene hybrid architectures publication-title: Adv. Mater. – volume: 24 start-page: 4144 year: 2012 end-page: 4150 ident: bib86 article-title: A leavening strategy to prepare reduced graphene oxide foams publication-title: Adv. Mater. – volume: 8 start-page: 5208 year: 2014 end-page: 5215 ident: bib127 article-title: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium sulfur batteries publication-title: ACS Nano – volume: 11 start-page: 626 year: 2016 end-page: 632 ident: bib170 article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes publication-title: Nat. Nanotech. – volume: 10 start-page: 1300 year: 2016 end-page: 1308 ident: bib65 article-title: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries publication-title: ACS Nano – volume: 19 start-page: 84 year: 2018 end-page: 107 ident: bib11 article-title: Carbon nanomaterials for advanced lithium sulfur batteries publication-title: Nano Today – volume: 10 start-page: 8749 year: 2018 end-page: 8757 ident: bib83 article-title: Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 4184 year: 2014 end-page: 4187 ident: bib143 article-title: A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries publication-title: Chem. Commun. – volume: 9 start-page: 3061 year: 2016 end-page: 3070 ident: bib29 article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries publication-title: Energy Environ. Sci. – volume: 47 start-page: 6881 year: 2018 end-page: 6887 ident: bib134 article-title: Recent advances in functional modification of separators in lithium-sulfur batteries publication-title: Dalton Trans. – volume: 196 start-page: 7030 year: 2011 end-page: 7034 ident: bib85 article-title: Sulfur-graphene composite for rechargeable lithium batteries publication-title: J. Power Sources – volume: 7 start-page: 56 year: 2017 end-page: 63 ident: bib155 article-title: Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries publication-title: Energy Storage Mater. – volume: 5 start-page: 1978 year: 2014 end-page: 1983 ident: bib149 article-title: High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator publication-title: J. Phys. Chem. Lett. – volume: 47 start-page: 6881 issue: 20 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib134 article-title: Recent advances in functional modification of separators in lithium-sulfur batteries publication-title: Dalton Trans. doi: 10.1039/C7DT04717G – volume: 6 issue: 12 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib21 article-title: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502518 – volume: 33 start-page: 325 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib179 article-title: Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.049 – volume: 8 issue: 10 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib50 article-title: Updated metal compounds (MOFs, S, OH, N, C) used as cathode materials for lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702607 – volume: 124 start-page: 23 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib53 article-title: Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2017.08.035 – volume: 15 start-page: 1796 issue: 3 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib94 article-title: Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00112 – volume: 28 start-page: 1603 issue: 8 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib102 article-title: 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201504765 – volume: 9 start-page: 38445 issue: 44 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib150 article-title: Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10641 – volume: 15 start-page: 2291 issue: 7 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib142 article-title: Improved lithium-sulfur cells with a treated carbon paper interlayer publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43394j – volume: 4 start-page: 249 issue: 2 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib176 article-title: Highly flexible, freestanding tandem sulfur cathodes for foldable Li-S batteries with a high areal capacity publication-title: Mater. Horiz. doi: 10.1039/C6MH00426A – volume: 104 start-page: 4419 year: 2004 ident: 10.1016/j.carbon.2018.09.067_bib131 article-title: Battery separator publication-title: Chem. Rev. doi: 10.1021/cr020738u – volume: 42 start-page: 205 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib70 article-title: Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.053 – volume: 9 start-page: 11342 issue: 11 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib180 article-title: A foldable lithium-sulfur battery publication-title: ACS Nano doi: 10.1021/acsnano.5b05068 – volume: 5 issue: 16 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib54 article-title: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401752 – volume: 11 start-page: 2644 issue: 7 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib95 article-title: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability publication-title: Nano Lett. doi: 10.1021/nl200658a – volume: 5 start-page: 8901 issue: 10 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib68 article-title: A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22294a – volume: 46 start-page: 1135 issue: 5 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib4 article-title: New approaches for high energy density lithium-sulfur battery cathodes publication-title: Acc. Chem. Res. doi: 10.1021/ar3001348 – volume: 20 start-page: 176 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib137 article-title: A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.022 – volume: 7 start-page: 5367 issue: 6 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib106 article-title: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries publication-title: ACS Nano doi: 10.1021/nn401228t – volume: 17 start-page: 437 issue: 1 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib80 article-title: Highly efficient retention of polysulfides in "sea urchin"-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04433 – volume: 96 start-page: 1053 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib174 article-title: Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries publication-title: Carbon doi: 10.1016/j.carbon.2015.10.062 – volume: 5 issue: 23 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib93 article-title: Programmable nanocarbon-based architectures for flexible supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500677 – volume: 24 start-page: 2772 issue: 19 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib182 article-title: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303296 – volume: 27 issue: 3 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib58 article-title: Foldable All-solid-state supercapacitors integrated with photodetectors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604639 – volume: 8 issue: 4 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib114 article-title: 3D Printing sulfur copolymer-graphene architectures for Li-S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701527 – volume: 6 start-page: 248 issue: 1 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib145 article-title: High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02322 – volume: 9 start-page: 43696 issue: 50 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib158 article-title: Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14195 – volume: 2 start-page: 2205 issue: 10 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib45 article-title: Rational design of high-loading sulfur cathodes with a poached-egg-shaped architecture for long-cycle lithium-sulfur batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00697 – volume: 6 start-page: 8850 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib43 article-title: Pie-like electrode design for high-energy density lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms9850 – volume: 8 start-page: 500 issue: 6 year: 2009 ident: 10.1016/j.carbon.2018.09.067_bib34 article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 25 start-page: 4573 issue: 33 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib40 article-title: Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201301579 – volume: 7 start-page: 5592 issue: 13 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib96 article-title: A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries publication-title: Nanoscale doi: 10.1039/C4NR06863G – volume: 27 issue: 1 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib51 article-title: Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604265 – volume: 24 start-page: 1176 issue: 9 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib8 article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life publication-title: Adv. Mater. doi: 10.1002/adma.201103392 – volume: 16 start-page: 268 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib26 article-title: Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.034 – volume: 26 start-page: 3681 issue: 22 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib87 article-title: A universal strategy to prepare functional porous graphene hybrid architectures publication-title: Adv. Mater. doi: 10.1002/adma.201400143 – volume: 9 start-page: 28366 issue: 34 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib124 article-title: Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05825 – volume: 17 start-page: 7086 issue: 11 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib81 article-title: Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03831 – volume: 7 start-page: 10920 issue: 12 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib38 article-title: Tailoring porosity in carbon nanospheres for lithium sulfur battery cathodes publication-title: ACS Nano doi: 10.1021/nn404439r – volume: 9 start-page: 3061 issue: 10 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib29 article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02364A – volume: 101 start-page: 272 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib159 article-title: Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2016.02.007 – volume: 12 start-page: 468 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib107 article-title: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.007 – volume: 84 start-page: 399 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib20 article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2014.12.001 – volume: 9 start-page: 3023 issue: 21 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib133 article-title: Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress publication-title: ChemSusChem doi: 10.1002/cssc.201600943 – volume: 11 start-page: 746 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib84 article-title: Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.062 – volume: 11 start-page: 19 issue: 1 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib3 article-title: Li-O2 and Li-S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 8 start-page: 9295 issue: 9 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib35 article-title: A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries publication-title: ACS Nano doi: 10.1021/nn503220h – volume: 21 start-page: 4724 issue: 19 year: 2009 ident: 10.1016/j.carbon.2018.09.067_bib31 article-title: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery publication-title: Chem. Mater. doi: 10.1021/cm902050j – volume: 51 start-page: 13682 issue: 71 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib78 article-title: Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries publication-title: Chem. Commun. doi: 10.1039/C5CC04103A – volume: 8 start-page: 77 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib46 article-title: Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.05.001 – volume: 25 start-page: 1058 issue: 7 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib63 article-title: Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture publication-title: Adv. Mater. doi: 10.1002/adma.201204003 – volume: 29 issue: 40 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib116 article-title: Integration of Graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices publication-title: Adv. Mater. doi: 10.1002/adma.201703324 – volume: 50 start-page: 4184 issue: 32 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib143 article-title: A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries publication-title: Chem. Commun. doi: 10.1039/c4cc00850b – volume: 168 start-page: 271 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib144 article-title: Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.055 – volume: 9 start-page: 10717 issue: 12 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib18 article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes, ACS publication-title: Appl. Mater. Interfaces doi: 10.1021/acsami.7b00672 – volume: 5 start-page: 19892 issue: 37 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib146 article-title: Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05192A – volume: 13 start-page: 119 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib108 article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.01.007 – volume: 50 start-page: 5904 issue: 26 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib19 article-title: Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100637 – volume: 9 start-page: 8504 issue: 8 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib36 article-title: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b03488 – volume: 30 start-page: 138 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib37 article-title: Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.044 – volume: 24 start-page: 4144 issue: 30 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib86 article-title: A leavening strategy to prepare reduced graphene oxide foams publication-title: Adv. Mater. doi: 10.1002/adma.201200197 – volume: 14 issue: 23 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib89 article-title: An All-freeze-casting strategy to design typographical supercapacitors with integrated architectures publication-title: Small doi: 10.1002/smll.201800280 – volume: 353 start-page: 298 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib118 article-title: Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.063 – volume: 309 start-page: 76 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib184 article-title: Reconfiguration of lithium sulphur batteries: “Enhancement of Li-S cell performance by employing a highly porous conductive separator coating” publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.077 – volume: 11 start-page: 626 issue: 7 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib170 article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.32 – volume: 28 start-page: 9539 issue: 43 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib28 article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201602913 – volume: 81 start-page: 782 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib30 article-title: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2014.10.024 – volume: 6 start-page: 7760 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib120 article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge publication-title: Nat. Commun. doi: 10.1038/ncomms8760 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.carbon.2018.09.067_bib91 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 46 start-page: 5237 issue: 17 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib6 article-title: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00139H – volume: 52 start-page: 6930 issue: 27 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib9 article-title: Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301250 – volume: 6 start-page: 1502459 issue: 7 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib41 article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502459 – volume: 13 start-page: 2485 issue: 6 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib129 article-title: Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers publication-title: Nano Lett. doi: 10.1021/nl400543y – volume: 303 start-page: 22 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib160 article-title: Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.097 – volume: 18 start-page: 475 issue: 1 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib44 article-title: Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04425 – volume: 134 start-page: 18510 issue: 45 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib71 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 27 issue: 4 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib13 article-title: Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604815 – volume: 283 start-page: 524 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib136 article-title: A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.085 – volume: 33 start-page: 402 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib25 article-title: Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.060 – volume: 27 issue: 37 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib128 article-title: A flexible 3D multifunctional MgO-decorated carbon foam@CNT hybrid as self-supported cathode for high-performance lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702573 – volume: 3 start-page: 7139 issue: 13 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib151 article-title: Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator publication-title: J. Mater. Chem. A doi: 10.1039/C4TA07133F – volume: 48 start-page: 4106 issue: 34 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib99 article-title: High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating publication-title: Chem. Commun. doi: 10.1039/c2cc17912a – volume: 45 start-page: 4340 issue: 15 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib154 article-title: Unconventional supercapacitors from nanocarbon based electrode materials to device configurations publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00041J – volume: 4 start-page: 17381 issue: 44 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib119 article-title: A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05878G – volume: 10 start-page: 5594 issue: 6 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib52 article-title: Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18894 – volume: 5 start-page: 3015 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib171 article-title: Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures publication-title: Nat. Commun. doi: 10.1038/ncomms4015 – volume: 11 start-page: 1345 issue: 3 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib178 article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1749-2 – volume: 5 start-page: 632 issue: 2 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib75 article-title: Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07620C – volume: 3 start-page: 1008 issue: 8 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib110 article-title: Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201201080 – volume: 7 start-page: 3381 issue: 10 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib135 article-title: Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01377H – volume: 9 start-page: 3735 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib148 article-title: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries publication-title: Nano Res. doi: 10.1007/s12274-016-1244-1 – volume: 133 start-page: 18522 issue: 46 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib112 article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206955k – volume: 42 start-page: 187 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib59 article-title: Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.056 – volume: 10 start-page: 2544 issue: 12 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib77 article-title: Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01898C – volume: 5 start-page: 975 issue: 3 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib123 article-title: Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08557A – volume: 9 start-page: 10717 issue: 12 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib39 article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00672 – volume: 15 start-page: 721 issue: 1 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib47 article-title: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries publication-title: Nano Lett. doi: 10.1021/nl504263m – volume: 54 start-page: 4325 issue: 14 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib56 article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411109 – volume: 28 start-page: 9629 issue: 43 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib177 article-title: A flexible nanostructured paper of a reduced graphene oxide sulfur composite for high performance lithium sulfur batteries with unconventional configurations publication-title: Adv. Mater. doi: 10.1002/adma.201602262 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib161 article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500268 – volume: 6 issue: 18 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib22 article-title: Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600802 – volume: 1 start-page: 127 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib132 article-title: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.09.008 – volume: 1 start-page: 287 issue: 2 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib167 article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries publication-title: Chem doi: 10.1016/j.chempr.2016.07.009 – volume: 9 start-page: 3002 issue: 3 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib153 article-title: Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries publication-title: ACS Nano doi: 10.1021/nn507178a – volume: 28 issue: 18 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib49 article-title: Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705264 – volume: 2 start-page: 17090 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib12 article-title: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2017.90 – volume: 11 start-page: 4877 issue: 5 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib66 article-title: Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes publication-title: ACS Nano doi: 10.1021/acsnano.7b01437 – volume: 26 start-page: 8418 issue: 46 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib138 article-title: Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604069 – volume: 10 start-page: 10462 issue: 11 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib48 article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b06369 – volume: 7 start-page: 56 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib155 article-title: Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.12.004 – volume: 22 start-page: 617 issue: 5 year: 2010 ident: 10.1016/j.carbon.2018.09.067_bib64 article-title: Carbon nanotube sponges publication-title: Adv. Mater. doi: 10.1002/adma.200902986 – volume: 2 start-page: 2696 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib164 article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00886 – volume: 114 start-page: 840 issue: 5 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib10 article-title: Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries publication-title: P. Natl. Acad. Sci.the USA doi: 10.1073/pnas.1615837114 – volume: 12 start-page: 174 issue: 2 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib147 article-title: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators publication-title: Small doi: 10.1002/smll.201502505 – volume: 114 start-page: 11751 issue: 23 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib2 article-title: Rechargeable lithium-sulfur batteries publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 26 start-page: 625 issue: 4 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib157 article-title: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201302877 – volume: 28 start-page: 3374 issue: 17 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib42 article-title: 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201506014 – volume: 7 issue: 8 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib183 article-title: Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602014 – volume: 451 start-page: 652 issue: 7179 year: 2008 ident: 10.1016/j.carbon.2018.09.067_bib5 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 22 start-page: 5209 issue: 24 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib62 article-title: High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201532 – volume: 113 start-page: 371 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib67 article-title: Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery publication-title: Carbon doi: 10.1016/j.carbon.2016.11.019 – volume: 26 start-page: 5113 issue: 30 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib82 article-title: Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201401191 – volume: 12 start-page: 381 issue: 3 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib152 article-title: Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries publication-title: Small doi: 10.1002/smll.201503133 – volume: 54 start-page: 10539 issue: 36 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib33 article-title: An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201504514 – volume: 5 issue: 5 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib92 article-title: Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 5018 issue: 14 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib111 article-title: High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14921H – volume: 29 issue: 29 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib163 article-title: Reviving lithium-metal anodes for next-generation high-energy batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700007 – volume: 75 start-page: 161 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib79 article-title: Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2014.03.049 – volume: 27 start-page: 641 issue: 4 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib14 article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201404210 – volume: 246 start-page: 507 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib175 article-title: Towards flexible lithium-sulfur battery from natural cotton textile publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.069 – volume: 12 start-page: 226 issue: 1 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib17 article-title: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes publication-title: ACS Nano doi: 10.1021/acsnano.7b05869 – volume: 9 start-page: 28612 issue: 34 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib60 article-title: A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08833 – volume: 19 start-page: 84 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib11 article-title: Carbon nanomaterials for advanced lithium sulfur batteries publication-title: Nano Today doi: 10.1016/j.nantod.2018.02.006 – volume: 121 start-page: 330 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib73 article-title: ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor publication-title: Carbon doi: 10.1016/j.carbon.2017.06.017 – volume: 9 start-page: 3221 issue: 10 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib162 article-title: Transition of lithium growth mechanisms in liquid electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01674J – volume: 5 start-page: 2208 issue: 6 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib27 article-title: High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4000535 – volume: 26 start-page: 6100 issue: 35 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib130 article-title: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201401243 – volume: 25 start-page: 5285 issue: 33 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib139 article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502251 – volume: 10 start-page: 1300 issue: 1 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib65 article-title: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b06675 – volume: 3 start-page: 1166 year: 2012 ident: 10.1016/j.carbon.2018.09.067_bib141 article-title: Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. doi: 10.1038/ncomms2163 – volume: 343 start-page: 54 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib74 article-title: Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.049 – volume: 5 start-page: 1978 issue: 11 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib149 article-title: High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5006913 – volume: 5 start-page: 15096 issue: 29 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib156 article-title: A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03301J – volume: 256 start-page: 361 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib117 article-title: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.093 – volume: 8 start-page: 14628 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib15 article-title: Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms14628 – volume: 55 start-page: 3992 issue: 12 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib140 article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511673 – volume: 24 start-page: 1243 issue: 9 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib57 article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302631 – volume: 222 start-page: 1861 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib100 article-title: A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.179 – volume: 6 issue: 5 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib121 article-title: Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501733 – volume: 350 start-page: 1508 issue: 6267 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib55 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science doi: 10.1126/science.aab3798 – volume: 26 start-page: 4855 issue: 28 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib105 article-title: Nanostructured graphene composite papers for highly flexible and foldable supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201401513 – volume: 26 issue: 48 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib126 article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries publication-title: Adv. Funct. Mater. – volume: 25 start-page: 4312 issue: 27 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib24 article-title: Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500983 – volume: 8 start-page: 5208 issue: 5 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib127 article-title: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium sulfur batteries publication-title: ACS Nano doi: 10.1021/nn501284q – volume: 11 start-page: 4462 issue: 10 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib32 article-title: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries publication-title: Nano Lett. doi: 10.1021/nl2027684 – volume: 9 start-page: 618 issue: 8 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib169 article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.152 – volume: 131 start-page: 175 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib76 article-title: Towards highly stable lithium sulfur batteries: surface functionalization of carbon nanotube scaffolds publication-title: Carbon doi: 10.1016/j.carbon.2018.01.100 – volume: 123 start-page: 744 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib168 article-title: Carbon enables the practical use of lithium metal in a battery publication-title: Carbon doi: 10.1016/j.carbon.2017.08.027 – volume: 11 start-page: 4288 issue: 10 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib72 article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl202297p – volume: 196 start-page: 7030 issue: 16 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib85 article-title: Sulfur-graphene composite for rechargeable lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.09.106 – volume: 301 start-page: 312 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib16 article-title: Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.002 – volume: 11 start-page: 356 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib101 article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.025 – volume: 139 start-page: 5916 issue: 16 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib166 article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01763 – volume: 28 start-page: 491 issue: 3 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib181 article-title: A cable-shaped lithium sulfur battery publication-title: Adv. Mater. doi: 10.1002/adma.201504241 – volume: 9 start-page: 6373 issue: 6 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib172 article-title: Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b01990 – volume: 11 start-page: 1345 issue: 3 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib98 article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1749-2 – volume: 15 start-page: 5443 issue: 8 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib104 article-title: Rational design of cathode structure for high rate performance lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01837 – volume: 5 start-page: 13674 issue: 26 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib125 article-title: A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01291H – volume: 111 start-page: 493 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib173 article-title: Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density publication-title: Carbon doi: 10.1016/j.carbon.2016.10.035 – volume: 2 start-page: 325 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib7 article-title: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs publication-title: Nat. Commun. doi: 10.1038/ncomms1293 – volume: 25 start-page: 4035 issue: 29 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib90 article-title: All-solid-state flexible ultrathin micro-supercapacitors based on graphene publication-title: Adv. Mater. doi: 10.1002/adma.201301332 – volume: 13 start-page: 1379 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib165 article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries publication-title: Chem. Asian J. doi: 10.1002/asia.201800326 – volume: 24 start-page: 6105 issue: 39 year: 2014 ident: 10.1016/j.carbon.2018.09.067_bib69 article-title: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401501 – volume: 3 start-page: 1531 issue: 10 year: 2010 ident: 10.1016/j.carbon.2018.09.067_bib23 article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres publication-title: Energy Environ. Sci. doi: 10.1039/c002639e – volume: 4 start-page: 1440 issue: 4 year: 2011 ident: 10.1016/j.carbon.2018.09.067_bib61 article-title: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00261e – volume: 45 start-page: 5605 issue: 20 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib1 article-title: Designing high-energy lithium-sulfur batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00410A – volume: 1 start-page: 9173 issue: 32 year: 2013 ident: 10.1016/j.carbon.2018.09.067_bib115 article-title: Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11255a – volume: 28 issue: 18 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib88 article-title: Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707247 – volume: 9 start-page: 4646 issue: 14 year: 2017 ident: 10.1016/j.carbon.2018.09.067_bib97 article-title: Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries publication-title: Nanoscale doi: 10.1039/C7NR00999B – volume: 16 start-page: 5488 issue: 9 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib113 article-title: Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01981 – volume: 2 issue: 8 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib103 article-title: Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery publication-title: Adv. Sci. doi: 10.1002/advs.201500071 – volume: 5 issue: 9 year: 2015 ident: 10.1016/j.carbon.2018.09.067_bib122 article-title: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402263 – volume: 10 start-page: 8749 issue: 10 year: 2018 ident: 10.1016/j.carbon.2018.09.067_bib83 article-title: Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00190 – volume: 16 start-page: 864 issue: 2 year: 2016 ident: 10.1016/j.carbon.2018.09.067_bib109 article-title: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03217 |
| SSID | ssj0004814 |
| Score | 2.666997 |
| SecondaryResourceType | review_article |
| Snippet | Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 400 |
| SubjectTerms | Activated carbon Anodes Anodic protection Batteries Carbon Carbon nanotubes Conductivity Design modifications electrical conductivity Electrical resistivity Electricity electrochemistry Graphene lithium Lithium sulfur batteries Nanostructure Nanostructured materials Rechargeable batteries Separators sulfur surface area Surface stability |
| Title | Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries |
| URI | https://dx.doi.org/10.1016/j.carbon.2018.09.067 https://www.proquest.com/docview/2159933465 https://www.proquest.com/docview/2176347595 |
| Volume | 141 |
| WOSCitedRecordID | wos000450312600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004814 issn: 0008-6223 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhwQXxE9RGJORuE1GjmPHybGqhtgOE4chysmyE1dL1aWjXaZJ_PM8x7HXboJtBy5R5TqWk_flvWf7ve8h9Ck1OuWGlkRaPiNcJ5bkoIqJtUzrsoR1kKFdsQl5fJxPp8W3weB3yIW5XMimya-uivP_KmpoA2G71NkHiDsOCg3wG4QOVxA7XO8l-HE81dfN0tPDti7IvNQrs2yIM1vVPvipfi5dmCFoPUeYZLs0KvDLT-v2jKzbxaxd7ZuOgDOEGkZOAzfWdiWfuKMQ96BhnbuoI_h-9K0_63kwl915SNudj5zWvwCosXkSk0aazX0JlwoV9yWCrs1Jxnw2cdS1nuWq15ac0g3Dy33S5S2d7rcX5p_9a3LReHlHTevLeGxTaN8wbTHgMMSyzZUfRblRFC0UjPII7TApinyIdsaHB9Oj67Ta3FPDhwcJmZddeODt2fzNs7lh4zvH5eQ5etavOPDYI-UFGtjmJXoyCYX-XqFpQAzeRgzeRAyOiMGAGLyJGLyNGBwR8xp9_3JwMvlK-oIbpOSSXRCbWHAYcwNrBvD0hUnZLDNGFybjVLOKSVrxCrpmia2ElqxKNa3ETCSaVzQ1NH2Dhs2ysW8RNsJUOqEGPCTGdSaMsBZWuo5dznCp-Qil4WWpsmejd0VRFupfohohEu8692wsd_SXQQ6q9yi9p6gAXHfcuRvEpvqPe63APQZ3PuWZGKGP8W-Qljtk041dtq4PWGxHoinePXCy79HT6-9oFw1B3PYDelxeXtTr1V4Pzj_rP7IB |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+nanostructured+carbon-based+materials+for+rechargeable+lithium-sulfur+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=Zhang%2C+Linlin&rft.au=Wang%2C+Yijing&rft.au=Niu%2C+Zhiqiang&rft.au=Chen%2C+Jun&rft.date=2019-01-01&rft.issn=0008-6223&rft.volume=141&rft.spage=400&rft.epage=416&rft_id=info:doi/10.1016%2Fj.carbon.2018.09.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbon_2018_09_067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |