pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simp...
Saved in:
| Published in: | Journal of applied phycology Vol. 26; no. 3; pp. 1431 - 1437 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer-Verlag
01.06.2014
Springer Netherlands Springer Nature B.V |
| Subjects: | |
| ISSN: | 0921-8971, 1573-5176 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂ addition. Here, we uncouple the effects of pH and CO₂ input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶ cells mL⁻¹ for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶ cells mL⁻¹ for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴ organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴ organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴ organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴ organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂ addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. |
|---|---|
| AbstractList | Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO sub(2) addition. Here, we uncouple the effects of pH and CO sub(2) input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 plus or minus 0.008 and 0.19 plus or minus 0.011, respectively; mean plus or minus SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 10 super(6) plus or minus 9 10 super(6) cells mL super(-1) for pH 8 and 92.8 10 super(6) plus or minus 24 10 super(6) cells mL super(-1) for pH 9). Lipid accumulation of unbuffered controls were 21.8 plus or minus 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 plus or minus 39.6 10 super(4) organisms mL super(-1)) than higher pH treatments (0.1-6.8 10 super(4) organisms mL super(-1)). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 plus or minus 5.1 10 super(4) organisms mL super(-1)) than any of the pH treatments (3.6-4.7 10 super(4) organisms mL super(-1)). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO sub(2) addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂ addition. Here, we uncouple the effects of pH and CO₂ input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶ cells mL⁻¹ for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶ cells mL⁻¹ for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴ organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴ organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴ organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴ organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂ addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19±0.008 and 0.19±0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6×10^sup 6^±9×10^sup 6^ cells mL^sup -1^ for pH 8 and 92.8×10^sup 6^±24×10^sup 6^ cells mL^sup -1^ for pH 9). Lipid accumulation of unbuffered controls were 21.8±5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9±39.6×10^sup 4^ organisms mL^sup -1^) than higher pH treatments (0.1-6.8×10^sup 4^ organisms mL^sup -1^). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7±5.1×10^sup 4^ organisms mL^sup -1^) than any of the pH treatments (3.6-4.7×10^sup 4^ organisms mL^sup -1^). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO 2 addition. Here, we uncouple the effects of pH and CO 2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10 6 ± 9 × 10 6 cells mL −1 for pH 8 and 92.8 × 10 6 ± 24 × 10 6 cells mL −1 for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10 4 organisms mL −1 ) than higher pH treatments (0.1–6.8 × 10 4 organisms mL −1 ). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10 4 organisms mL −1 ) than any of the pH treatments (3.6–4.7 × 10 4 organisms mL −1 ). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO 2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂addition. Here, we uncouple the effects of pH and CO₂input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶cells mL⁻¹for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶cells mL⁻¹for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH. |
| Author | Holguin, F. Omar Schaub, Tanner Bartley, Meridith L Dungan, Barry N Boeing, Wiebke J |
| Author_xml | – sequence: 1 fullname: Bartley, Meridith L – sequence: 2 fullname: Boeing, Wiebke J – sequence: 3 fullname: Dungan, Barry N – sequence: 4 fullname: Holguin, F. Omar – sequence: 5 fullname: Schaub, Tanner |
| BookMark | eNqFkcFuFSEUhompibfVB3AliRs3UznADDNL06g1aXRhXZNzGZhLw8AVZjR9e7kdF6aLSkJY8H1_4Pzn5CymaAl5DewSGFPvC7AeoGEg6laq4c_IDlolmhZUd0Z2bODQ9IOCF-S8lDvG2NBDvyPleE2tc9YshaZIp5x-LweKcaTBH_1I0Zh1XgMuvt4mR5eDpXuf3GoDnb3JCcOEln7FGJM5hJTTsfhCCwYf8SHHx184-jjRlCeMvszlJXnuMBT76u95QW4_fby9um5uvn3-cvXhpjFS8aUxnRuZQtMqHEbeuUEIYXsrHEg-MqkAlHBoB6uM7FxnDBtHZG7PFAe-Z-KCvNtijzn9XG1Z9OyLsSFgtGktGoa6eNu17f_RVsheSsGHir59hN6lNcf6Dw01SkkJ_BSoNqpOqJRsnTZ-eRjiktEHDUyfatNbbbrWpk-1aV5NeGQes58x3z_p8M0plY2Tzf-86QnpzSY5TBqn7Iv-8Z0zkIxVg7dS_AEiobXN |
| CitedBy_id | crossref_primary_10_1007_s11356_017_8875_y crossref_primary_10_1177_11786302231188270 crossref_primary_10_3390_en17205218 crossref_primary_10_1007_s12649_018_0325_7 crossref_primary_10_1016_j_watres_2019_115076 crossref_primary_10_1007_s10811_020_02177_2 crossref_primary_10_1016_j_biteb_2023_101746 crossref_primary_10_1038_s41598_019_46551_8 crossref_primary_10_1016_j_jwpe_2020_101165 crossref_primary_10_1016_j_rser_2018_07_050 crossref_primary_10_3389_fbioe_2020_00453 crossref_primary_10_1080_07388551_2023_2233692 crossref_primary_10_1007_s10811_017_1191_6 crossref_primary_10_1007_s11027_025_10249_2 crossref_primary_10_1016_j_rser_2016_12_120 crossref_primary_10_1016_j_algal_2024_103629 crossref_primary_10_1016_j_cej_2020_127390 crossref_primary_10_1016_j_watres_2021_117038 crossref_primary_10_1002_cjce_22407 crossref_primary_10_1007_s10811_018_1688_7 crossref_primary_10_1186_s40643_016_0136_2 crossref_primary_10_1016_j_rser_2018_04_086 crossref_primary_10_1016_j_copbio_2017_11_017 crossref_primary_10_1016_j_jece_2025_116094 crossref_primary_10_1080_10408398_2025_2475240 crossref_primary_10_1016_j_biortech_2016_11_025 crossref_primary_10_3390_molecules25122834 crossref_primary_10_1007_s00449_021_02531_9 crossref_primary_10_1016_j_algal_2018_02_012 crossref_primary_10_1016_j_biteb_2018_08_001 crossref_primary_10_1111_wej_12646 crossref_primary_10_1016_j_algal_2021_102379 crossref_primary_10_1016_j_pecs_2023_101071 crossref_primary_10_1016_j_algal_2023_103332 crossref_primary_10_1007_s40071_015_0107_9 crossref_primary_10_1016_j_algal_2018_03_001 crossref_primary_10_1016_j_aquaculture_2019_734648 crossref_primary_10_1016_j_rser_2021_111904 crossref_primary_10_1016_j_algal_2017_11_004 crossref_primary_10_1016_j_chemosphere_2023_139699 crossref_primary_10_3390_pr12071303 crossref_primary_10_1002_adts_202000281 crossref_primary_10_1016_j_biortech_2015_02_048 crossref_primary_10_1016_j_biteb_2022_101321 crossref_primary_10_1007_s00449_020_02293_w crossref_primary_10_1016_j_biteb_2022_101286 crossref_primary_10_1016_j_biortech_2015_07_101 crossref_primary_10_1111_pre_12160 crossref_primary_10_1016_j_biortech_2015_11_042 crossref_primary_10_1016_j_seppur_2024_127153 crossref_primary_10_3390_life15091427 crossref_primary_10_3390_su151813678 crossref_primary_10_1016_j_biortech_2014_10_008 crossref_primary_10_1016_j_biteb_2019_100333 crossref_primary_10_1016_j_jcou_2017_01_025 crossref_primary_10_1007_s11802_020_4302_y crossref_primary_10_1016_j_jclepro_2018_06_303 crossref_primary_10_3389_fbioe_2021_774143 crossref_primary_10_1016_j_desal_2024_117424 crossref_primary_10_1016_j_cej_2020_128138 crossref_primary_10_1080_09593330_2019_1604816 crossref_primary_10_1016_j_rser_2018_08_027 crossref_primary_10_1007_s10811_016_0931_3 crossref_primary_10_1016_j_biortech_2021_124870 crossref_primary_10_1016_j_scitotenv_2017_10_127 crossref_primary_10_1016_j_scitotenv_2024_177012 crossref_primary_10_1007_s10811_017_1331_z crossref_primary_10_1007_s12010_017_2620_3 crossref_primary_10_1016_j_anifeedsci_2020_114761 crossref_primary_10_1016_j_renene_2025_123961 crossref_primary_10_1088_1755_1315_963_1_012034 crossref_primary_10_1016_j_biortech_2017_07_096 crossref_primary_10_4014_jmb_2011_11004 crossref_primary_10_1016_j_biombioe_2014_04_005 crossref_primary_10_1007_s00449_020_02373_x crossref_primary_10_1007_s42535_021_00186_1 crossref_primary_10_1007_s41208_020_00218_8 crossref_primary_10_1016_j_renene_2017_04_001 crossref_primary_10_32604_biocell_2024_050540 crossref_primary_10_1007_s12562_018_1201_x crossref_primary_10_1016_j_envres_2024_118397 crossref_primary_10_1016_j_algal_2025_104079 crossref_primary_10_1016_j_rsma_2023_103291 crossref_primary_10_1007_s11356_025_35958_8 crossref_primary_10_1007_s11356_019_06287_4 crossref_primary_10_1016_j_biortech_2022_127387 crossref_primary_10_1038_srep32860 crossref_primary_10_1016_j_fuel_2022_123192 crossref_primary_10_3390_en16031316 crossref_primary_10_1088_1755_1315_963_1_012015 crossref_primary_10_1186_s13068_018_1225_6 crossref_primary_10_1039_D2SE00574C crossref_primary_10_1016_j_seta_2022_102749 crossref_primary_10_1016_j_scitotenv_2019_135303 crossref_primary_10_3390_en12010130 crossref_primary_10_1016_j_algal_2016_11_021 crossref_primary_10_1088_1757_899X_543_1_012054 crossref_primary_10_1016_j_jtice_2017_02_017 crossref_primary_10_1007_s10811_015_0567_8 crossref_primary_10_1007_s13399_024_06121_z crossref_primary_10_1002_ep_13378 crossref_primary_10_1007_s10499_020_00522_3 crossref_primary_10_1016_j_rser_2021_111396 crossref_primary_10_1016_j_biombioe_2021_106108 crossref_primary_10_1016_j_bcab_2024_103373 crossref_primary_10_1080_17597269_2018_1448634 crossref_primary_10_1002_btpr_2891 crossref_primary_10_1002_ejlt_201700152 crossref_primary_10_1016_j_algal_2016_05_018 crossref_primary_10_3390_pr11071892 crossref_primary_10_1016_j_algal_2024_103405 crossref_primary_10_1007_s10811_017_1150_2 crossref_primary_10_1016_j_algal_2023_103126 crossref_primary_10_1007_s10811_019_1737_x crossref_primary_10_1007_s00253_022_11815_3 crossref_primary_10_1080_09593330_2024_2428445 crossref_primary_10_1016_j_chemosphere_2023_138236 crossref_primary_10_1007_s00248_022_02091_9 crossref_primary_10_1016_j_envres_2022_114978 crossref_primary_10_1016_j_fuel_2020_119058 crossref_primary_10_1007_s11356_023_25728_9 crossref_primary_10_1007_s10668_021_01910_2 crossref_primary_10_3390_life12030371 crossref_primary_10_3390_pr9101769 crossref_primary_10_1007_s11356_021_16719_9 crossref_primary_10_1016_j_algal_2023_103113 crossref_primary_10_1007_s13369_024_09601_6 crossref_primary_10_1016_j_scitotenv_2023_164516 crossref_primary_10_1080_10826068_2021_1941102 crossref_primary_10_1016_j_algal_2016_05_007 crossref_primary_10_1007_s10811_020_02311_0 crossref_primary_10_3389_fmars_2018_00382 crossref_primary_10_1080_09593330_2016_1158867 crossref_primary_10_1016_j_biteb_2021_100917 crossref_primary_10_1007_s10811_024_03375_y crossref_primary_10_1016_j_tibtech_2021_06_005 crossref_primary_10_1038_s41598_018_37611_6 crossref_primary_10_1089_ees_2017_0521 |
| Cites_doi | 10.1016/0144-8609(94)00010-X 10.1007/978-3-662-10863-5_12 10.1007/BF02179776 10.1016/j.biombioe.2011.02.021 10.1016/j.chemosphere.2013.04.023 10.1093/plankt/16.4.375 10.1016/j.biotechadv.2007.02.001 10.1002/clen.201100402 10.1111/j.1529-8817.2009.00734.x 10.1002/bit.22033 10.1023/A:1023830707022 10.1002/jctb.1529 10.1007/s10811-012-9846-9 10.1139/m62-029 10.1016/j.jclepro.2013.04.005 10.1023/A:1003725626504 10.1016/j.biombioe.2012.01.046 10.1007/s00253-008-1518-y 10.4319/lo.2006.51.4.1708 10.1007/s10811-012-9873-6 10.3354/meps110293 10.1016/j.renene.2011.02.002 10.1016/j.biombioe.2013.03.026 10.3390/en5030731 10.1016/j.tibtech.2011.06.006 10.1016/0144-4565(87)90006-0 10.1016/j.rser.2009.07.020 10.1021/jf0010376 10.1016/S1389-0344(03)00061-3 10.1146/annurev.arplant.56.032604.144052 10.1016/0044-8486(93)90328-V 10.1023/A:1008165606234 10.1128/EC.00272-09 10.1111/jpy.12071 10.1016/j.biombioe.2012.08.011 10.1093/jxb/erm112 10.1111/j.0022-3646.1990.00393.x 10.2166/wst.2012.024 10.1007/s00253-011-3174-x 10.1007/978-1-4899-7180-7 10.1016/S0168-1656(00)00353-9 10.1016/j.rser.2009.10.009 10.1007/s10811-008-9392-7 10.1007/BF02186231 10.1039/c2gc16195h 10.1016/S0044-8486(00)00533-0 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2013 Springer Science+Business Media Dordrecht 2014 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2013 – notice: Springer Science+Business Media Dordrecht 2014 |
| DBID | FBQ AAYXX CITATION 3V. 7TN 7X2 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M0K M7N M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS H98 7S9 L.6 |
| DOI | 10.1007/s10811-013-0177-2 |
| DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Oceanic Abstracts ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Agricultural Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology Botany Ecology |
| EISSN | 1573-5176 |
| EndPage | 1437 |
| ExternalDocumentID | 3594407921 10_1007_s10811_013_0177_2 US201400100254 |
| Genre | Feature |
| GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OL 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT XOL YLTOR YQT Z45 Z5O Z7U Z7V Z7W Z7Y Z7Z Z81 Z83 Z86 Z8O Z8P Z8Q Z8S Z8T Z8U Z8W ZMTXR ZOVNA ~A9 ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACUHS ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 3V. 7TN 8FK AZQEC DWQXO F1W GNUQQ H95 L.G M7N PKEHL PQEST PQQKQ PQUKI PRINS H98 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c472t-c6fd07ac57a9d26f9333e8e3f142d0471173fae9e7c46f6cc0dda0fb07212b03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 154 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336371400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-8971 |
| IngestDate | Thu Sep 04 15:09:34 EDT 2025 Sun Nov 09 10:32:59 EST 2025 Tue Nov 04 16:24:42 EST 2025 Sat Nov 29 06:37:22 EST 2025 Tue Nov 18 22:37:46 EST 2025 Fri Feb 21 02:40:05 EST 2025 Wed Dec 27 19:03:38 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Oil accumulation pH FAME analysis Algae biodiesel Invaders |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-c6fd07ac57a9d26f9333e8e3f142d0471173fae9e7c46f6cc0dda0fb07212b03 |
| Notes | http://dx.doi.org/10.1007/s10811-013-0177-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1655744125 |
| PQPubID | 2034534 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1999925655 proquest_miscellaneous_1534844329 proquest_journals_1655744125 crossref_citationtrail_10_1007_s10811_013_0177_2 crossref_primary_10_1007_s10811_013_0177_2 springer_journals_10_1007_s10811_013_0177_2 fao_agris_US201400100254 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Journal of applied phycology |
| PublicationTitleAbbrev | J Appl Phycol |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Netherlands – name: Springer Nature B.V |
| References | Rocha, Garcia, Henriques (CR38) 2003; 20 Stoecker, Gifford, Putt (CR44) 1994; 110 Price, Badger, Woodger, Long (CR33) 2008; 59 Arudchelvam, Nirmalakhandan (CR2) 2012; 46 Moheimani, Borowitzka (CR31) 2011; 90 Richmond, Lichtenberg, Stahl, Vonshak (CR37) 1990; 2 Yamasaki, Hirata (CR51) 1995; 14 Maberly, Ball, Raven, Sultemeyer (CR26) 2009; 45 James, Janardhanam, Hanson (CR23) 2013; 49 Cheng-Wu, Zmora, Kopel, Richmond (CR10) 2001; 195 SevrinReyssac, Blier, Dumas, Ouelette (CR41) 1996; 35 Karl, Melino, Peterson (CR24) 2009 Patil, Reddy, Muppaneni, Mannarswamy, Holguin, Schaub, Nirmalakhandan, Cooke, Deng (CR32) 2012; 14 Giordano, Beardall, Raven (CR18) 2005; 56 Leakey, Burkill, Sleigh (CR25) 1994; 16 Van Wagenen, Miller, Hobbs, Hook, Crowe, Huesemann (CR47) 2012; 5 CR7 Rodolfi, Chini Zittelli, Bassi, Padovani, Biondi, Bonini, Tredici (CR39) 2008; 102 Guillard, Ryther (CR20) 1962; 8 Chini Zittelli, Rodolfi, Tredici (CR13) 2003; 15 Huang, Huang, Wen, Yan (CR22) 2013; 25 Rebolloso-Fuentes, Navarro-Perez, Garćia-Camacho, Ramos-Miras, Guil-Guerrero (CR34) 2001; 49 Spolaore, Joannis-Cassan, Duran, Isambert (CR43) 2006; 81 Tufvesson, Lantz, Borjesson (CR46) 2013; 53 Chini Zittelli, Pastorelli, Tredici (CR12) 2000; 12 Weisse, Stadler (CR50) 2006; 51 Franchino, Comino, Bona, Riggio (CR17) 2013; 92 Borowitzka, Wong, Tam (CR5) 1998 Wang, Ullrich, Joo, Waffenschmidt, Goodenough (CR49) 2009; 8 Sukenik, Zmora, Carmeli (CR45) 1993; 117 Boussiba, Vonshak, Cohen, Avissar, Richmond (CR6) 1987; 12 Roessler (CR40) 1990; 26 Griffiths, Harrison (CR19) 2009; 21 Moheimani (CR30) 2013; 25 Das, Aziz, Obbard (CR15) 2011; 36 Hsu (CR21) 1996 Mata, Martins, Caetano (CR27) 2010; 14 Richmond, Cheng-Wu (CR36) 2001; 85 Brown, Garland, Jeffrey, Jameson, Leroi (CR9) 1993; 5 Sigala, Unc (CR42) 2012; 65 Becker (CR4) 1994 Doan, Sivaloganathan, Obbard (CR16) 2011; 35 Moazami, Ashori, Ranjbar, Tangestani, Eghtesadi, Nejad (CR29) 2012; 39 Bartley, Boeing, Corcoran, Holguin, Schaub (CR3) 2013; 54 Chi, O’Fallon, Chen (CR11) 2011; 29 Brennan, Owende (CR8) 2010; 14 Wang, Li, Wu, Lan (CR48) 2008; 79 Chisti (CR14) 2007; 25 Menke, Sennhenn, Sachse, Majewski, Huchzermeyer, Rath (CR28) 2012; 40 Abu-Rezq, Al-Musallam, Al-Shimmari, Dias (CR1) 1999; 403 Richmond, Becker, Richmond (CR35) 1986 J SevrinReyssac (177_CR41) 1996; 35 PG Roessler (177_CR40) 1990; 26 M Franchino (177_CR17) 2013; 92 NR Moheimani (177_CR30) 2013; 25 DK Stoecker (177_CR44) 1994; 110 S Boussiba (177_CR6) 1987; 12 ZT Wang (177_CR49) 2009; 8 EW Becker (177_CR4) 1994 G Chini Zittelli (177_CR13) 2003; 15 T Weisse (177_CR50) 2006; 51 A Richmond (177_CR36) 2001; 85 TTY Doan (177_CR16) 2011; 35 RJG Leakey (177_CR25) 1994; 16 177_CR7 TM Mata (177_CR27) 2010; 14 Z Chi (177_CR11) 2011; 29 L Rodolfi (177_CR39) 2008; 102 N Moazami (177_CR29) 2012; 39 NR Moheimani (177_CR31) 2011; 90 B Wang (177_CR48) 2008; 79 LM Tufvesson (177_CR46) 2013; 53 RRL Guillard (177_CR20) 1962; 8 S Yamasaki (177_CR51) 1995; 14 S Menke (177_CR28) 2012; 40 MM Rebolloso-Fuentes (177_CR34) 2001; 49 A Richmond (177_CR35) 1986 L Brennan (177_CR8) 2010; 14 TS Abu-Rezq (177_CR1) 1999; 403 MJ Griffiths (177_CR19) 2009; 21 J Rocha (177_CR38) 2003; 20 GD Price (177_CR33) 2008; 59 J Sigala (177_CR42) 2012; 65 J Hsu (177_CR21) 1996 SC Maberly (177_CR26) 2009; 45 P Spolaore (177_CR43) 2006; 81 Y Chisti (177_CR14) 2007; 25 Z Cheng-Wu (177_CR10) 2001; 195 M Giordano (177_CR18) 2005; 56 P Das (177_CR15) 2011; 36 SC James (177_CR23) 2013; 49 P Patil (177_CR32) 2012; 14 MA Borowitzka (177_CR5) 1998 A Richmond (177_CR37) 1990; 2 A Sukenik (177_CR45) 1993; 117 XX Huang (177_CR22) 2013; 25 J Wagenen Van (177_CR47) 2012; 5 ML Bartley (177_CR3) 2013; 54 Y Arudchelvam (177_CR2) 2012; 46 TR Karl (177_CR24) 2009 MR Brown (177_CR9) 1993; 5 G Chini Zittelli (177_CR12) 2000; 12 |
| References_xml | – volume: 14 start-page: 357 year: 1995 end-page: 365 ident: CR51 article-title: CO concentration change in sp. culture medium publication-title: Aquacult Eng doi: 10.1016/0144-8609(94)00010-X – start-page: 203 year: 1998 end-page: 218 ident: CR5 article-title: Limits to growth publication-title: Wastewater treatment with algae doi: 10.1007/978-3-662-10863-5_12 – volume: 2 start-page: 195 year: 1990 end-page: 206 ident: CR37 article-title: Quantitative assessment of the major limitations on the productivity of in open raceways publication-title: J Appl Phycol doi: 10.1007/BF02179776 – volume: 35 start-page: 2534 year: 2011 end-page: 2544 ident: CR16 article-title: Screening of marine microalgae for biodiesel feedstock publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.02.021 – volume: 92 start-page: 738 year: 2013 end-page: 744 ident: CR17 article-title: Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.04.023 – volume: 16 start-page: 375 year: 1994 end-page: 389 ident: CR25 article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations publication-title: J Plankton Res doi: 10.1093/plankt/16.4.375 – start-page: 245 year: 1986 end-page: 264 ident: CR35 article-title: Technological aspects of mass cultivation—a general outline publication-title: CRC handbook of microalgal mass culture – volume: 25 start-page: 294 year: 2007 end-page: 306 ident: CR14 article-title: Biodiesel from microalgae publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.02.001 – volume: 40 start-page: 1401 year: 2012 end-page: 1407 ident: CR28 article-title: Screening of microalgae for feasible mass production in industrial hypersaline wastewater using disposable bioreactors publication-title: Clean-Soil Air Water doi: 10.1002/clen.201100402 – volume: 45 start-page: 1052 year: 2009 end-page: 1061 ident: CR26 article-title: Inorganic carbon acquisition by Chrysophytes publication-title: J Phycol doi: 10.1111/j.1529-8817.2009.00734.x – volume: 102 start-page: 100 year: 2008 end-page: 112 ident: CR39 article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor publication-title: Biotechnol Bioeng doi: 10.1002/bit.22033 – volume: 15 start-page: 107 year: 2003 end-page: 114 ident: CR13 article-title: Mass cultivation of sp. in annular reactors publication-title: J Appl Phycol doi: 10.1023/A:1023830707022 – volume: 81 start-page: 1049 year: 2006 end-page: 1056 ident: CR43 article-title: Optimization of growth using the response surface method publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.1529 – volume: 25 start-page: 129 year: 2013 end-page: 137 ident: CR22 article-title: Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae ( , and ) publication-title: J Appl Phycol doi: 10.1007/s10811-012-9846-9 – volume: 8 start-page: 229 year: 1962 end-page: 239 ident: CR20 article-title: Studies of marine planktonic diatoms. I. Hustedt and Cleve publication-title: Can J Microbiol doi: 10.1139/m62-029 – volume: 53 start-page: 214 year: 2013 end-page: 223 ident: CR46 article-title: Environmental performance of biogas produced from industrial residues including competition with animal feed—life-cycle calculations according to different methodologies and standards publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2013.04.005 – volume: 403 start-page: 97 year: 1999 end-page: 107 ident: CR1 article-title: Optimum production conditions for different high-quality marine algae publication-title: Hydrobiologia doi: 10.1023/A:1003725626504 – volume: 39 start-page: 449 year: 2012 end-page: 453 ident: CR29 article-title: Large-scale biodiesel production using microalgae biomass of publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.046 – volume: 79 start-page: 707 year: 2008 end-page: 718 ident: CR48 article-title: CO bio-mitigation using microalgae publication-title: Appl Microbiol Biot doi: 10.1007/s00253-008-1518-y – volume: 51 start-page: 1708 year: 2006 end-page: 1715 ident: CR50 article-title: Effects of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution publication-title: Limnol Oceanogr doi: 10.4319/lo.2006.51.4.1708 – volume: 25 start-page: 387 year: 2013 end-page: 398 ident: CR30 article-title: Inorganic carbon and pH effect on growth and lipid productivity of and sp (Chlorophyta) grown outdoor in bag photobioreactors publication-title: J Appl Phycol doi: 10.1007/s10811-012-9873-6 – volume: 110 start-page: 293 year: 1994 end-page: 299 ident: CR44 article-title: Preservation of marine planktonic ciliates—losses and cell shrinkage during fixation publication-title: Mar Ecol Prog Ser doi: 10.3354/meps110293 – volume: 36 start-page: 2524 year: 2011 end-page: 2528 ident: CR15 article-title: Two phase microalgae growth in the open system for enhanced lipid productivity publication-title: Renew Energ doi: 10.1016/j.renene.2011.02.002 – volume: 54 start-page: 83 year: 2013 end-page: 88 ident: CR3 article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga and invading organisms publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.03.026 – volume: 5 start-page: 731 year: 2012 end-page: 740 ident: CR47 article-title: Effects of light and temperature on fatty acid production in publication-title: Energies doi: 10.3390/en5030731 – volume: 29 start-page: 537 year: 2011 end-page: 541 ident: CR11 article-title: Bicarbonate produced from carbon capture for algae culture publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2011.06.006 – volume: 12 start-page: 37 year: 1987 end-page: 47 ident: CR6 article-title: Lipid and biomass production by the halotolerant microalgae publication-title: Biomass doi: 10.1016/0144-4565(87)90006-0 – volume: 14 start-page: 217 year: 2010 end-page: 232 ident: CR27 article-title: Microalgae for biodiesel production and other applications: a review publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.07.020 – volume: 49 start-page: 2966 year: 2001 end-page: 2972 ident: CR34 article-title: Biomass nutrient profiles of the microalga publication-title: J Agric Food Chem doi: 10.1021/jf0010376 – volume: 20 start-page: 237 year: 2003 end-page: 242 ident: CR38 article-title: Growth aspects of the marine microalga publication-title: Biomol Eng doi: 10.1016/S1389-0344(03)00061-3 – volume: 56 start-page: 99 year: 2005 end-page: 131 ident: CR18 article-title: CO concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.56.032604.144052 – volume: 117 start-page: 313 year: 1993 end-page: 326 ident: CR45 article-title: Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. sp publication-title: Aquaculture doi: 10.1016/0044-8486(93)90328-V – volume: 12 start-page: 521 year: 2000 end-page: 526 ident: CR12 article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of sp. under artificial illumination publication-title: J Appl Phycol doi: 10.1023/A:1008165606234 – year: 1994 ident: CR4 publication-title: Microalgae biotechnology and microbiology – volume: 8 start-page: 1856 year: 2009 end-page: 1868 ident: CR49 article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless publication-title: Eukaryot Cell doi: 10.1128/EC.00272-09 – volume: 49 start-page: 608 year: 2013 end-page: 615 ident: CR23 article-title: Simulating pH effects in an algal-growth hydrodynamics model publication-title: J Phycol doi: 10.1111/jpy.12071 – volume: 46 start-page: 757 year: 2012 end-page: 764 ident: CR2 article-title: Energetic optimization of algal lipid production in bubble columns: part 1: evaluation of gas sparging publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.08.011 – volume: 59 start-page: 1441 year: 2008 end-page: 1461 ident: CR33 article-title: Advances in understanding the cyanobacterial CO -concentrating mechanism (CCM): functional components, C transporters, diversity, genetic regulation and prospects for engineering into plants publication-title: J Exp Bot doi: 10.1093/jxb/erm112 – volume: 26 start-page: 393 year: 1990 end-page: 399 ident: CR40 article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions publication-title: J Phycol doi: 10.1111/j.0022-3646.1990.00393.x – volume: 65 start-page: 1323 year: 2012 end-page: 1331 ident: CR42 article-title: A PCR–DGGE approach to evaluate the impact of wastewater source on the antibiotic resistance diversity in treated wastewater effluent publication-title: Water Sci Technol doi: 10.2166/wst.2012.024 – volume: 90 start-page: 1399 year: 2011 end-page: 1407 ident: CR31 article-title: Increased CO and the effect of pH on growth and calcification of and (Haptophyta) in semicontinuous cultures publication-title: Appl Microbiol Biot doi: 10.1007/s00253-011-3174-x – year: 1996 ident: CR21 publication-title: Multiple comparisons: theory and methods doi: 10.1007/978-1-4899-7180-7 – volume: 85 start-page: 259 year: 2001 end-page: 269 ident: CR36 article-title: Optimization of a flat plate glass reactor for mass production of sp. outdoors publication-title: J Biotechnol doi: 10.1016/S0168-1656(00)00353-9 – volume: 14 start-page: 557 year: 2010 end-page: 577 ident: CR8 article-title: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.009 – volume: 21 start-page: 493 year: 2009 end-page: 507 ident: CR19 article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production publication-title: J Appl Phycol doi: 10.1007/s10811-008-9392-7 – volume: 5 start-page: 285 year: 1993 end-page: 296 ident: CR9 article-title: The gross and amino acid compositions of batch and semi-continuous cultures of sp. (clone T. ISO), and publication-title: J Appl Phycol doi: 10.1007/BF02186231 – volume: 14 start-page: 809 year: 2012 ident: CR32 article-title: Power dissipation in microwave-enhanced in-situ transesterification of algal biomass to biodiesel publication-title: Green Chem doi: 10.1039/c2gc16195h – volume: 195 start-page: 35 year: 2001 end-page: 49 ident: CR10 article-title: An industrial-size flat plate glass reactor for mass production of sp. (Eustigmatophyceae) publication-title: Aquaculture doi: 10.1016/S0044-8486(00)00533-0 – year: 2009 ident: CR24 publication-title: Global climate change impacts in the United States – ident: CR7 – volume: 35 start-page: 41 year: 1996 end-page: 68 ident: CR41 article-title: Intensive microalgae cultures integrated in an experimental lagooning recycling swine manure publication-title: Ann Biol – volume-title: Multiple comparisons: theory and methods year: 1996 ident: 177_CR21 doi: 10.1007/978-1-4899-7180-7 – volume: 56 start-page: 99 year: 2005 ident: 177_CR18 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.56.032604.144052 – volume: 49 start-page: 2966 year: 2001 ident: 177_CR34 publication-title: J Agric Food Chem doi: 10.1021/jf0010376 – volume: 65 start-page: 1323 year: 2012 ident: 177_CR42 publication-title: Water Sci Technol doi: 10.2166/wst.2012.024 – volume: 54 start-page: 83 year: 2013 ident: 177_CR3 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.03.026 – volume: 46 start-page: 757 year: 2012 ident: 177_CR2 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.08.011 – volume-title: Global climate change impacts in the United States year: 2009 ident: 177_CR24 – volume: 25 start-page: 387 year: 2013 ident: 177_CR30 publication-title: J Appl Phycol doi: 10.1007/s10811-012-9873-6 – ident: 177_CR7 – start-page: 203 volume-title: Wastewater treatment with algae year: 1998 ident: 177_CR5 doi: 10.1007/978-3-662-10863-5_12 – volume: 14 start-page: 809 year: 2012 ident: 177_CR32 publication-title: Green Chem doi: 10.1039/c2gc16195h – volume: 40 start-page: 1401 year: 2012 ident: 177_CR28 publication-title: Clean-Soil Air Water doi: 10.1002/clen.201100402 – volume: 49 start-page: 608 year: 2013 ident: 177_CR23 publication-title: J Phycol doi: 10.1111/jpy.12071 – volume: 51 start-page: 1708 year: 2006 ident: 177_CR50 publication-title: Limnol Oceanogr doi: 10.4319/lo.2006.51.4.1708 – volume: 12 start-page: 37 year: 1987 ident: 177_CR6 publication-title: Biomass doi: 10.1016/0144-4565(87)90006-0 – volume: 53 start-page: 214 year: 2013 ident: 177_CR46 publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2013.04.005 – volume: 14 start-page: 217 year: 2010 ident: 177_CR27 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.07.020 – volume: 8 start-page: 229 year: 1962 ident: 177_CR20 publication-title: Can J Microbiol doi: 10.1139/m62-029 – volume: 14 start-page: 557 year: 2010 ident: 177_CR8 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.009 – volume: 39 start-page: 449 year: 2012 ident: 177_CR29 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.046 – volume: 59 start-page: 1441 year: 2008 ident: 177_CR33 publication-title: J Exp Bot doi: 10.1093/jxb/erm112 – volume: 35 start-page: 41 year: 1996 ident: 177_CR41 publication-title: Ann Biol – volume: 81 start-page: 1049 year: 2006 ident: 177_CR43 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.1529 – volume: 20 start-page: 237 year: 2003 ident: 177_CR38 publication-title: Biomol Eng doi: 10.1016/S1389-0344(03)00061-3 – volume: 16 start-page: 375 year: 1994 ident: 177_CR25 publication-title: J Plankton Res doi: 10.1093/plankt/16.4.375 – volume: 117 start-page: 313 year: 1993 ident: 177_CR45 publication-title: Aquaculture doi: 10.1016/0044-8486(93)90328-V – volume: 14 start-page: 357 year: 1995 ident: 177_CR51 publication-title: Aquacult Eng doi: 10.1016/0144-8609(94)00010-X – volume: 102 start-page: 100 year: 2008 ident: 177_CR39 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22033 – volume: 403 start-page: 97 year: 1999 ident: 177_CR1 publication-title: Hydrobiologia doi: 10.1023/A:1003725626504 – volume: 35 start-page: 2534 year: 2011 ident: 177_CR16 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.02.021 – volume-title: Microalgae biotechnology and microbiology year: 1994 ident: 177_CR4 – volume: 45 start-page: 1052 year: 2009 ident: 177_CR26 publication-title: J Phycol doi: 10.1111/j.1529-8817.2009.00734.x – volume: 90 start-page: 1399 year: 2011 ident: 177_CR31 publication-title: Appl Microbiol Biot doi: 10.1007/s00253-011-3174-x – volume: 12 start-page: 521 year: 2000 ident: 177_CR12 publication-title: J Appl Phycol doi: 10.1023/A:1008165606234 – volume: 92 start-page: 738 year: 2013 ident: 177_CR17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.04.023 – volume: 195 start-page: 35 year: 2001 ident: 177_CR10 publication-title: Aquaculture doi: 10.1016/S0044-8486(00)00533-0 – start-page: 245 volume-title: CRC handbook of microalgal mass culture year: 1986 ident: 177_CR35 – volume: 79 start-page: 707 year: 2008 ident: 177_CR48 publication-title: Appl Microbiol Biot doi: 10.1007/s00253-008-1518-y – volume: 36 start-page: 2524 year: 2011 ident: 177_CR15 publication-title: Renew Energ doi: 10.1016/j.renene.2011.02.002 – volume: 29 start-page: 537 year: 2011 ident: 177_CR11 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2011.06.006 – volume: 8 start-page: 1856 year: 2009 ident: 177_CR49 publication-title: Eukaryot Cell doi: 10.1128/EC.00272-09 – volume: 85 start-page: 259 year: 2001 ident: 177_CR36 publication-title: J Biotechnol doi: 10.1016/S0168-1656(00)00353-9 – volume: 26 start-page: 393 year: 1990 ident: 177_CR40 publication-title: J Phycol doi: 10.1111/j.0022-3646.1990.00393.x – volume: 2 start-page: 195 year: 1990 ident: 177_CR37 publication-title: J Appl Phycol doi: 10.1007/BF02179776 – volume: 21 start-page: 493 year: 2009 ident: 177_CR19 publication-title: J Appl Phycol doi: 10.1007/s10811-008-9392-7 – volume: 25 start-page: 294 year: 2007 ident: 177_CR14 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.02.001 – volume: 5 start-page: 285 year: 1993 ident: 177_CR9 publication-title: J Appl Phycol doi: 10.1007/BF02186231 – volume: 15 start-page: 107 year: 2003 ident: 177_CR13 publication-title: J Appl Phycol doi: 10.1023/A:1023830707022 – volume: 110 start-page: 293 year: 1994 ident: 177_CR44 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps110293 – volume: 5 start-page: 731 year: 2012 ident: 177_CR47 publication-title: Energies doi: 10.3390/en5030731 – volume: 25 start-page: 129 year: 2013 ident: 177_CR22 publication-title: J Appl Phycol doi: 10.1007/s10811-012-9846-9 |
| SSID | ssj0009818 |
| Score | 2.4658558 |
| Snippet | Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation,... |
| SourceID | proquest crossref springer fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1431 |
| SubjectTerms | Accumulation Algae Bacillariophyceae Bacillariophyta Biofuels Biomedical and Life Sciences Buffers carbon Carbon dioxide Carbon sources Ciliophora Ecology energy Environmental changes Esters fatty acids Freshwater & Marine Ecology Growth rate Inorganic carbon Life Sciences Microalgae Nannochloropsis Nannochloropsis salina Plant Physiology Plant Sciences Predators production technology |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoKRI9sAxFnVKQkTiBLLzEcXxCBVH1VFWiSL1Fjpc20kwcxjOV-u-xE0-HIjEXznEcO8_2e37L9wHwQYnGlFxXyDiuUaGlRIpZgmRDmRVcNKUYySbE-Xl1dSUvssMt5LTK9Zk4HNTG6-Qj_0xKzkXU3ZR_6X-hxBqVoquZQmMHPE4oCXRI3bvYgO5Wg38PS0pQJQVZRzXH0rlqqChL2URCIPpAL-045R-YnH9FSQflc_r8f4f9AjzLZic8GdfJS_DIdhOwf3K9yNAbdgKejLSUdxOw99VHk_HuFQj9GcwJH9B38Dpe2Zc3UHUGztq-NVBpvZpn_i_oHYzGJGxa71Z2Bucp0y8VilgYT_DO65uZX_g-tAEGlaqAh37a7nZI4ocju1SYhwNwefr98tsZyiwNSBeCLpEuncFCaS6UNLR0kjFmK8scKajBUfcRwZyy0gpdlK7UGhujsGsSMBttMHsNdjvf2UMAieasYFiVVtlCMyyFSaztXBJNOZVkCvBaRLXOCOaJSGNWb7CXk1TrKNU6SbWmU_Dx_pV-hO_Y1vgwyr1W8d-H-ucPmi6fmAx4AVNwvBZvnTd5qDeynYL394_j9kwxF9VZv4pt4pSqomBUbmkTjXQZTU8e-_m0Xmh_fOZf4z3aPqg34GmawpjXdgx2l4uVfQv29O2yDYt3w075DTRnFnU priority: 102 providerName: ProQuest |
| Title | pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms |
| URI | https://link.springer.com/article/10.1007/s10811-013-0177-2 https://www.proquest.com/docview/1655744125 https://www.proquest.com/docview/1534844329 https://www.proquest.com/docview/1999925655 |
| Volume | 26 |
| WOSCitedRecordID | wos000336371400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1573-5176 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009818 issn: 0921-8971 databaseCode: M0K dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1573-5176 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009818 issn: 0921-8971 databaseCode: M7P dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-5176 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009818 issn: 0921-8971 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-5176 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009818 issn: 0921-8971 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBbNBe1D2m5bsm26qNCnFoMOy7Iek7IhULosSVryZmQdiWHXWla7gfz7Sj5ykQTaF2PwWNY9I8_M9wHwVfJSZ0zlibZMJakSIpHU4ESUhBrOeJnxlmyCTyb5-bmYdnncvo92712SzU59J9ktb3LAYvwP50nYd7eCtssjX8PJ6Z9bpN28-amHBMFJLjjuXZmPFXFPGW1Y6e7ZmQ9co43GOXr9X3V9A3Y7AxMetDPiLXhh6gF4dXCx7EA2zADstASU1wOwfeiCcRhudsYNevX1O-AXx7AL8oCuhhfhmL66hLLWcFYtKg2lUut5x_kFnYXBgIRl5ezazOA8RvfF5BADw65dO3U5c0u38JWHXsbM36acqr5qAvdhyyjl5_49ODsan_04TjpmhkSlnKwSlVmNuFSMS6FJZgWl1OSGWpwSjYK-w5xaaYThKs1sphTSWiJbRjA2UiL6AWzWrjZ7AGLFaEqRzIw0qaJIcB2Z2pnAijAi8BCgfoQK1aGWR_KMWXGLtxz7ugh9XcS-LsgQfLt5ZdFCdjwnvBeGvZBhFHzx-5TEAyfCDUbAEOz3c6HoFrYvcMYYDyYkYUPw5eZxWJLRzyJr49ZBJjQpT1NKxDMywTAXwdxkoZzv_Ry685mn6vvxn6Q_gZexRW1o2z7YXC3X5jPYVleryi9HYOtwPJmejMDGL_QzXvl01Kylvxi-EiM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61pQg48FhAXShgJLhQRSROHMcHhMqj2qplVYlF6s1ybKeNtBuHZLfV_ij-I3YeXYrE3nrgHMexnc_zsGfmA3gjaKpiIhNPZUR6kWTME6EOPJbiUFNC05i2ZBN0PE5OT9nJBvzqc2FcWGUvExtBrYx0Z-Tvg5gQanU3Jh_Ln55jjXK3qz2FRguLI728tC5b_eHwi_2_bzE--Dr5PPI6VgFPRhTPPRlnyqdCEiqYwnFmPfpQJzrMgggr38rqgIaZ0ExTGcVZLKWvlPCz1BUSw6kf2m434ZYbCW0iBU9WNX6T5jjRZzjwEkaD_hK1zdRLmgQ2F7xEqYevqcHNTJhrFu5fl7KNrjt48J-t0kO43xnVaL_dBY9gQxcDuLd_VnWFRfQAbrekm8sBbH8y1iBePoa6HKEunAWZAp1V5nJ-jkSh0DQvc4WElItZx26GTIasqYzS3GQLPUUzF8fo0mA0svqpMPJ8aipT1nmNauFynJt-8uKiSVFALXdWPaufwOQm1uEpbBWm0DuAAknCKPRFrIWOZOgzqhwnPWGBxASzYAh-jwguu_rsjiZkyleVpR2IuAURdyDieAjvrl4p2-Ik6xrvWJhxYde-5j--Y-da-0FTDWEIuz2aeCfCar6C0hBeXz22wsfdKIlCm4VtY6eURFGI2Zo21gVh1rAmtp-9Htd_fOZf4322flCv4M5o8u2YHx-Oj57DXTedNoJvF7bm1UK_gG15Mc_r6mWzSRHwG4b7bwXFc3I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7auoHGA5cCWmGAkeCFKVrixHH8gNDGVm0aqioY0t4sx7G3SG3cNe2m_jT-HXYuK0Oib3vgOY5jO5_POfa5fAAfBE2zmMjEyzSRXiQZ80SoAo-lOFSU0DSmNdkEHQyS83M2XINfbS6MC6tsZWIlqDMj3R35XhATQq3uxmRPN2ERw8P-l8mV5xiknKe1pdOoIXKqFjf2-FZ-Pjm0__ojxv2js6_HXsMw4MmI4pknY535VEhCBctwrO3pPlSJCnUQ4cy3cjugoRaKKSqjWMdS-lkmfJ26omI49UPb7TpsUGtjRB3YODgaDL8vK_4m1eWiz3DgJYwGrUu1zttLqnQ2F8pEqYfvKMV1Lcwde_cvF22l-fpP_uM1ewqPG3Mb7df74xmsqaILj_Yvpk3JEdWFBzUd56ILmwfGmsqL51BOjlET6IJMgS6m5mZ2iUSRoVE-yTMkpJyPG94zZDSyRjRKc6PnaoTGLsLRJcgoZDVXYeTlyEzNpMxLVAqX_Vz1kxfXVfICqlm1ynH5As7uYx1eQqcwhdoGFEgSRqEvYiVUJEOf0cyx1RMWSEwwC3rgt-jgsqnc7ghERnxZc9oBiltAcQcojnvw6faVSV22ZFXjbQs5Luzal_znD-wO3X5Q1UnowU6LLN4It5IvYdWD97ePrVhyviZRKDO3beyUkigKMVvRxh5OmDW5ie1nt8X4H5_513hfrR7UO3hoUc6_nQxOX8OWm00d2rcDndl0rt7Aprye5eX0bbNjEfB7xvtvLoJ9gQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+effects+on+growth+and+lipid+accumulation+of+the+biofuel+microalgae+Nannochloropsis+salina+and+invading+organisms&rft.jtitle=Journal+of+applied+phycology&rft.au=Bartley%2C+Meridith+L.&rft.au=Boeing%2C+Wiebke+J.&rft.au=Dungan%2C+Barry+N.&rft.au=Holguin%2C+F.+Omar&rft.date=2014-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=26&rft.issue=3&rft.spage=1431&rft.epage=1437&rft_id=info:doi/10.1007%2Fs10811-013-0177-2&rft.externalDocID=10_1007_s10811_013_0177_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon |