Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries

Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sul...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) Vol. 141; pp. 400 - 416
Main Authors: Zhang, Linlin, Wang, Yijing, Niu, Zhiqiang, Chen, Jun
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.01.2019
Elsevier BV
Subjects:
ISSN:0008-6223, 1873-3891
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed. [Display omitted]
AbstractList Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed.
Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic efficiency, severe degradation of cyclic capacity, and low utilization of active sulfur material because of the low electrical conductivity of sulfur and the severe shuttle effect. To solve these issues, various nanostructured carbon-based materials have been developed to serve as the sulfur host materials, modify separators and protect lithium (Li) anode due to their good conductivity, large surface area, and electrochemical stability. In this review, a brief introduction of electrochemical principles and prospects of the Li-S batteries are discussed firstly. Then the recent achievements and challenges of nanostructured carbon-based materials in Li-S batteries are summarized. The nanostructured carbon-based materials focus on active carbon, carbon nanotubes, graphene and their composites. The role of these carbon-based materials in Li-S batteries emphasize on the design of sulfur host materials, the modification of functional separators as well as the protection of the Li anode. Furthermore, various flexible Li-S batteries based on freestanding nanostructured carbon/sulfur electrodes are also presented. Finally, the further developments and prospects in this field are also discussed. [Display omitted]
Author Chen, Jun
Zhang, Linlin
Niu, Zhiqiang
Wang, Yijing
Author_xml – sequence: 1
  givenname: Linlin
  surname: Zhang
  fullname: Zhang, Linlin
– sequence: 2
  givenname: Yijing
  surname: Wang
  fullname: Wang, Yijing
– sequence: 3
  givenname: Zhiqiang
  surname: Niu
  fullname: Niu, Zhiqiang
  email: zqniu@nankai.edu.cn
– sequence: 4
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
BookMark eNqFkctq3TAURUVJoTdJ_6ADQyed2NXLD3VQCCF9QKCTFDoTR9Jxo4uvlEpyIH8fGXeUQTsSG9beiHXOyVmIAQl5x2jHKBs-HjsLycTQccqmjqqODuMrcmDTKFoxKXZGDpTSqR04F2_Iec7HGuXE5IH8unKPECy6JkCIuaTVljXVuC-2BnINJyiYPCy5mWNqEtp7SL8RzILN4su9X09tXpd5TY2BsqGYL8nruRbw7d_3gvz8cnN3_a29_fH1-_XVbWvlyEuLDMeJT0YpRmXfG8HnwRhQZpAUuOMjddJVdGDoehi5E0BdP_cMpKPCUHFBPuy7Dyn-WTEXffLZ4rJAwLhmzdk4CDn2qq_o-xfoMa4p1N9VqldKCDls1KedsinmnHDW1hcoPoaSwC-aUb1J10e9K9KbdE2VrtJrWb4oPyR_gvT0v9rnvYbV1KPHpLP1uJ3FV9lFu-j_PfAMcuqg4g
CitedBy_id crossref_primary_10_1007_s10853_022_07625_7
crossref_primary_10_1016_j_cej_2025_164222
crossref_primary_10_1016_j_jpowsour_2025_236682
crossref_primary_10_1016_j_jelechem_2020_114950
crossref_primary_10_1016_j_est_2024_110938
crossref_primary_10_1016_j_surfin_2023_103521
crossref_primary_10_1007_s11814_020_0693_0
crossref_primary_10_1002_celc_201900269
crossref_primary_10_1007_s12274_024_6879_8
crossref_primary_10_1016_j_surfcoat_2020_126580
crossref_primary_10_1038_s43246_025_00916_x
crossref_primary_10_1002_aenm_202001683
crossref_primary_10_1016_j_cej_2024_153619
crossref_primary_10_1016_j_jallcom_2020_158287
crossref_primary_10_1016_j_cej_2021_129693
crossref_primary_10_1016_j_mtchem_2022_101240
crossref_primary_10_1002_smll_202309422
crossref_primary_10_3390_polym11111858
crossref_primary_10_1002_er_4911
crossref_primary_10_1039_D0NR05727D
crossref_primary_10_1016_j_carbon_2019_07_094
crossref_primary_10_1016_j_jechem_2023_10_060
crossref_primary_10_1007_s10854_020_04034_x
crossref_primary_10_1007_s11356_021_12416_9
crossref_primary_10_1002_anie_202211448
crossref_primary_10_1080_1536383X_2020_1775591
crossref_primary_10_1016_j_carbon_2019_05_018
crossref_primary_10_1016_j_carbon_2019_07_067
crossref_primary_10_1021_acs_langmuir_5c03455
crossref_primary_10_1016_j_jcis_2020_06_068
crossref_primary_10_1002_anie_201909339
crossref_primary_10_1088_1361_6528_ac1fb2
crossref_primary_10_1016_j_cej_2022_139566
crossref_primary_10_1016_j_jallcom_2022_166445
crossref_primary_10_1002_anie_202425037
crossref_primary_10_1016_j_electacta_2021_139311
crossref_primary_10_1016_j_jelechem_2020_114608
crossref_primary_10_1016_j_est_2021_103666
crossref_primary_10_1002_sus2_110
crossref_primary_10_1016_j_carbon_2019_05_008
crossref_primary_10_1039_D4RA06366J
crossref_primary_10_1002_adma_201903955
crossref_primary_10_1002_adma_202200102
crossref_primary_10_1016_j_est_2024_112347
crossref_primary_10_1002_aenm_201904026
crossref_primary_10_1002_smll_202405148
crossref_primary_10_3390_nano12142403
crossref_primary_10_1016_j_compositesb_2023_110679
crossref_primary_10_1002_anie_202104401
crossref_primary_10_1088_1361_6528_ab475b
crossref_primary_10_1038_s43246_025_00734_1
crossref_primary_10_1016_j_jechem_2020_06_018
crossref_primary_10_1002_adfm_202315178
crossref_primary_10_1007_s40242_020_0180_5
crossref_primary_10_1016_j_matlet_2024_136143
crossref_primary_10_1002_chem_202001282
crossref_primary_10_1016_j_cej_2021_130129
crossref_primary_10_1016_j_cej_2024_151501
crossref_primary_10_1002_pen_25298
crossref_primary_10_1007_s12274_024_6481_0
crossref_primary_10_1002_smll_202311799
crossref_primary_10_1016_j_jallcom_2022_166144
crossref_primary_10_1002_cssc_201902688
crossref_primary_10_1002_ente_202100268
crossref_primary_10_1016_j_carbon_2019_04_077
crossref_primary_10_1016_j_jcis_2020_09_020
crossref_primary_10_1002_cssc_202101231
crossref_primary_10_1016_j_jfca_2023_105480
crossref_primary_10_1016_j_energy_2020_118779
crossref_primary_10_3390_ijms23116329
crossref_primary_10_1016_j_carbon_2020_08_032
crossref_primary_10_3390_en14092649
crossref_primary_10_1016_j_jechem_2020_12_031
crossref_primary_10_1002_aenm_201900161
crossref_primary_10_1080_00268976_2023_2270075
crossref_primary_10_1002_ange_202425037
crossref_primary_10_1016_j_jcis_2022_10_039
crossref_primary_10_1002_chem_202402706
crossref_primary_10_1016_j_cej_2023_147518
crossref_primary_10_1016_j_jcis_2021_12_045
crossref_primary_10_1016_j_mtcomm_2021_102666
crossref_primary_10_1002_adfm_202006287
crossref_primary_10_1002_advs_202004036
crossref_primary_10_1002_celc_202000993
crossref_primary_10_1016_j_micromeso_2021_111558
crossref_primary_10_1002_cnma_202000120
crossref_primary_10_1016_j_cej_2025_159406
crossref_primary_10_1016_j_cclet_2025_110862
crossref_primary_10_1016_j_cej_2021_129388
crossref_primary_10_1016_j_jechem_2021_07_010
crossref_primary_10_1016_j_nanoen_2021_105891
crossref_primary_10_1002_marc_202200760
crossref_primary_10_1016_j_rser_2025_116206
crossref_primary_10_1002_adma_201906357
crossref_primary_10_1007_s10570_022_04722_3
crossref_primary_10_1007_s11581_019_02968_9
crossref_primary_10_3390_molecules25081989
crossref_primary_10_1007_s40820_021_00676_6
crossref_primary_10_1016_j_electacta_2023_142497
crossref_primary_10_1002_batt_202100302
crossref_primary_10_1007_s11581_022_04821_y
crossref_primary_10_1016_j_mattod_2025_06_017
crossref_primary_10_1007_s12274_023_6169_x
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_1016_S1872_5805_21_60032_X
crossref_primary_10_1007_s11581_024_05390_y
crossref_primary_10_1016_j_pmatsci_2020_100716
crossref_primary_10_1016_j_carbon_2019_10_072
crossref_primary_10_1016_j_solidstatesciences_2023_107113
crossref_primary_10_1002_ente_201900470
crossref_primary_10_1016_j_cej_2020_126834
crossref_primary_10_1007_s40843_023_2654_5
crossref_primary_10_1002_smll_201907153
crossref_primary_10_1016_j_cclet_2022_107811
crossref_primary_10_1002_er_5070
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1016_j_enchem_2022_100096
crossref_primary_10_1016_j_measurement_2019_107087
crossref_primary_10_1016_j_mser_2025_100985
crossref_primary_10_1002_nano_202000157
crossref_primary_10_1016_j_est_2024_115015
crossref_primary_10_1016_j_electacta_2023_141857
crossref_primary_10_1016_j_apsusc_2021_149850
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1016_j_cclet_2021_11_043
crossref_primary_10_1007_s11664_024_11077_x
crossref_primary_10_1016_j_compositesb_2022_110465
crossref_primary_10_1007_s11581_019_02969_8
crossref_primary_10_1002_cphc_202500315
crossref_primary_10_1007_s12274_024_6563_y
crossref_primary_10_1016_j_cej_2019_02_150
crossref_primary_10_1002_celc_202200679
crossref_primary_10_1016_j_matchemphys_2022_126509
crossref_primary_10_1007_s10934_022_01337_8
crossref_primary_10_1002_ange_202104401
crossref_primary_10_1088_2631_7990_aca40b
crossref_primary_10_1016_j_est_2024_114570
crossref_primary_10_3390_nano10091633
crossref_primary_10_1016_j_est_2021_102751
crossref_primary_10_1016_j_jcis_2022_07_054
crossref_primary_10_1016_j_fuel_2025_135761
crossref_primary_10_1016_j_mtsust_2023_100375
crossref_primary_10_1016_j_carbon_2024_119018
crossref_primary_10_1016_j_jechem_2023_02_009
crossref_primary_10_1007_s40843_023_2695_5
crossref_primary_10_1002_ente_202301452
crossref_primary_10_3390_nano12234341
crossref_primary_10_1016_j_electacta_2019_07_023
crossref_primary_10_1016_j_jcis_2021_12_004
crossref_primary_10_6023_A21080381
crossref_primary_10_1016_j_electacta_2019_04_157
crossref_primary_10_1002_aenm_202502553
crossref_primary_10_1016_j_jmst_2023_07_004
crossref_primary_10_1002_aenm_202301354
crossref_primary_10_1016_j_apsusc_2021_152237
crossref_primary_10_1039_D0SE00942C
crossref_primary_10_1016_j_carbon_2022_08_087
crossref_primary_10_3390_cryst10121080
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1016_j_carbon_2019_03_007
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1088_2053_1591_ad0af3
crossref_primary_10_1016_j_matpr_2021_11_369
crossref_primary_10_3389_fchem_2021_703354
crossref_primary_10_1016_j_est_2024_115205
crossref_primary_10_1016_j_electacta_2020_137454
crossref_primary_10_1002_chem_202100693
crossref_primary_10_1007_s11581_020_03798_w
crossref_primary_10_1016_j_jelechem_2019_113797
crossref_primary_10_1016_j_jpowsour_2024_235689
crossref_primary_10_1016_S1872_5805_22_60614_0
crossref_primary_10_1002_ange_202211448
crossref_primary_10_1016_j_apsusc_2024_159714
crossref_primary_10_1016_j_jpowsour_2024_235322
crossref_primary_10_1016_j_jallcom_2024_173969
crossref_primary_10_1016_j_mtcomm_2022_104403
crossref_primary_10_1080_15567036_2023_2259836
crossref_primary_10_1002_adfm_202100457
crossref_primary_10_1002_cssc_202202095
crossref_primary_10_1039_D1SE02052H
crossref_primary_10_1016_j_apsusc_2021_151843
crossref_primary_10_1002_er_8532
crossref_primary_10_1016_j_electacta_2019_134719
crossref_primary_10_1002_batt_202200167
crossref_primary_10_1016_j_mtsust_2022_100181
crossref_primary_10_1016_j_carbon_2019_08_021
crossref_primary_10_1016_j_jelechem_2023_117629
crossref_primary_10_1016_j_carbon_2020_06_017
crossref_primary_10_1002_smll_202410907
crossref_primary_10_1016_j_jallcom_2019_01_253
crossref_primary_10_1002_smll_202406087
crossref_primary_10_1016_j_apsusc_2021_151058
crossref_primary_10_1016_j_cej_2022_135823
crossref_primary_10_1016_j_jcis_2023_07_015
crossref_primary_10_1007_s11356_023_27234_4
crossref_primary_10_1016_j_cej_2020_128164
crossref_primary_10_1016_j_cej_2022_140178
crossref_primary_10_1016_j_jcis_2021_09_144
crossref_primary_10_1007_s11431_021_2019_4
crossref_primary_10_1016_j_cej_2020_125686
crossref_primary_10_1002_adfm_202104433
crossref_primary_10_1139_cjc_2023_0012
crossref_primary_10_1007_s10008_020_04610_5
crossref_primary_10_1002_batt_202300563
crossref_primary_10_1002_eem2_70032
crossref_primary_10_1016_j_elecom_2022_107325
crossref_primary_10_1002_ange_201909339
crossref_primary_10_1016_j_ssi_2020_115248
crossref_primary_10_3390_batteries9060295
crossref_primary_10_1016_j_carbon_2020_10_095
crossref_primary_10_1016_j_carbon_2019_04_108
crossref_primary_10_1002_slct_201901075
crossref_primary_10_1016_j_jechem_2025_03_076
crossref_primary_10_1134_S1023193520050110
crossref_primary_10_1002_aenm_202102739
crossref_primary_10_1039_C9QI00656G
crossref_primary_10_1016_j_jcis_2022_01_165
crossref_primary_10_1016_j_jssc_2020_121731
crossref_primary_10_1002_chem_202101625
crossref_primary_10_3390_molecules28052108
crossref_primary_10_1016_j_electacta_2020_136561
crossref_primary_10_1016_j_cej_2022_136258
crossref_primary_10_3390_nano10040745
crossref_primary_10_1016_j_electacta_2021_138267
crossref_primary_10_1002_smll_202302548
crossref_primary_10_1039_C9EE00206E
crossref_primary_10_1002_admi_202002106
crossref_primary_10_1016_j_est_2019_101104
crossref_primary_10_1016_j_cej_2023_148433
crossref_primary_10_1002_chem_202401124
crossref_primary_10_1002_adfm_202212600
crossref_primary_10_1016_j_jechem_2020_02_003
crossref_primary_10_1002_adma_202007549
crossref_primary_10_1016_j_carbon_2022_06_067
crossref_primary_10_1002_cssc_202100568
crossref_primary_10_1016_j_cej_2024_155120
crossref_primary_10_1016_j_est_2024_112027
crossref_primary_10_1002_cey2_185
crossref_primary_10_1016_j_nanoen_2020_104763
crossref_primary_10_1016_j_electacta_2019_06_165
crossref_primary_10_1080_25740881_2020_1867174
crossref_primary_10_3389_fchem_2021_653476
crossref_primary_10_1007_s40843_022_2387_1
crossref_primary_10_1021_acsanm_5c02661
crossref_primary_10_1002_admi_202001941
crossref_primary_10_1016_j_jelechem_2020_113963
crossref_primary_10_1016_S1872_5805_25_60944_9
Cites_doi 10.1039/C7DT04717G
10.1002/aenm.201502518
10.1016/j.nanoen.2016.12.049
10.1002/aenm.201702607
10.1016/j.carbon.2017.08.035
10.1021/acs.nanolett.5b00112
10.1002/adma.201504765
10.1021/acsami.7b10641
10.1039/c2cp43394j
10.1039/C6MH00426A
10.1021/cr020738u
10.1016/j.nanoen.2017.10.053
10.1021/acsnano.5b05068
10.1002/aenm.201401752
10.1021/nl200658a
10.1039/c2ee22294a
10.1021/ar3001348
10.1016/j.nanoen.2015.12.022
10.1021/nn401228t
10.1021/acs.nanolett.6b04433
10.1016/j.carbon.2015.10.062
10.1002/aenm.201500677
10.1002/adfm.201303296
10.1002/adfm.201604639
10.1002/aenm.201701527
10.1021/acssuschemeng.7b02322
10.1021/acsami.7b14195
10.1021/acsenergylett.7b00697
10.1038/ncomms9850
10.1038/nmat2460
10.1002/adma.201301579
10.1039/C4NR06863G
10.1002/adfm.201604265
10.1002/adma.201103392
10.1016/j.nanoen.2015.05.034
10.1002/adma.201400143
10.1021/acsami.7b05825
10.1021/acs.nanolett.7b03831
10.1021/nn404439r
10.1039/C6EE02364A
10.1016/j.carbon.2016.02.007
10.1016/j.nanoen.2015.01.007
10.1016/j.carbon.2014.12.001
10.1002/cssc.201600943
10.1016/j.nanoen.2014.11.062
10.1038/nmat3191
10.1021/nn503220h
10.1021/cm902050j
10.1039/C5CC04103A
10.1016/j.ensm.2017.05.001
10.1002/adma.201204003
10.1002/adma.201703324
10.1039/c4cc00850b
10.1016/j.electacta.2015.04.055
10.1021/acsami.7b00672
10.1039/C7TA05192A
10.1016/j.ensm.2018.01.007
10.1002/anie.201100637
10.1021/acsnano.5b03488
10.1016/j.nanoen.2016.09.044
10.1002/adma.201200197
10.1002/smll.201800280
10.1016/j.jpowsour.2017.03.063
10.1016/j.jpowsour.2015.11.077
10.1038/nnano.2016.32
10.1002/adma.201602913
10.1016/j.carbon.2014.10.024
10.1038/ncomms8760
10.1126/science.1102896
10.1039/C7CS00139H
10.1002/anie.201301250
10.1002/aenm.201502459
10.1021/nl400543y
10.1016/j.jpowsour.2015.10.097
10.1021/acs.nanolett.7b04425
10.1021/ja308170k
10.1002/adfm.201604815
10.1016/j.jpowsour.2015.03.085
10.1016/j.nanoen.2017.01.060
10.1002/adfm.201702573
10.1039/C4TA07133F
10.1039/c2cc17912a
10.1039/C6CS00041J
10.1039/C6TA05878G
10.1021/acsami.7b18894
10.1038/ncomms4015
10.1007/s12274-017-1749-2
10.1039/C6TA07620C
10.1002/aenm.201201080
10.1039/C4EE01377H
10.1007/s12274-016-1244-1
10.1021/ja206955k
10.1016/j.nanoen.2017.10.056
10.1039/C7EE01898C
10.1039/C6TA08557A
10.1021/nl504263m
10.1002/anie.201411109
10.1002/adma.201602262
10.1002/advs.201500268
10.1002/aenm.201600802
10.1016/j.ensm.2015.09.008
10.1016/j.chempr.2016.07.009
10.1021/nn507178a
10.1002/adfm.201705264
10.1038/nenergy.2017.90
10.1021/acsnano.7b01437
10.1002/adfm.201604069
10.1021/acsnano.6b06369
10.1016/j.ensm.2016.12.004
10.1002/adma.200902986
10.1021/acsenergylett.7b00886
10.1073/pnas.1615837114
10.1002/smll.201502505
10.1021/cr500062v
10.1002/adma.201302877
10.1002/adma.201506014
10.1002/aenm.201602014
10.1038/451652a
10.1002/adfm.201201532
10.1016/j.carbon.2016.11.019
10.1002/adma.201401191
10.1002/smll.201503133
10.1002/anie.201504514
10.1039/C3TA14921H
10.1002/adma.201700007
10.1016/j.carbon.2014.03.049
10.1002/adma.201404210
10.1016/j.electacta.2017.06.069
10.1021/acsnano.7b05869
10.1021/acsami.7b08833
10.1016/j.nantod.2018.02.006
10.1016/j.carbon.2017.06.017
10.1039/C6EE01674J
10.1021/am4000535
10.1002/adma.201401243
10.1002/adfm.201502251
10.1021/acsnano.5b06675
10.1038/ncomms2163
10.1016/j.jpowsour.2017.01.049
10.1021/jz5006913
10.1039/C7TA03301J
10.1016/j.jpowsour.2014.01.093
10.1038/ncomms14628
10.1002/anie.201511673
10.1002/adfm.201302631
10.1016/j.electacta.2016.11.179
10.1002/aenm.201501733
10.1126/science.aab3798
10.1002/adma.201401513
10.1002/adfm.201500983
10.1021/nn501284q
10.1021/nl2027684
10.1038/nnano.2014.152
10.1016/j.carbon.2018.01.100
10.1016/j.carbon.2017.08.027
10.1021/nl202297p
10.1016/j.jpowsour.2010.09.106
10.1016/j.jpowsour.2015.10.002
10.1016/j.nanoen.2014.11.025
10.1021/jacs.7b01763
10.1002/adma.201504241
10.1021/acsnano.5b01990
10.1021/acs.nanolett.5b01837
10.1039/C7TA01291H
10.1016/j.carbon.2016.10.035
10.1038/ncomms1293
10.1002/adma.201301332
10.1002/asia.201800326
10.1002/adfm.201401501
10.1039/c002639e
10.1039/c0ee00261e
10.1039/C5CS00410A
10.1039/c3ta11255a
10.1002/adfm.201707247
10.1039/C7NR00999B
10.1021/acs.nanolett.6b01981
10.1002/advs.201500071
10.1002/aenm.201402263
10.1021/acsami.8b00190
10.1021/acs.nanolett.5b03217
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2018.09.067
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 416
ExternalDocumentID 10_1016_j_carbon_2018_09_067
S0008622318308832
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8FD
AGCQF
JG9
7S9
L.6
ID FETCH-LOGICAL-c472t-e1e7828b9910455b32f6bba9b640a2d270d4dc4761ed5a72d3a0d5f51a4d03b03
ISICitedReferencesCount 297
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450312600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-6223
IngestDate Sun Sep 28 11:26:58 EDT 2025
Sun Sep 07 03:47:54 EDT 2025
Tue Nov 18 22:40:09 EST 2025
Sat Nov 29 06:55:24 EST 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-e1e7828b9910455b32f6bba9b640a2d270d4dc4761ed5a72d3a0d5f51a4d03b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2159933465
PQPubID 2045273
PageCount 17
ParticipantIDs proquest_miscellaneous_2176347595
proquest_journals_2159933465
crossref_citationtrail_10_1016_j_carbon_2018_09_067
crossref_primary_10_1016_j_carbon_2018_09_067
elsevier_sciencedirect_doi_10_1016_j_carbon_2018_09_067
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gao, Zhang, Song, Li (bib175) 2017; 246
Li, Cheng, Gao, Ren, Liu, Guo (bib18) 2017; 9
Wang, Wang, Wan, Chen, Niu, Chen (bib89) 2018; 14
Xiao, Bu, Yang, Zhang, Xu (bib116) 2017; 29
Zhang, Heim, Song, Bartlett, Li (bib164) 2017; 2
Ye, Xin, Yin, Li, Guo, Wan (bib166) 2017; 139
Liu, Liu, Chen, Kang, Wang, Zhou (bib179) 2017; 33
Su, Cortie, Wang (bib183) 2017; 7
Yuan, Guo, Wang, Hu, Wang, Xia (bib103) 2015; 2
Li, Wu, Lou (bib29) 2016; 9
Zhu, Zhu, Cheng, Huang, Peng, Yang (bib79) 2014; 75
Ji, Rao, Zheng, Zhang, Li, Duan (bib112) 2011; 133
Liu, Yang, Sun, Lai, Zhao, Peng (bib148) 2016; 9
Zhao, Ye, Peng, Divitini, Kim, Lao (bib138) 2016; 26
Li, Dai, Xiao, Yang, Shen, Zhang (bib22) 2016; 6
Sun, Fang, Weng, Deng, Chen, Ren (bib33) 2015; 54
Jiang, Lu, YanyingLu, Han, Li, Tao (bib165) 2018; 13
Li, Carter, Douglas, Oakes, Pint (bib66) 2017; 11
Stoeck, Balach, Klose, Wadewitz, Ahrens, Eckert (bib184) 2016; 309
Kong, Sun, Wu, Jiang, Li, Wang (bib174) 2016; 96
Zhao, Hu, Zhang, Zhang, Hu, Chen (bib47) 2015; 15
Zhu, You, Zhu, Shen, Yang, Xiao (bib145) 2017; 6
Chung, Manthiram (bib149) 2014; 5
Wang, Wang, Yang, Kushima, Chen, Huang (bib94) 2015; 15
Ponraj, Kannan, Ahn, Lee, Kang, Han (bib150) 2017; 9
Jayaprakash, Shen, Moganty, Corona, Archer (bib19) 2011; 50
Zhou, Wang, Li, Hou, Yin, Liu (bib68) 2012; 5
Qian, Gao, Li, Tian, Zhang, Zhang (bib124) 2017; 9
Qie, Zu, Manthiram (bib41) 2016; 6
Park, Lee, Hwang, Piao (bib123) 2017; 5
Qiang Sun, Zhang, Lu (bib36) 2015; 9
Zhu, Peng, Liang, Huang, Chen, Guo (bib84) 2015; 11
Niu, Chen, Hng, Ma, Chen (bib86) 2012; 24
Kim, Song, Jeong (bib67) 2017; 113
Sun, Wang, Luo, Wang, Kong, Wu (bib65) 2016; 10
Peng, Huang, Zhang (bib6) 2017; 46
Deng, Zhou, Fang, Liu (bib125) 2017; 5
Peng, Huang, Zhao, Zhang, Cheng, Liu (bib182) 2014; 24
Lu, Lu, Wang (bib115) 2013; 1
Peng, Wang, Huang, Cheng, Yuan, Wei (bib161) 2016; 3
Chen, Cheng, Zhu, Chen, Hu, Ma (bib80) 2017; 17
Zhuang, Huang, Peng, He, Cheng, Chen (bib152) 2016; 12
Chen, Cao, Lu, Wang, Song, Niu (bib58) 2017; 27
Zhang, Huang, Lv, Yun, Kang, Yang (bib168) 2017; 123
Wang, Lu, Choucair, Stride, Xu, Liu (bib85) 2011; 196
Seh, Sun, Zhang, Cui (bib1) 2016; 45
He, Qiao, Zhou (bib134) 2018; 47
Zhang, Wan, Wang, Cao, Dai, Niu (bib52) 2018; 10
Xiang, Wu, Liu, Huang, Zheng, Yang (bib128) 2017; 27
Wang, Zhang, Liu, Guo (bib140) 2016; 55
Zhang, Liu, Lv, Wang, Wei, Zhou (bib96) 2015; 7
Evers, Nazar (bib4) 2013; 46
Zhao, Wu, Li, Xu, Guan (bib82) 2014; 26
Yaohui Qu, Zhang, Ren, Lai, Liu, Li (bib20) 2015; 84
Zegeye, Tsai, Cheng, Lin, Chen, Rick (bib118) 2017; 353
Niu, Lv, Zhou, Shi, Qin, Zheng (bib37) 2016; 30
Lu, Cheng, Wu, Liu (bib129) 2013; 13
Park, Lee, Kang (bib49) 2018; 28
Xu, Lawson, Fan, Su, Wang (bib50) 2018; 8
Li, Zheng, Lu, Hu, Shen, Chang (bib99) 2012; 48
Wu, Li, Su, Wang, Yang, Li (bib113) 2016; 16
Rehman, Gu, Khan, Mahmood, Yang, Huang (bib21) 2016; 6
Manthiram, Fu, Chung, Zu, Su (bib2) 2014; 114
Armand, Tarascon (bib5) 2008; 451
Bruce, Freunberger, Hardwick, Tarascon (bib3) 2011; 11
Ji, Lee, Nazar (bib34) 2009; 8
Guang He, Liang, Cuisinier, Garsuch, Nazar (bib38) 2013; 7
Xu, Kushima, Yuan, Dou, Xue, Zhang (bib77) 2017; 10
Sun, Zheng, Zhi, Seh, Liu, Wang, Sun (bib167) 2016; 1
Yang, Zhang, Zhang, Huang, Chen (bib127) 2014; 8
Cai, Li, He, Jin, Liu, Li (bib136) 2015; 283
Cao, Chen, Zhao, Zhang, Lu, Wang (bib177) 2016; 28
Zhou, Li, Wang, Shan, Pei, Li (bib14) 2015; 27
Kim, Kim, Pol (bib76) 2018; 131
Zhang, Qin, Li, Gao (bib23) 2010; 3
Xu, Kim, Kang (bib11) 2018; 19
Zhu, Zhu, Zang, Chen, Lu, Jiang (bib156) 2017; 5
Wang, Su, Wan, Guo, Zhou, Chen (bib111) 2014; 8
Wang, Zhang, Chen, Liu, Guo (bib30) 2015; 81
Li, Zhang, Chen, Li, Lou (bib43) 2015; 6
Xu, Wen, Zhu, Gaskell, Cychosz, Eichhorn (bib24) 2015; 25
Lin, Chen, Liu, Yang, Bi, Xu (bib55) 2015; 350
Huang, Zhang, Wei (bib132) 2015; 1
Guangmin, Li-Chang, Da-Wei, Lu, Songfeng, Ross (bib106) 2013; 7
Fang, Weng, Ren, Peng (bib181) 2016; 28
Zheng, Lee, Liang, Lee, Yan, Yao (bib169) 2014; 9
Zhang, Yang, Yin, Wan, Guo (bib28) 2016; 28
Luo, Manthiram (bib45) 2017; 2
Wang, Lu, Chen, Han, Wang, Li (bib60) 2017; 9
Chen, Wang, Dai, Qiu, Yang, Lu (bib104) 2015; 15
Wang, Lai, Zhang, Li, Zhang (bib151) 2015; 3
Chung, Manthiram (bib143) 2014; 50
Yuan, Peng, Huang, Liu, Wang, Cheng (bib69) 2014; 24
Chung, Chang, Manthiram (bib48) 2016; 10
Zheng, Guo, Pei, Zhang, Chen, Fang (bib126) 2016; 26
Yun, Kim, Kim, Lee (bib44) 2017; 18
Xiang, Li, Lei, Liu, Xie, Qu (bib133) 2016; 9
Gueon, Hwang, Yang, Cho, Sohn, Yang (bib17) 2018; 12
Li, Cheng, Gao, Ren, Liu, Guo (bib39) 2017; 9
Niu, Liu, Zhang, Shao, Zhou, Chen (bib87) 2014; 26
Arora, Zhang (bib131) 2004; 104
Mao, Li, Guo, Li, Liang, Peng (bib15) 2017; 8
Luo, Yao, Lei, Yan, Wei, Wang (bib97) 2017; 9
Xiao, Cao, Xiao, Schwenzer, Engelhard, Saraf (bib8) 2012; 24
Wan, Shamsaei, Easton, Yu, Liang, Chen, Abbasi (bib73) 2017; 121
Niu, Zhou, Chen, Feng, Li, Ma (bib61) 2011; 4
Zhou, Pei, Li, Wang, Wang, Huang (bib157) 2014; 26
Tan, Xu, Xing, Yuan, Lu, Wen (bib12) 2017; 2
Gui, Wei, Wang, Cao, Zhu, Jia (bib64) 2010; 22
Novoselov, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib91) 2004; 306
Zhou, Li, Ma, Wang, Shi, Koratkar (bib101) 2015; 11
Zhou, Paek, Hwang, Manthiram (bib120) 2015; 6
Wang, Yang, Kang (bib144) 2015; 168
Jin, Zhang, Zhuang, Wang, Huang, Gan (bib75) 2017; 5
Liu, Niu, Zhang, Zhou, Chen, Xie (bib105) 2014; 26
Zheng, Yang, Cha, Hong, Cui (bib32) 2011; 11
Lu, Wang, Cao, Chen, Chen, Zhao (bib46) 2017; 8
Su, Manthiram (bib141) 2012; 3
Niu, Ma, Li, Dong, Ren, Zhao (bib62) 2012; 22
Shen, Mei, Li, Ding, Yang (bib114) 2018; 8
Song, Gordin, Xu, Chen, Yu, Sohn (bib56) 2015; 54
Zhen Li, Yuan, Yi, Wu, Liu, Strasser (bib35) 2014; 8
Lee, Manthiram (bib74) 2017; 343
Niu, Liu, Zhang, Zhou, Chen, Xie (bib93) 2015; 5
Mi, Chen, Xi, Kai, Jiang, Feng (bib51) 2016; 27
Zhou, Wang, Zhang, Abruña, He, Wang (bib54) 2015; 5
Xing, Xi, Li, Su, Lai, Zhao (bib160) 2016; 303
Zu, Su, Fu, Manthiram (bib142) 2013; 15
Chong, Huang, Xu, Qin, Wang, Kim (bib13) 2017; 27
Guo, Xu, Wang (bib72) 2011; 11
Chang, Chung, Manthiram (bib176) 2017; 4
Tang, Zhang, Zhao, Huang, Cheng, Tian (bib130) 2014; 26
Xin, Gu, Zhao, Yin, Zhou, Guo (bib71) 2012; 134
Bai, Li, Brushett, Bazant (bib162) 2016; 9
Yao, Yan, Li, Zheng, Kong, Seh (bib135) 2014; 7
Huang, Xiao, Shao, Zheng, Bennett, Lu (bib171) 2014; 5
Wang, Yang, Liang, Robinson, Li, Jackson (bib95) 2011; 11
Zhou, Tian, Jin, Tao, Liu, Zhang (bib10) 2017; 114
Han, Wang, Chen, Zou, Niu, Yang, Cao, Song, Chen, Xie (bib108) 2018; 13
Liu, Niu, Chen (bib154) 2016; 45
Zhai, Peng, Cheng, Zhu, Huang, Zhu (bib155) 2017; 7
Chen, Sun, Xie, Mondal, Huang, Wang (bib26) 2015; 16
Peng, Cheng, Huang, Zhang, Zhao, Zhang (bib172) 2015; 9
Lee, Zhao, Thieme, Kim, Oschatz, Borchardt (bib40) 2013; 25
Fu, Su, Manthiram (bib9) 2013; 52
Zuo, Zhang, Hua, Ma, Du, Cheng (bib100) 2016; 222
Hwa, Seo, Yuk, Cairns (bib81) 2017; 17
Li, Han, Wang, Cheng, Sun, Li (bib27) 2013; 5
Chen, Cao, Lu, Wang, Yao, Han (bib178) 2017; 11
Guo, Li, Zhai (bib163) 2017; 29
Xu, Su, Zhang, Bao, Wang (bib119) 2016; 4
Fang, Zhao, Hou, Cheng, Wang, Cheng (bib42) 2016; 28
Wang, Wan, Zhang, Zhao, Niu, Chen (bib88) 2018; 28
Zhai, Huang, Zhu, Shi, Zhu, Zhang (bib173) 2017; 111
Fang, Li, Zhao, Yin, Du, Hou (bib70) 2017; 42
Zu, Manthiram (bib110) 2013; 3
Song, Yu, Gordin, Wang (bib109) 2016; 16
Zhou, Zhao, Manthiram (bib122) 2015; 5
Song, Xu, Gordin, Zhu, Lv, Jiang (bib57) 2014; 24
Li, Wu, Sun, Chen, Gao, Suresh (bib180) 2015; 9
Zhu, Ge, Kim, Lu, Chen, Jiang (bib137) 2016; 20
Wang, Zhang, Qu, Lai, Li (bib117) 2014; 256
Niu, Dong, Zhu, Li, Hng, Zhou (bib63) 2013; 25
Zhu, Chen, Lu, Zang, Jiang, Kim (bib159) 2016; 101
Chen, Cao, Lu, Wang, Yao, Han (bib98) 2017; 11
Yuan, Bao, Wang, Xia, Truhlar, Wang (bib121) 2016; 6
Huang, Zhuang, Zhang, Peng, Chen, Wei (bib153) 2015; 9
Zheng, Zhang, Wang, Qu, Yang, Qu (bib16) 2016; 301
Zhang, Zhang, Liu, Li, Gao (bib83) 2018; 10
Ji, Evers, Black, Nazar (bib7) 2011; 2
Chen, Cao, Wang, Lu, Han, Wang (bib59) 2017; 42
Shao, Ai, Wang, Zhang, Wang, Feng (bib146) 2017; 5
Zhu, Zhao, An, Anasori, Wang, Xu (bib25) 2017; 33
Liang, Dudney, Howe (bib31) 2009; 21
Du, Guo, Wang, Hu, Jin, Zhang (bib158) 2017; 9
Kim, Fu, Choi, Sun, Kim, Hu (bib78) 2015; 51
Niu, Zhang, Liu, Zhu, Dong, Chen (bib90) 2013; 25
Peng, Zhang, Huang, Wang, Li, Hwang (bib53) 2017; 124
Hooch Antink, Choi, Seong, Kim, Piao (bib92) 2018; 5
Hu, Xu, Sun, Wang, Cheng, Li (bib102) 2016; 28
Balach, Jaumann, Klose, Oswald, Eckert, Giebeler (bib139) 2015; 25
Lin, Liu, Liang, Lee, Sun, Wang (bib170) 2016; 11
Li, Yang, Wang, Liu, Ye, Wang (bib107) 2015; 12
Chang, Chung, Manthiram (bib147) 2016; 12
Zhang (10.1016/j.carbon.2018.09.067_bib23) 2010; 3
Guo (10.1016/j.carbon.2018.09.067_bib72) 2011; 11
Wu (10.1016/j.carbon.2018.09.067_bib113) 2016; 16
Zheng (10.1016/j.carbon.2018.09.067_bib16) 2016; 301
Li (10.1016/j.carbon.2018.09.067_bib43) 2015; 6
Sun (10.1016/j.carbon.2018.09.067_bib65) 2016; 10
Guo (10.1016/j.carbon.2018.09.067_bib163) 2017; 29
Zhou (10.1016/j.carbon.2018.09.067_bib122) 2015; 5
Balach (10.1016/j.carbon.2018.09.067_bib139) 2015; 25
Xiao (10.1016/j.carbon.2018.09.067_bib116) 2017; 29
Zuo (10.1016/j.carbon.2018.09.067_bib100) 2016; 222
Zhou (10.1016/j.carbon.2018.09.067_bib101) 2015; 11
Zhu (10.1016/j.carbon.2018.09.067_bib137) 2016; 20
Chen (10.1016/j.carbon.2018.09.067_bib26) 2015; 16
Qie (10.1016/j.carbon.2018.09.067_bib41) 2016; 6
Fang (10.1016/j.carbon.2018.09.067_bib181) 2016; 28
Yang (10.1016/j.carbon.2018.09.067_bib127) 2014; 8
Niu (10.1016/j.carbon.2018.09.067_bib37) 2016; 30
Yun (10.1016/j.carbon.2018.09.067_bib44) 2017; 18
Sun (10.1016/j.carbon.2018.09.067_bib167) 2016; 1
Zegeye (10.1016/j.carbon.2018.09.067_bib118) 2017; 353
Yaohui Qu (10.1016/j.carbon.2018.09.067_bib20) 2015; 84
Peng (10.1016/j.carbon.2018.09.067_bib161) 2016; 3
Seh (10.1016/j.carbon.2018.09.067_bib1) 2016; 45
Tan (10.1016/j.carbon.2018.09.067_bib12) 2017; 2
Zhou (10.1016/j.carbon.2018.09.067_bib54) 2015; 5
Lee (10.1016/j.carbon.2018.09.067_bib74) 2017; 343
Zhang (10.1016/j.carbon.2018.09.067_bib164) 2017; 2
Guangmin (10.1016/j.carbon.2018.09.067_bib106) 2013; 7
Yao (10.1016/j.carbon.2018.09.067_bib135) 2014; 7
Liu (10.1016/j.carbon.2018.09.067_bib179) 2017; 33
Niu (10.1016/j.carbon.2018.09.067_bib93) 2015; 5
Niu (10.1016/j.carbon.2018.09.067_bib62) 2012; 22
Chung (10.1016/j.carbon.2018.09.067_bib143) 2014; 50
Zhang (10.1016/j.carbon.2018.09.067_bib28) 2016; 28
Wang (10.1016/j.carbon.2018.09.067_bib89) 2018; 14
Peng (10.1016/j.carbon.2018.09.067_bib182) 2014; 24
Zhao (10.1016/j.carbon.2018.09.067_bib47) 2015; 15
Chung (10.1016/j.carbon.2018.09.067_bib48) 2016; 10
Wang (10.1016/j.carbon.2018.09.067_bib94) 2015; 15
Gui (10.1016/j.carbon.2018.09.067_bib64) 2010; 22
Ye (10.1016/j.carbon.2018.09.067_bib166) 2017; 139
Li (10.1016/j.carbon.2018.09.067_bib22) 2016; 6
Jin (10.1016/j.carbon.2018.09.067_bib75) 2017; 5
Xiang (10.1016/j.carbon.2018.09.067_bib128) 2017; 27
Wang (10.1016/j.carbon.2018.09.067_bib95) 2011; 11
Kim (10.1016/j.carbon.2018.09.067_bib78) 2015; 51
Zhai (10.1016/j.carbon.2018.09.067_bib173) 2017; 111
Stoeck (10.1016/j.carbon.2018.09.067_bib184) 2016; 309
Fang (10.1016/j.carbon.2018.09.067_bib70) 2017; 42
Zu (10.1016/j.carbon.2018.09.067_bib142) 2013; 15
Cai (10.1016/j.carbon.2018.09.067_bib136) 2015; 283
Du (10.1016/j.carbon.2018.09.067_bib158) 2017; 9
Bruce (10.1016/j.carbon.2018.09.067_bib3) 2011; 11
Zheng (10.1016/j.carbon.2018.09.067_bib169) 2014; 9
Chung (10.1016/j.carbon.2018.09.067_bib149) 2014; 5
Kong (10.1016/j.carbon.2018.09.067_bib174) 2016; 96
Deng (10.1016/j.carbon.2018.09.067_bib125) 2017; 5
Tang (10.1016/j.carbon.2018.09.067_bib130) 2014; 26
Armand (10.1016/j.carbon.2018.09.067_bib5) 2008; 451
Zhen Li (10.1016/j.carbon.2018.09.067_bib35) 2014; 8
Peng (10.1016/j.carbon.2018.09.067_bib6) 2017; 46
Peng (10.1016/j.carbon.2018.09.067_bib53) 2017; 124
Zu (10.1016/j.carbon.2018.09.067_bib110) 2013; 3
Xu (10.1016/j.carbon.2018.09.067_bib77) 2017; 10
Li (10.1016/j.carbon.2018.09.067_bib107) 2015; 12
Chen (10.1016/j.carbon.2018.09.067_bib80) 2017; 17
Huang (10.1016/j.carbon.2018.09.067_bib153) 2015; 9
Fang (10.1016/j.carbon.2018.09.067_bib42) 2016; 28
Yuan (10.1016/j.carbon.2018.09.067_bib69) 2014; 24
Niu (10.1016/j.carbon.2018.09.067_bib63) 2013; 25
Zhou (10.1016/j.carbon.2018.09.067_bib157) 2014; 26
Guang He (10.1016/j.carbon.2018.09.067_bib38) 2013; 7
Rehman (10.1016/j.carbon.2018.09.067_bib21) 2016; 6
Zhu (10.1016/j.carbon.2018.09.067_bib159) 2016; 101
Peng (10.1016/j.carbon.2018.09.067_bib172) 2015; 9
Chen (10.1016/j.carbon.2018.09.067_bib58) 2017; 27
Li (10.1016/j.carbon.2018.09.067_bib18) 2017; 9
Zhou (10.1016/j.carbon.2018.09.067_bib120) 2015; 6
Jayaprakash (10.1016/j.carbon.2018.09.067_bib19) 2011; 50
Zhao (10.1016/j.carbon.2018.09.067_bib82) 2014; 26
Park (10.1016/j.carbon.2018.09.067_bib123) 2017; 5
Manthiram (10.1016/j.carbon.2018.09.067_bib2) 2014; 114
Zhou (10.1016/j.carbon.2018.09.067_bib10) 2017; 114
Kim (10.1016/j.carbon.2018.09.067_bib76) 2018; 131
Gao (10.1016/j.carbon.2018.09.067_bib175) 2017; 246
Park (10.1016/j.carbon.2018.09.067_bib49) 2018; 28
Lin (10.1016/j.carbon.2018.09.067_bib170) 2016; 11
Wang (10.1016/j.carbon.2018.09.067_bib60) 2017; 9
Yuan (10.1016/j.carbon.2018.09.067_bib103) 2015; 2
Zhuang (10.1016/j.carbon.2018.09.067_bib152) 2016; 12
Wang (10.1016/j.carbon.2018.09.067_bib144) 2015; 168
Niu (10.1016/j.carbon.2018.09.067_bib61) 2011; 4
Novoselov (10.1016/j.carbon.2018.09.067_bib91) 2004; 306
Lu (10.1016/j.carbon.2018.09.067_bib129) 2013; 13
Lu (10.1016/j.carbon.2018.09.067_bib46) 2017; 8
Hu (10.1016/j.carbon.2018.09.067_bib102) 2016; 28
Shen (10.1016/j.carbon.2018.09.067_bib114) 2018; 8
Zhou (10.1016/j.carbon.2018.09.067_bib14) 2015; 27
Lin (10.1016/j.carbon.2018.09.067_bib55) 2015; 350
Chen (10.1016/j.carbon.2018.09.067_bib59) 2017; 42
Zhao (10.1016/j.carbon.2018.09.067_bib138) 2016; 26
Gueon (10.1016/j.carbon.2018.09.067_bib17) 2018; 12
Ponraj (10.1016/j.carbon.2018.09.067_bib150) 2017; 9
Evers (10.1016/j.carbon.2018.09.067_bib4) 2013; 46
Ji (10.1016/j.carbon.2018.09.067_bib7) 2011; 2
Jiang (10.1016/j.carbon.2018.09.067_bib165) 2018; 13
Song (10.1016/j.carbon.2018.09.067_bib57) 2014; 24
Wan (10.1016/j.carbon.2018.09.067_bib73) 2017; 121
Chen (10.1016/j.carbon.2018.09.067_bib104) 2015; 15
Chen (10.1016/j.carbon.2018.09.067_bib178) 2017; 11
Hooch Antink (10.1016/j.carbon.2018.09.067_bib92) 2018; 5
Cao (10.1016/j.carbon.2018.09.067_bib177) 2016; 28
Xu (10.1016/j.carbon.2018.09.067_bib24) 2015; 25
Liu (10.1016/j.carbon.2018.09.067_bib105) 2014; 26
Wang (10.1016/j.carbon.2018.09.067_bib30) 2015; 81
Lee (10.1016/j.carbon.2018.09.067_bib40) 2013; 25
Qiang Sun (10.1016/j.carbon.2018.09.067_bib36) 2015; 9
Zhu (10.1016/j.carbon.2018.09.067_bib79) 2014; 75
Wang (10.1016/j.carbon.2018.09.067_bib85) 2011; 196
Wang (10.1016/j.carbon.2018.09.067_bib88) 2018; 28
Chang (10.1016/j.carbon.2018.09.067_bib176) 2017; 4
Zhu (10.1016/j.carbon.2018.09.067_bib25) 2017; 33
Xiao (10.1016/j.carbon.2018.09.067_bib8) 2012; 24
Arora (10.1016/j.carbon.2018.09.067_bib131) 2004; 104
Zhang (10.1016/j.carbon.2018.09.067_bib83) 2018; 10
Ji (10.1016/j.carbon.2018.09.067_bib112) 2011; 133
Huang (10.1016/j.carbon.2018.09.067_bib171) 2014; 5
Li (10.1016/j.carbon.2018.09.067_bib180) 2015; 9
Niu (10.1016/j.carbon.2018.09.067_bib90) 2013; 25
Zhang (10.1016/j.carbon.2018.09.067_bib96) 2015; 7
Zhai (10.1016/j.carbon.2018.09.067_bib155) 2017; 7
Song (10.1016/j.carbon.2018.09.067_bib56) 2015; 54
Zhang (10.1016/j.carbon.2018.09.067_bib168) 2017; 123
Niu (10.1016/j.carbon.2018.09.067_bib87) 2014; 26
Zheng (10.1016/j.carbon.2018.09.067_bib126) 2016; 26
Ji (10.1016/j.carbon.2018.09.067_bib34) 2009; 8
Yuan (10.1016/j.carbon.2018.09.067_bib121) 2016; 6
Hwa (10.1016/j.carbon.2018.09.067_bib81) 2017; 17
Chong (10.1016/j.carbon.2018.09.067_bib13) 2017; 27
Lu (10.1016/j.carbon.2018.09.067_bib115) 2013; 1
Chang (10.1016/j.carbon.2018.09.067_bib147) 2016; 12
Sun (10.1016/j.carbon.2018.09.067_bib33) 2015; 54
Li (10.1016/j.carbon.2018.09.067_bib66) 2017; 11
Han (10.1016/j.carbon.2018.09.067_bib108) 2018; 13
Bai (10.1016/j.carbon.2018.09.067_bib162) 2016; 9
Shao (10.1016/j.carbon.2018.09.067_bib146) 2017; 5
Chen (10.1016/j.carbon.2018.09.067_bib98) 2017; 11
Liu (10.1016/j.carbon.2018.09.067_bib148) 2016; 9
Liang (10.1016/j.carbon.2018.09.067_bib31) 2009; 21
Xu (10.1016/j.carbon.2018.09.067_bib119) 2016; 4
Su (10.1016/j.carbon.2018.09.067_bib141) 2012; 3
Luo (10.1016/j.carbon.2018.09.067_bib45) 2017; 2
Mao (10.1016/j.carbon.2018.09.067_bib15) 2017; 8
Mi (10.1016/j.carbon.2018.09.067_bib51) 2016; 27
He (10.1016/j.carbon.2018.09.067_bib134) 2018; 47
Wang (10.1016/j.carbon.2018.09.067_bib140) 2016; 55
Su (10.1016/j.carbon.2018.09.067_bib183) 2017; 7
Liu (10.1016/j.carbon.2018.09.067_bib154) 2016; 45
Qian (10.1016/j.carbon.2018.09.067_bib124) 2017; 9
Kim (10.1016/j.carbon.2018.09.067_bib67) 2017; 113
Zheng (10.1016/j.carbon.2018.09.067_bib32) 2011; 11
Xiang (10.1016/j.carbon.2018.09.067_bib133) 2016; 9
Li (10.1016/j.carbon.2018.09.067_bib27) 2013; 5
Xin (10.1016/j.carbon.2018.09.067_bib71) 2012; 134
Huang (10.1016/j.carbon.2018.09.067_bib132) 2015; 1
Fu (10.1016/j.carbon.2018.09.067_bib9) 2013; 52
Xu (10.1016/j.carbon.2018.09.067_bib50) 2018; 8
Li (10.1016/j.carbon.2018.09.067_bib39) 2017; 9
Wang (10.1016/j.carbon.2018.09.067_bib151) 2015; 3
Li (10.1016/j.carbon.2018.09.067_bib29) 2016; 9
Niu (10.1016/j.carbon.2018.09.067_bib86) 2012; 24
Zhu (10.1016/j.carbon.2018.09.067_bib84) 2015; 11
Li (10.1016/j.carbon.2018.09.067_bib99) 2012; 48
Song (10.1016/j.carbon.2018.09.067_bib109) 2016; 16
Wang (10.1016/j.carbon.2018.09.067_bib111) 2014; 8
Xing (10.1016/j.carbon.2018.09.067_bib160) 2016; 303
Zhu (10.1016/j.carbon.2018.09.067_bib145) 2017; 6
Zhou (10.1016/j.carbon.2018.09.067_bib68) 2012; 5
Wang (10.1016/j.carbon.2018.09.067_bib117) 2014; 256
Luo (10.1016/j.carbon.2018.09.067_bib97) 2017; 9
Zhu (10.1016/j.carbon.2018.09.067_bib156) 2017; 5
Xu (10.1016/j.carbon.2018.09.067_bib11) 2018; 19
Zhang (10.1016/j.carbon.2018.09.067_bib52) 2018; 10
References_xml – volume: 5
  start-page: 2208
  year: 2013
  end-page: 2213
  ident: bib27
  article-title: High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1166
  year: 2012
  ident: bib141
  article-title: Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
– volume: 26
  year: 2016
  ident: bib126
  article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 17090
  year: 2017
  ident: bib12
  article-title: Burning lithium in CS
  publication-title: Nat. Energy
– volume: 11
  start-page: 356
  year: 2015
  end-page: 365
  ident: bib101
  article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
  publication-title: Nano Energy
– volume: 25
  start-page: 4312
  year: 2015
  end-page: 4320
  ident: bib24
  article-title: Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 325
  year: 2017
  end-page: 333
  ident: bib179
  article-title: Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action
  publication-title: Nano Energy
– volume: 11
  start-page: 1345
  year: 2017
  end-page: 1357
  ident: bib98
  article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries
  publication-title: Nano Res.
– volume: 9
  start-page: 38445
  year: 2017
  end-page: 38454
  ident: bib150
  article-title: Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 268
  year: 2015
  end-page: 280
  ident: bib26
  article-title: Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life
  publication-title: Nano Energy
– volume: 54
  start-page: 10539
  year: 2015
  end-page: 10544
  ident: bib33
  article-title: An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 175
  year: 2018
  end-page: 183
  ident: bib76
  article-title: Towards highly stable lithium sulfur batteries: surface functionalization of carbon nanotube scaffolds
  publication-title: Carbon
– volume: 5
  start-page: 15096
  year: 2017
  end-page: 15104
  ident: bib156
  article-title: A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 19892
  year: 2017
  end-page: 19900
  ident: bib146
  article-title: Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 256
  start-page: 361
  year: 2014
  end-page: 368
  ident: bib117
  article-title: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 48
  start-page: 4106
  year: 2012
  end-page: 4108
  ident: bib99
  article-title: High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating
  publication-title: Chem. Commun.
– volume: 121
  start-page: 330
  year: 2017
  end-page: 336
  ident: bib73
  article-title: ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor
  publication-title: Carbon
– volume: 28
  year: 2018
  ident: bib88
  article-title: Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 187
  year: 2017
  end-page: 194
  ident: bib59
  article-title: Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector
  publication-title: Nano Energy
– volume: 45
  start-page: 4340
  year: 2016
  end-page: 434363
  ident: bib154
  article-title: Unconventional supercapacitors from nanocarbon based electrode materials to device configurations
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 3735
  year: 2016
  end-page: 3746
  ident: bib148
  article-title: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries
  publication-title: Nano Res.
– volume: 46
  start-page: 1135
  year: 2013
  end-page: 1143
  ident: bib4
  article-title: New approaches for high energy density lithium-sulfur battery cathodes
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 127
  year: 2015
  end-page: 145
  ident: bib132
  article-title: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2016
  ident: bib161
  article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries
  publication-title: Adv. Sci.
– volume: 9
  start-page: 4646
  year: 2017
  end-page: 4651
  ident: bib97
  article-title: Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries
  publication-title: Nanoscale
– volume: 9
  start-page: 10717
  year: 2017
  end-page: 10729
  ident: bib39
  article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 5113
  year: 2014
  end-page: 5118
  ident: bib82
  article-title: Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 301
  start-page: 312
  year: 2016
  end-page: 316
  ident: bib16
  article-title: Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide
  publication-title: J. Power Sources
– volume: 46
  start-page: 5237
  year: 2017
  end-page: 5288
  ident: bib6
  article-title: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 174
  year: 2016
  end-page: 179
  ident: bib147
  article-title: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators
  publication-title: Small
– volume: 139
  start-page: 5916
  year: 2017
  end-page: 5922
  ident: bib166
  article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 6105
  year: 2014
  end-page: 6112
  ident: bib69
  article-title: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 28
  year: 2018
  ident: bib49
  article-title: Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 3992
  year: 2016
  end-page: 3996
  ident: bib140
  article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 3381
  year: 2014
  end-page: 3390
  ident: bib135
  article-title: Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface
  publication-title: Energy Environ. Sci.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: bib5
  article-title: Building better batteries
  publication-title: Nature
– volume: 25
  start-page: 4573
  year: 2013
  end-page: 4579
  ident: bib40
  article-title: Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries
  publication-title: Adv. Mater.
– volume: 2
  year: 2015
  ident: bib103
  article-title: Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery
  publication-title: Adv. Sci.
– volume: 5
  start-page: 632
  year: 2017
  end-page: 640
  ident: bib75
  article-title: Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 1796
  year: 2015
  end-page: 1802
  ident: bib94
  article-title: Slurryless Li
  publication-title: Nano Lett.
– volume: 2
  start-page: 2696
  year: 2017
  end-page: 2705
  ident: bib164
  article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 287
  year: 2016
  end-page: 297
  ident: bib167
  article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries
  publication-title: Chem
– volume: 123
  start-page: 744
  year: 2017
  end-page: 755
  ident: bib168
  article-title: Carbon enables the practical use of lithium metal in a battery
  publication-title: Carbon
– volume: 45
  start-page: 5605
  year: 2016
  end-page: 5634
  ident: bib1
  article-title: Designing high-energy lithium-sulfur batteries
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 475
  year: 2017
  end-page: 481
  ident: bib44
  article-title: Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 96
  start-page: 1053
  year: 2016
  end-page: 1059
  ident: bib174
  article-title: Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries
  publication-title: Carbon
– volume: 6
  year: 2016
  ident: bib22
  article-title: Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1502459
  year: 2016
  ident: bib41
  article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 13674
  year: 2017
  end-page: 13682
  ident: bib125
  article-title: A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 248
  year: 2017
  end-page: 257
  ident: bib145
  article-title: High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator
  publication-title: ACS Sustain. Chem. Eng.
– volume: 222
  start-page: 1861
  year: 2016
  end-page: 1869
  ident: bib100
  article-title: A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 9295
  year: 2014
  end-page: 9303
  ident: bib35
  article-title: A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries
  publication-title: ACS Nano
– volume: 343
  start-page: 54
  year: 2017
  end-page: 59
  ident: bib74
  article-title: Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 15
  start-page: 5443
  year: 2015
  end-page: 5448
  ident: bib104
  article-title: Rational design of cathode structure for high rate performance lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 2
  start-page: 325
  year: 2011
  ident: bib7
  article-title: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1440
  year: 2011
  end-page: 1446
  ident: bib61
  article-title: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  ident: bib183
  article-title: Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9539
  year: 2016
  end-page: 9544
  ident: bib28
  article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 51
  start-page: 13682
  year: 2015
  end-page: 13685
  ident: bib78
  article-title: Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries
  publication-title: Chem. Commun.
– volume: 27
  year: 2017
  ident: bib13
  article-title: Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers
  publication-title: Adv. Funct. Mater.
– volume: 353
  start-page: 298
  year: 2017
  end-page: 311
  ident: bib118
  article-title: Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 104
  start-page: 4419
  year: 2004
  end-page: 4462
  ident: bib131
  article-title: Battery separator
  publication-title: Chem. Rev.
– volume: 26
  start-page: 6100
  year: 2014
  end-page: 6105
  ident: bib130
  article-title: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  ident: bib169
  article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes
  publication-title: Nat. Nanotech.
– volume: 5
  year: 2015
  ident: bib54
  article-title: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 303
  start-page: 22
  year: 2016
  end-page: 28
  ident: bib160
  article-title: Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 30
  start-page: 138
  year: 2016
  end-page: 145
  ident: bib37
  article-title: Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery
  publication-title: Nano Energy
– volume: 50
  start-page: 5904
  year: 2011
  end-page: 5908
  ident: bib19
  article-title: Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 4462
  year: 2011
  end-page: 44467
  ident: bib32
  article-title: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
  publication-title: Nano Lett.
– volume: 20
  start-page: 176
  year: 2016
  end-page: 184
  ident: bib137
  article-title: A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries
  publication-title: Nano Energy
– volume: 12
  start-page: 381
  year: 2016
  end-page: 389
  ident: bib152
  article-title: Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries
  publication-title: Small
– volume: 15
  start-page: 2291
  year: 2013
  end-page: 2297
  ident: bib142
  article-title: Improved lithium-sulfur cells with a treated carbon paper interlayer
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 10717
  year: 2017
  end-page: 10729
  ident: bib18
  article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes, ACS
  publication-title: Appl. Mater. Interfaces
– volume: 9
  start-page: 28366
  year: 2017
  end-page: 28376
  ident: bib124
  article-title: Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 9173
  year: 2013
  end-page: 9181
  ident: bib115
  article-title: Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 1176
  year: 2012
  end-page: 1181
  ident: bib8
  article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  ident: bib121
  article-title: Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides
  publication-title: Adv. Energy Mater.
– volume: 283
  start-page: 524
  year: 2015
  end-page: 529
  ident: bib136
  article-title: A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  ident: bib163
  article-title: Reviving lithium-metal anodes for next-generation high-energy batteries
  publication-title: Adv. Mater.
– volume: 27
  start-page: 641
  year: 2015
  end-page: 647
  ident: bib14
  article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  ident: bib21
  article-title: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 77
  year: 2017
  end-page: 84
  ident: bib46
  article-title: Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries
  publication-title: Energy Storage Mater.
– volume: 81
  start-page: 782
  year: 2015
  end-page: 787
  ident: bib30
  article-title: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries
  publication-title: Carbon
– volume: 12
  start-page: 468
  year: 2015
  end-page: 475
  ident: bib107
  article-title: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode
  publication-title: Nano Energy
– volume: 15
  start-page: 721
  year: 2015
  end-page: 726
  ident: bib47
  article-title: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries
  publication-title: Nano Lett.
– volume: 13
  start-page: 119
  year: 2018
  end-page: 126
  ident: bib108
  article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 249
  year: 2017
  end-page: 258
  ident: bib176
  article-title: Highly flexible, freestanding tandem sulfur cathodes for foldable Li-S batteries with a high areal capacity
  publication-title: Mater. Horiz.
– volume: 9
  start-page: 6373
  year: 2015
  end-page: 6382
  ident: bib172
  article-title: Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium sulfur batteries
  publication-title: ACS Nano
– volume: 54
  start-page: 4325
  year: 2015
  end-page: 4329
  ident: bib56
  article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes
  publication-title: Angew. Chem. Int. Ed.
– volume: 246
  start-page: 507
  year: 2017
  end-page: 516
  ident: bib175
  article-title: Towards flexible lithium-sulfur battery from natural cotton textile
  publication-title: Electrochim. Acta
– volume: 114
  start-page: 840
  year: 2017
  end-page: 845
  ident: bib10
  article-title: Catalytic oxidation of Li
  publication-title: P. Natl. Acad. Sci.the USA
– volume: 8
  year: 2018
  ident: bib114
  article-title: 3D Printing sulfur copolymer-graphene architectures for Li-S batteries
  publication-title: Adv. Energy Mater.
– volume: 113
  start-page: 371
  year: 2017
  end-page: 378
  ident: bib67
  article-title: Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery
  publication-title: Carbon
– volume: 10
  start-page: 10462
  year: 2016
  end-page: 10470
  ident: bib48
  article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries
  publication-title: ACS Nano
– volume: 25
  start-page: 1058
  year: 2013
  end-page: 1064
  ident: bib63
  article-title: Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture
  publication-title: Adv. Mater.
– volume: 33
  start-page: 402
  year: 2017
  end-page: 409
  ident: bib25
  article-title: Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery
  publication-title: Nano Energy
– volume: 7
  start-page: 10920
  year: 2013
  end-page: 10930
  ident: bib38
  article-title: Tailoring porosity in carbon nanospheres for lithium sulfur battery cathodes
  publication-title: ACS Nano
– volume: 10
  start-page: 2544
  year: 2017
  end-page: 2551
  ident: bib77
  article-title: Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 437
  year: 2017
  end-page: 444
  ident: bib80
  article-title: Highly efficient retention of polysulfides in "sea urchin"-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 7
  start-page: 5367
  year: 2013
  end-page: 5375
  ident: bib106
  article-title: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries
  publication-title: ACS Nano
– volume: 9
  start-page: 28612
  year: 2017
  end-page: 28619
  ident: bib60
  article-title: A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2205
  year: 2017
  end-page: 2211
  ident: bib45
  article-title: Rational design of high-loading sulfur cathodes with a poached-egg-shaped architecture for long-cycle lithium-sulfur batteries
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 1345
  year: 2017
  end-page: 1357
  ident: bib178
  article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries
  publication-title: Nano Res.
– volume: 28
  start-page: 3374
  year: 2016
  end-page: 3382
  ident: bib42
  article-title: 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  ident: bib89
  article-title: An All-freeze-casting strategy to design typographical supercapacitors with integrated architectures
  publication-title: Small
– volume: 6
  start-page: 7760
  year: 2015
  ident: bib120
  article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
  publication-title: Nat. Commun.
– volume: 28
  start-page: 491
  year: 2016
  end-page: 496
  ident: bib181
  article-title: A cable-shaped lithium sulfur battery
  publication-title: Adv. Mater.
– volume: 26
  start-page: 8418
  year: 2016
  end-page: 8426
  ident: bib138
  article-title: Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1531
  year: 2010
  end-page: 1537
  ident: bib23
  article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 5285
  year: 2015
  end-page: 5291
  ident: bib139
  article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2015
  ident: bib122
  article-title: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 1243
  year: 2014
  end-page: 1250
  ident: bib57
  article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 11751
  year: 2014
  end-page: 11787
  ident: bib2
  article-title: Rechargeable lithium-sulfur batteries
  publication-title: Chem. Rev.
– volume: 111
  start-page: 493
  year: 2017
  end-page: 501
  ident: bib173
  article-title: Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density
  publication-title: Carbon
– volume: 27
  year: 2016
  ident: bib51
  article-title: Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3002
  year: 2015
  end-page: 3011
  ident: bib153
  article-title: Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries
  publication-title: ACS Nano
– volume: 13
  start-page: 2485
  year: 2013
  end-page: 2489
  ident: bib129
  article-title: Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers
  publication-title: Nano Lett.
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  ident: bib34
  article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
  publication-title: Nat. Mater.
– volume: 17
  start-page: 7086
  year: 2017
  end-page: 7094
  ident: bib81
  article-title: Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells
  publication-title: Nano Lett.
– volume: 8
  start-page: 5018
  year: 2014
  end-page: 5023
  ident: bib111
  article-title: High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3023
  year: 2016
  end-page: 3039
  ident: bib133
  article-title: Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress
  publication-title: ChemSusChem
– volume: 84
  start-page: 399
  year: 2015
  end-page: 408
  ident: bib20
  article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries
  publication-title: Carbon
– volume: 168
  start-page: 271
  year: 2015
  end-page: 276
  ident: bib144
  article-title: Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 746
  year: 2015
  end-page: 755
  ident: bib84
  article-title: Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries
  publication-title: Nano Energy
– volume: 3
  start-page: 1008
  year: 2013
  end-page: 1012
  ident: bib110
  article-title: Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 8850
  year: 2015
  ident: bib43
  article-title: Pie-like electrode design for high-energy density lithium-sulfur batteries
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4855
  year: 2014
  end-page: 4862
  ident: bib105
  article-title: Nanostructured graphene composite papers for highly flexible and foldable supercapacitors
  publication-title: Adv. Mater.
– volume: 9
  start-page: 11342
  year: 2015
  end-page: 11350
  ident: bib180
  article-title: A foldable lithium-sulfur battery
  publication-title: ACS Nano
– volume: 124
  start-page: 23
  year: 2017
  end-page: 33
  ident: bib53
  article-title: Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries
  publication-title: Carbon
– volume: 4
  start-page: 17381
  year: 2016
  end-page: 17393
  ident: bib119
  article-title: A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 7139
  year: 2015
  end-page: 7144
  ident: bib151
  article-title: Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 5209
  year: 2012
  end-page: 5215
  ident: bib62
  article-title: High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 19
  year: 2011
  end-page: 29
  ident: bib3
  article-title: Li-O
  publication-title: Nat. Mater.
– volume: 5
  year: 2018
  ident: bib92
  article-title: Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices
  publication-title: Adv. Mater. Interfaces
– volume: 27
  year: 2017
  ident: bib58
  article-title: Foldable All-solid-state supercapacitors integrated with photodetectors
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 5594
  year: 2018
  end-page: 5602
  ident: bib52
  article-title: Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 4877
  year: 2017
  end-page: 4884
  ident: bib66
  article-title: Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes
  publication-title: ACS Nano
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib91
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 75
  start-page: 161
  year: 2014
  end-page: 168
  ident: bib79
  article-title: Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries
  publication-title: Carbon
– volume: 28
  start-page: 1603
  year: 2016
  end-page: 1609
  ident: bib102
  article-title: 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries
  publication-title: Adv. Mater.
– volume: 16
  start-page: 5488
  year: 2016
  end-page: 5494
  ident: bib113
  article-title: Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 13
  start-page: 1379
  year: 2018
  end-page: 1385
  ident: bib165
  article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries
  publication-title: Chem. Asian J.
– volume: 5
  year: 2015
  ident: bib93
  article-title: Programmable nanocarbon-based architectures for flexible supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: bib116
  article-title: Integration of Graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4288
  year: 2011
  end-page: 4294
  ident: bib72
  article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 25
  start-page: 4035
  year: 2013
  end-page: 4042
  ident: bib90
  article-title: All-solid-state flexible ultrathin micro-supercapacitors based on graphene
  publication-title: Adv. Mater.
– volume: 8
  start-page: 14628
  year: 2017
  ident: bib15
  article-title: Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  ident: bib50
  article-title: Updated metal compounds (MOFs, S, OH, N, C) used as cathode materials for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 8901
  year: 2012
  end-page: 8906
  ident: bib68
  article-title: A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 8504
  year: 2015
  end-page: 8513
  ident: bib36
  article-title: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries
  publication-title: ACS Nano
– volume: 5
  start-page: 975
  year: 2017
  end-page: 981
  ident: bib123
  article-title: Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  ident: bib71
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 43696
  year: 2017
  end-page: 43703
  ident: bib158
  article-title: Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 350
  start-page: 1508
  year: 2015
  end-page: 1513
  ident: bib55
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
– volume: 27
  year: 2017
  ident: bib128
  article-title: A flexible 3D multifunctional MgO-decorated carbon foam@CNT hybrid as self-supported cathode for high-performance lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2772
  year: 2014
  end-page: 2781
  ident: bib182
  article-title: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
– volume: 101
  start-page: 272
  year: 2016
  end-page: 280
  ident: bib159
  article-title: Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries
  publication-title: Carbon
– volume: 16
  start-page: 864
  year: 2016
  end-page: 870
  ident: bib109
  article-title: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 52
  start-page: 6930
  year: 2013
  end-page: 6935
  ident: bib9
  article-title: Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 3015
  year: 2014
  ident: bib171
  article-title: Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures
  publication-title: Nat. Commun.
– volume: 133
  start-page: 18522
  year: 2011
  end-page: 18525
  ident: bib112
  article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 226
  year: 2018
  end-page: 233
  ident: bib17
  article-title: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes
  publication-title: ACS Nano
– volume: 28
  start-page: 9629
  year: 2016
  end-page: 9636
  ident: bib177
  article-title: A flexible nanostructured paper of a reduced graphene oxide sulfur composite for high performance lithium sulfur batteries with unconventional configurations
  publication-title: Adv. Mater.
– volume: 42
  start-page: 205
  year: 2017
  end-page: 214
  ident: bib70
  article-title: Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries
  publication-title: Nano Energy
– volume: 11
  start-page: 2644
  year: 2011
  end-page: 2647
  ident: bib95
  article-title: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
  publication-title: Nano Lett.
– volume: 9
  start-page: 3221
  year: 2016
  end-page: 3229
  ident: bib162
  article-title: Transition of lithium growth mechanisms in liquid electrolytes
  publication-title: Energy Environ. Sci.
– volume: 309
  start-page: 76
  year: 2016
  end-page: 81
  ident: bib184
  article-title: Reconfiguration of lithium sulphur batteries: “Enhancement of Li-S cell performance by employing a highly porous conductive separator coating”
  publication-title: J. Power Sources
– volume: 22
  start-page: 617
  year: 2010
  end-page: 621
  ident: bib64
  article-title: Carbon nanotube sponges
  publication-title: Adv. Mater.
– volume: 21
  start-page: 4724
  year: 2009
  end-page: 4730
  ident: bib31
  article-title: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery
  publication-title: Chem. Mater.
– volume: 7
  start-page: 5592
  year: 2015
  end-page: 5597
  ident: bib96
  article-title: A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries
  publication-title: Nanoscale
– volume: 26
  start-page: 625
  year: 2014
  end-page: 631
  ident: bib157
  article-title: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3681
  year: 2014
  end-page: 3687
  ident: bib87
  article-title: A universal strategy to prepare functional porous graphene hybrid architectures
  publication-title: Adv. Mater.
– volume: 24
  start-page: 4144
  year: 2012
  end-page: 4150
  ident: bib86
  article-title: A leavening strategy to prepare reduced graphene oxide foams
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5208
  year: 2014
  end-page: 5215
  ident: bib127
  article-title: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium sulfur batteries
  publication-title: ACS Nano
– volume: 11
  start-page: 626
  year: 2016
  end-page: 632
  ident: bib170
  article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
  publication-title: Nat. Nanotech.
– volume: 10
  start-page: 1300
  year: 2016
  end-page: 1308
  ident: bib65
  article-title: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries
  publication-title: ACS Nano
– volume: 19
  start-page: 84
  year: 2018
  end-page: 107
  ident: bib11
  article-title: Carbon nanomaterials for advanced lithium sulfur batteries
  publication-title: Nano Today
– volume: 10
  start-page: 8749
  year: 2018
  end-page: 8757
  ident: bib83
  article-title: Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 4184
  year: 2014
  end-page: 4187
  ident: bib143
  article-title: A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries
  publication-title: Chem. Commun.
– volume: 9
  start-page: 3061
  year: 2016
  end-page: 3070
  ident: bib29
  article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 6881
  year: 2018
  end-page: 6887
  ident: bib134
  article-title: Recent advances in functional modification of separators in lithium-sulfur batteries
  publication-title: Dalton Trans.
– volume: 196
  start-page: 7030
  year: 2011
  end-page: 7034
  ident: bib85
  article-title: Sulfur-graphene composite for rechargeable lithium batteries
  publication-title: J. Power Sources
– volume: 7
  start-page: 56
  year: 2017
  end-page: 63
  ident: bib155
  article-title: Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 1978
  year: 2014
  end-page: 1983
  ident: bib149
  article-title: High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator
  publication-title: J. Phys. Chem. Lett.
– volume: 47
  start-page: 6881
  issue: 20
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib134
  article-title: Recent advances in functional modification of separators in lithium-sulfur batteries
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04717G
– volume: 6
  issue: 12
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib21
  article-title: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502518
– volume: 33
  start-page: 325
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib179
  article-title: Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.049
– volume: 8
  issue: 10
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib50
  article-title: Updated metal compounds (MOFs, S, OH, N, C) used as cathode materials for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702607
– volume: 124
  start-page: 23
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib53
  article-title: Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.035
– volume: 15
  start-page: 1796
  issue: 3
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib94
  article-title: Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00112
– volume: 28
  start-page: 1603
  issue: 8
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib102
  article-title: 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504765
– volume: 9
  start-page: 38445
  issue: 44
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib150
  article-title: Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10641
– volume: 15
  start-page: 2291
  issue: 7
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib142
  article-title: Improved lithium-sulfur cells with a treated carbon paper interlayer
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43394j
– volume: 4
  start-page: 249
  issue: 2
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib176
  article-title: Highly flexible, freestanding tandem sulfur cathodes for foldable Li-S batteries with a high areal capacity
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00426A
– volume: 104
  start-page: 4419
  year: 2004
  ident: 10.1016/j.carbon.2018.09.067_bib131
  article-title: Battery separator
  publication-title: Chem. Rev.
  doi: 10.1021/cr020738u
– volume: 42
  start-page: 205
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib70
  article-title: Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.053
– volume: 9
  start-page: 11342
  issue: 11
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib180
  article-title: A foldable lithium-sulfur battery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05068
– volume: 5
  issue: 16
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib54
  article-title: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401752
– volume: 11
  start-page: 2644
  issue: 7
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib95
  article-title: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
  publication-title: Nano Lett.
  doi: 10.1021/nl200658a
– volume: 5
  start-page: 8901
  issue: 10
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib68
  article-title: A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22294a
– volume: 46
  start-page: 1135
  issue: 5
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib4
  article-title: New approaches for high energy density lithium-sulfur battery cathodes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3001348
– volume: 20
  start-page: 176
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib137
  article-title: A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.022
– volume: 7
  start-page: 5367
  issue: 6
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib106
  article-title: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/nn401228t
– volume: 17
  start-page: 437
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib80
  article-title: Highly efficient retention of polysulfides in "sea urchin"-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04433
– volume: 96
  start-page: 1053
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib174
  article-title: Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.062
– volume: 5
  issue: 23
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib93
  article-title: Programmable nanocarbon-based architectures for flexible supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500677
– volume: 24
  start-page: 2772
  issue: 19
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib182
  article-title: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303296
– volume: 27
  issue: 3
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib58
  article-title: Foldable All-solid-state supercapacitors integrated with photodetectors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604639
– volume: 8
  issue: 4
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib114
  article-title: 3D Printing sulfur copolymer-graphene architectures for Li-S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701527
– volume: 6
  start-page: 248
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib145
  article-title: High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02322
– volume: 9
  start-page: 43696
  issue: 50
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib158
  article-title: Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14195
– volume: 2
  start-page: 2205
  issue: 10
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib45
  article-title: Rational design of high-loading sulfur cathodes with a poached-egg-shaped architecture for long-cycle lithium-sulfur batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00697
– volume: 6
  start-page: 8850
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib43
  article-title: Pie-like electrode design for high-energy density lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9850
– volume: 8
  start-page: 500
  issue: 6
  year: 2009
  ident: 10.1016/j.carbon.2018.09.067_bib34
  article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2460
– volume: 25
  start-page: 4573
  issue: 33
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib40
  article-title: Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301579
– volume: 7
  start-page: 5592
  issue: 13
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib96
  article-title: A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries
  publication-title: Nanoscale
  doi: 10.1039/C4NR06863G
– volume: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib51
  article-title: Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604265
– volume: 24
  start-page: 1176
  issue: 9
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib8
  article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103392
– volume: 16
  start-page: 268
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib26
  article-title: Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.034
– volume: 26
  start-page: 3681
  issue: 22
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib87
  article-title: A universal strategy to prepare functional porous graphene hybrid architectures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400143
– volume: 9
  start-page: 28366
  issue: 34
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib124
  article-title: Unusual mesoporous carbonaceous matrix loading with sulfur as the cathode of lithium sulfur battery with exceptionally stable high rate performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05825
– volume: 17
  start-page: 7086
  issue: 11
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib81
  article-title: Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03831
– volume: 7
  start-page: 10920
  issue: 12
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib38
  article-title: Tailoring porosity in carbon nanospheres for lithium sulfur battery cathodes
  publication-title: ACS Nano
  doi: 10.1021/nn404439r
– volume: 9
  start-page: 3061
  issue: 10
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib29
  article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02364A
– volume: 101
  start-page: 272
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib159
  article-title: Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.007
– volume: 12
  start-page: 468
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib107
  article-title: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.007
– volume: 84
  start-page: 399
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib20
  article-title: Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.001
– volume: 9
  start-page: 3023
  issue: 21
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib133
  article-title: Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600943
– volume: 11
  start-page: 746
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib84
  article-title: Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.062
– volume: 11
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib3
  article-title: Li-O2 and Li-S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 8
  start-page: 9295
  issue: 9
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib35
  article-title: A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries
  publication-title: ACS Nano
  doi: 10.1021/nn503220h
– volume: 21
  start-page: 4724
  issue: 19
  year: 2009
  ident: 10.1016/j.carbon.2018.09.067_bib31
  article-title: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery
  publication-title: Chem. Mater.
  doi: 10.1021/cm902050j
– volume: 51
  start-page: 13682
  issue: 71
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib78
  article-title: Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04103A
– volume: 8
  start-page: 77
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib46
  article-title: Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.05.001
– volume: 25
  start-page: 1058
  issue: 7
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib63
  article-title: Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204003
– volume: 29
  issue: 40
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib116
  article-title: Integration of Graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703324
– volume: 50
  start-page: 4184
  issue: 32
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib143
  article-title: A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc00850b
– volume: 168
  start-page: 271
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib144
  article-title: Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.04.055
– volume: 9
  start-page: 10717
  issue: 12
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib18
  article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes, ACS
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00672
– volume: 5
  start-page: 19892
  issue: 37
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib146
  article-title: Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05192A
– volume: 13
  start-page: 119
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib108
  article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.01.007
– volume: 50
  start-page: 5904
  issue: 26
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib19
  article-title: Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201100637
– volume: 9
  start-page: 8504
  issue: 8
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib36
  article-title: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03488
– volume: 30
  start-page: 138
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib37
  article-title: Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.044
– volume: 24
  start-page: 4144
  issue: 30
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib86
  article-title: A leavening strategy to prepare reduced graphene oxide foams
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200197
– volume: 14
  issue: 23
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib89
  article-title: An All-freeze-casting strategy to design typographical supercapacitors with integrated architectures
  publication-title: Small
  doi: 10.1002/smll.201800280
– volume: 353
  start-page: 298
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib118
  article-title: Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.063
– volume: 309
  start-page: 76
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib184
  article-title: Reconfiguration of lithium sulphur batteries: “Enhancement of Li-S cell performance by employing a highly porous conductive separator coating”
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.077
– volume: 11
  start-page: 626
  issue: 7
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib170
  article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.32
– volume: 28
  start-page: 9539
  issue: 43
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib28
  article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602913
– volume: 81
  start-page: 782
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib30
  article-title: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.10.024
– volume: 6
  start-page: 7760
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib120
  article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8760
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.carbon.2018.09.067_bib91
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 46
  start-page: 5237
  issue: 17
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib6
  article-title: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00139H
– volume: 52
  start-page: 6930
  issue: 27
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib9
  article-title: Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301250
– volume: 6
  start-page: 1502459
  issue: 7
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib41
  article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502459
– volume: 13
  start-page: 2485
  issue: 6
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib129
  article-title: Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers
  publication-title: Nano Lett.
  doi: 10.1021/nl400543y
– volume: 303
  start-page: 22
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib160
  article-title: Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.10.097
– volume: 18
  start-page: 475
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib44
  article-title: Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04425
– volume: 134
  start-page: 18510
  issue: 45
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib71
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 27
  issue: 4
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib13
  article-title: Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604815
– volume: 283
  start-page: 524
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib136
  article-title: A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.085
– volume: 33
  start-page: 402
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib25
  article-title: Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.060
– volume: 27
  issue: 37
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib128
  article-title: A flexible 3D multifunctional MgO-decorated carbon foam@CNT hybrid as self-supported cathode for high-performance lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702573
– volume: 3
  start-page: 7139
  issue: 13
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib151
  article-title: Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA07133F
– volume: 48
  start-page: 4106
  issue: 34
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib99
  article-title: High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17912a
– volume: 45
  start-page: 4340
  issue: 15
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib154
  article-title: Unconventional supercapacitors from nanocarbon based electrode materials to device configurations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00041J
– volume: 4
  start-page: 17381
  issue: 44
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib119
  article-title: A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05878G
– volume: 10
  start-page: 5594
  issue: 6
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib52
  article-title: Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18894
– volume: 5
  start-page: 3015
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib171
  article-title: Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4015
– volume: 11
  start-page: 1345
  issue: 3
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib178
  article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1749-2
– volume: 5
  start-page: 632
  issue: 2
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib75
  article-title: Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07620C
– volume: 3
  start-page: 1008
  issue: 8
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib110
  article-title: Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201201080
– volume: 7
  start-page: 3381
  issue: 10
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib135
  article-title: Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01377H
– volume: 9
  start-page: 3735
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib148
  article-title: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1244-1
– volume: 133
  start-page: 18522
  issue: 46
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib112
  article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206955k
– volume: 42
  start-page: 187
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib59
  article-title: Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.056
– volume: 10
  start-page: 2544
  issue: 12
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib77
  article-title: Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01898C
– volume: 5
  start-page: 975
  issue: 3
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib123
  article-title: Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08557A
– volume: 9
  start-page: 10717
  issue: 12
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib39
  article-title: Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00672
– volume: 15
  start-page: 721
  issue: 1
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib47
  article-title: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl504263m
– volume: 54
  start-page: 4325
  issue: 14
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib56
  article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411109
– volume: 28
  start-page: 9629
  issue: 43
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib177
  article-title: A flexible nanostructured paper of a reduced graphene oxide sulfur composite for high performance lithium sulfur batteries with unconventional configurations
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602262
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib161
  article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500268
– volume: 6
  issue: 18
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib22
  article-title: Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600802
– volume: 1
  start-page: 127
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib132
  article-title: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.09.008
– volume: 1
  start-page: 287
  issue: 2
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib167
  article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.07.009
– volume: 9
  start-page: 3002
  issue: 3
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib153
  article-title: Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/nn507178a
– volume: 28
  issue: 18
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib49
  article-title: Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705264
– volume: 2
  start-page: 17090
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib12
  article-title: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.90
– volume: 11
  start-page: 4877
  issue: 5
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib66
  article-title: Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01437
– volume: 26
  start-page: 8418
  issue: 46
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib138
  article-title: Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604069
– volume: 10
  start-page: 10462
  issue: 11
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib48
  article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06369
– volume: 7
  start-page: 56
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib155
  article-title: Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.12.004
– volume: 22
  start-page: 617
  issue: 5
  year: 2010
  ident: 10.1016/j.carbon.2018.09.067_bib64
  article-title: Carbon nanotube sponges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902986
– volume: 2
  start-page: 2696
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib164
  article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00886
– volume: 114
  start-page: 840
  issue: 5
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib10
  article-title: Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries
  publication-title: P. Natl. Acad. Sci.the USA
  doi: 10.1073/pnas.1615837114
– volume: 12
  start-page: 174
  issue: 2
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib147
  article-title: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators
  publication-title: Small
  doi: 10.1002/smll.201502505
– volume: 114
  start-page: 11751
  issue: 23
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib2
  article-title: Rechargeable lithium-sulfur batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500062v
– volume: 26
  start-page: 625
  issue: 4
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib157
  article-title: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302877
– volume: 28
  start-page: 3374
  issue: 17
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib42
  article-title: 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506014
– volume: 7
  issue: 8
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib183
  article-title: Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602014
– volume: 451
  start-page: 652
  issue: 7179
  year: 2008
  ident: 10.1016/j.carbon.2018.09.067_bib5
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 22
  start-page: 5209
  issue: 24
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib62
  article-title: High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201532
– volume: 113
  start-page: 371
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib67
  article-title: Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.019
– volume: 26
  start-page: 5113
  issue: 30
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib82
  article-title: Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401191
– volume: 12
  start-page: 381
  issue: 3
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib152
  article-title: Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.201503133
– volume: 54
  start-page: 10539
  issue: 36
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib33
  article-title: An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201504514
– volume: 5
  issue: 5
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib92
  article-title: Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 5018
  issue: 14
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib111
  article-title: High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14921H
– volume: 29
  issue: 29
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib163
  article-title: Reviving lithium-metal anodes for next-generation high-energy batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700007
– volume: 75
  start-page: 161
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib79
  article-title: Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.03.049
– volume: 27
  start-page: 641
  issue: 4
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib14
  article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404210
– volume: 246
  start-page: 507
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib175
  article-title: Towards flexible lithium-sulfur battery from natural cotton textile
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.069
– volume: 12
  start-page: 226
  issue: 1
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib17
  article-title: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05869
– volume: 9
  start-page: 28612
  issue: 34
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib60
  article-title: A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08833
– volume: 19
  start-page: 84
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib11
  article-title: Carbon nanomaterials for advanced lithium sulfur batteries
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.02.006
– volume: 121
  start-page: 330
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib73
  article-title: ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.06.017
– volume: 9
  start-page: 3221
  issue: 10
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib162
  article-title: Transition of lithium growth mechanisms in liquid electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01674J
– volume: 5
  start-page: 2208
  issue: 6
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib27
  article-title: High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4000535
– volume: 26
  start-page: 6100
  issue: 35
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib130
  article-title: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401243
– volume: 25
  start-page: 5285
  issue: 33
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib139
  article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502251
– volume: 10
  start-page: 1300
  issue: 1
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib65
  article-title: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06675
– volume: 3
  start-page: 1166
  year: 2012
  ident: 10.1016/j.carbon.2018.09.067_bib141
  article-title: Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2163
– volume: 343
  start-page: 54
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib74
  article-title: Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.049
– volume: 5
  start-page: 1978
  issue: 11
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib149
  article-title: High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5006913
– volume: 5
  start-page: 15096
  issue: 29
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib156
  article-title: A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03301J
– volume: 256
  start-page: 361
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib117
  article-title: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.093
– volume: 8
  start-page: 14628
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib15
  article-title: Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14628
– volume: 55
  start-page: 3992
  issue: 12
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib140
  article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511673
– volume: 24
  start-page: 1243
  issue: 9
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib57
  article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302631
– volume: 222
  start-page: 1861
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib100
  article-title: A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.179
– volume: 6
  issue: 5
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib121
  article-title: Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501733
– volume: 350
  start-page: 1508
  issue: 6267
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib55
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.aab3798
– volume: 26
  start-page: 4855
  issue: 28
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib105
  article-title: Nanostructured graphene composite papers for highly flexible and foldable supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401513
– volume: 26
  issue: 48
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib126
  article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 4312
  issue: 27
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib24
  article-title: Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500983
– volume: 8
  start-page: 5208
  issue: 5
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib127
  article-title: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/nn501284q
– volume: 11
  start-page: 4462
  issue: 10
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib32
  article-title: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl2027684
– volume: 9
  start-page: 618
  issue: 8
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib169
  article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.152
– volume: 131
  start-page: 175
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib76
  article-title: Towards highly stable lithium sulfur batteries: surface functionalization of carbon nanotube scaffolds
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.100
– volume: 123
  start-page: 744
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib168
  article-title: Carbon enables the practical use of lithium metal in a battery
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.027
– volume: 11
  start-page: 4288
  issue: 10
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib72
  article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl202297p
– volume: 196
  start-page: 7030
  issue: 16
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib85
  article-title: Sulfur-graphene composite for rechargeable lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.09.106
– volume: 301
  start-page: 312
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib16
  article-title: Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.10.002
– volume: 11
  start-page: 356
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib101
  article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.025
– volume: 139
  start-page: 5916
  issue: 16
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib166
  article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01763
– volume: 28
  start-page: 491
  issue: 3
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib181
  article-title: A cable-shaped lithium sulfur battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504241
– volume: 9
  start-page: 6373
  issue: 6
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib172
  article-title: Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01990
– volume: 11
  start-page: 1345
  issue: 3
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib98
  article-title: Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium sulfur batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1749-2
– volume: 15
  start-page: 5443
  issue: 8
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib104
  article-title: Rational design of cathode structure for high rate performance lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01837
– volume: 5
  start-page: 13674
  issue: 26
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib125
  article-title: A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01291H
– volume: 111
  start-page: 493
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib173
  article-title: Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.035
– volume: 2
  start-page: 325
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib7
  article-title: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1293
– volume: 25
  start-page: 4035
  issue: 29
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib90
  article-title: All-solid-state flexible ultrathin micro-supercapacitors based on graphene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301332
– volume: 13
  start-page: 1379
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib165
  article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800326
– volume: 24
  start-page: 6105
  issue: 39
  year: 2014
  ident: 10.1016/j.carbon.2018.09.067_bib69
  article-title: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401501
– volume: 3
  start-page: 1531
  issue: 10
  year: 2010
  ident: 10.1016/j.carbon.2018.09.067_bib23
  article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c002639e
– volume: 4
  start-page: 1440
  issue: 4
  year: 2011
  ident: 10.1016/j.carbon.2018.09.067_bib61
  article-title: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00261e
– volume: 45
  start-page: 5605
  issue: 20
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib1
  article-title: Designing high-energy lithium-sulfur batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00410A
– volume: 1
  start-page: 9173
  issue: 32
  year: 2013
  ident: 10.1016/j.carbon.2018.09.067_bib115
  article-title: Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11255a
– volume: 28
  issue: 18
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib88
  article-title: Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707247
– volume: 9
  start-page: 4646
  issue: 14
  year: 2017
  ident: 10.1016/j.carbon.2018.09.067_bib97
  article-title: Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries
  publication-title: Nanoscale
  doi: 10.1039/C7NR00999B
– volume: 16
  start-page: 5488
  issue: 9
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib113
  article-title: Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01981
– volume: 2
  issue: 8
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib103
  article-title: Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500071
– volume: 5
  issue: 9
  year: 2015
  ident: 10.1016/j.carbon.2018.09.067_bib122
  article-title: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402263
– volume: 10
  start-page: 8749
  issue: 10
  year: 2018
  ident: 10.1016/j.carbon.2018.09.067_bib83
  article-title: Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00190
– volume: 16
  start-page: 864
  issue: 2
  year: 2016
  ident: 10.1016/j.carbon.2018.09.067_bib109
  article-title: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03217
SSID ssj0004814
Score 2.666997
SecondaryResourceType review_article
Snippet Lithium-sulfur (Li-S) batteries are attracting much attention due to their high energy densities. However, Li-S batteries often suffer from low Coulombic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 400
SubjectTerms Activated carbon
Anodes
Anodic protection
Batteries
Carbon
Carbon nanotubes
Conductivity
Design modifications
electrical conductivity
Electrical resistivity
Electricity
electrochemistry
Graphene
lithium
Lithium sulfur batteries
Nanostructure
Nanostructured materials
Rechargeable batteries
Separators
sulfur
surface area
Surface stability
Title Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries
URI https://dx.doi.org/10.1016/j.carbon.2018.09.067
https://www.proquest.com/docview/2159933465
https://www.proquest.com/docview/2176347595
Volume 141
WOSCitedRecordID wos000450312600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004814
  issn: 0008-6223
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhwQXxE9RGJORuE1GjmPHybGqhtgOE4chysmyE1dL1aWjXaZJ_PM8x7HXboJtBy5R5TqWk_flvWf7ve8h9Ck1OuWGlkRaPiNcJ5bkoIqJtUzrsoR1kKFdsQl5fJxPp8W3weB3yIW5XMimya-uivP_KmpoA2G71NkHiDsOCg3wG4QOVxA7XO8l-HE81dfN0tPDti7IvNQrs2yIM1vVPvipfi5dmCFoPUeYZLs0KvDLT-v2jKzbxaxd7ZuOgDOEGkZOAzfWdiWfuKMQ96BhnbuoI_h-9K0_63kwl915SNudj5zWvwCosXkSk0aazX0JlwoV9yWCrs1Jxnw2cdS1nuWq15ac0g3Dy33S5S2d7rcX5p_9a3LReHlHTevLeGxTaN8wbTHgMMSyzZUfRblRFC0UjPII7TApinyIdsaHB9Oj67Ta3FPDhwcJmZddeODt2fzNs7lh4zvH5eQ5etavOPDYI-UFGtjmJXoyCYX-XqFpQAzeRgzeRAyOiMGAGLyJGLyNGBwR8xp9_3JwMvlK-oIbpOSSXRCbWHAYcwNrBvD0hUnZLDNGFybjVLOKSVrxCrpmia2ElqxKNa3ETCSaVzQ1NH2Dhs2ysW8RNsJUOqEGPCTGdSaMsBZWuo5dznCp-Qil4WWpsmejd0VRFupfohohEu8692wsd_SXQQ6q9yi9p6gAXHfcuRvEpvqPe63APQZ3PuWZGKGP8W-Qljtk041dtq4PWGxHoinePXCy79HT6-9oFw1B3PYDelxeXtTr1V4Pzj_rP7IB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+nanostructured+carbon-based+materials+for+rechargeable+lithium-sulfur+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=Zhang%2C+Linlin&rft.au=Wang%2C+Yijing&rft.au=Niu%2C+Zhiqiang&rft.au=Chen%2C+Jun&rft.date=2019-01-01&rft.issn=0008-6223&rft.volume=141&rft.spage=400&rft.epage=416&rft_id=info:doi/10.1016%2Fj.carbon.2018.09.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbon_2018_09_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon