pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms

Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied phycology Vol. 26; no. 3; pp. 1431 - 1437
Main Authors: Bartley, Meridith L, Boeing, Wiebke J, Dungan, Barry N, Holguin, F. Omar, Schaub, Tanner
Format: Journal Article
Language:English
Published: Dordrecht Springer-Verlag 01.06.2014
Springer Netherlands
Springer Nature B.V
Subjects:
ISSN:0921-8971, 1573-5176
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂ addition. Here, we uncouple the effects of pH and CO₂ input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶ cells mL⁻¹ for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶ cells mL⁻¹ for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴ organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴ organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴ organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴ organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂ addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
AbstractList Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO sub(2) addition. Here, we uncouple the effects of pH and CO sub(2) input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 plus or minus 0.008 and 0.19 plus or minus 0.011, respectively; mean plus or minus SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 10 super(6) plus or minus 9 10 super(6) cells mL super(-1) for pH 8 and 92.8 10 super(6) plus or minus 24 10 super(6) cells mL super(-1) for pH 9). Lipid accumulation of unbuffered controls were 21.8 plus or minus 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 plus or minus 39.6 10 super(4) organisms mL super(-1)) than higher pH treatments (0.1-6.8 10 super(4) organisms mL super(-1)). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 plus or minus 5.1 10 super(4) organisms mL super(-1)) than any of the pH treatments (3.6-4.7 10 super(4) organisms mL super(-1)). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO sub(2) addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂ addition. Here, we uncouple the effects of pH and CO₂ input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶ cells mL⁻¹ for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶ cells mL⁻¹ for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴ organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴ organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴ organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴ organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂ addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19±0.008 and 0.19±0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6×10^sup 6^±9×10^sup 6^ cells mL^sup -1^ for pH 8 and 92.8×10^sup 6^±24×10^sup 6^ cells mL^sup -1^ for pH 9). Lipid accumulation of unbuffered controls were 21.8±5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9±39.6×10^sup 4^ organisms mL^sup -1^) than higher pH treatments (0.1-6.8×10^sup 4^ organisms mL^sup -1^). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7±5.1×10^sup 4^ organisms mL^sup -1^) than any of the pH treatments (3.6-4.7×10^sup 4^ organisms mL^sup -1^). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO 2 addition. Here, we uncouple the effects of pH and CO 2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10 6  ± 9 × 10 6 cells mL −1 for pH 8 and 92.8 × 10 6  ± 24 × 10 6 cells mL −1 for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10 4 organisms mL −1 ) than higher pH treatments (0.1–6.8 × 10 4 organisms mL −1 ). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10 4 organisms mL −1 ) than any of the pH treatments (3.6–4.7 × 10 4 organisms mL −1 ). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO 2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO₂addition. Here, we uncouple the effects of pH and CO₂input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 10⁶ ± 9 × 10⁶cells mL⁻¹for pH 8 and 92.8 × 10⁶ ± 24 × 10⁶cells mL⁻¹for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 10⁴organisms mL⁻¹) than higher pH treatments (0.1–6.8 × 10⁴organisms mL⁻¹). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 10⁴organisms mL⁻¹) than any of the pH treatments (3.6–4.7 × 10⁴organisms mL⁻¹). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO₂addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.
Author Holguin, F. Omar
Schaub, Tanner
Bartley, Meridith L
Dungan, Barry N
Boeing, Wiebke J
Author_xml – sequence: 1
  fullname: Bartley, Meridith L
– sequence: 2
  fullname: Boeing, Wiebke J
– sequence: 3
  fullname: Dungan, Barry N
– sequence: 4
  fullname: Holguin, F. Omar
– sequence: 5
  fullname: Schaub, Tanner
BookMark eNqFkcFuFSEUhompibfVB3AliRs3UznADDNL06g1aXRhXZNzGZhLw8AVZjR9e7kdF6aLSkJY8H1_4Pzn5CymaAl5DewSGFPvC7AeoGEg6laq4c_IDlolmhZUd0Z2bODQ9IOCF-S8lDvG2NBDvyPleE2tc9YshaZIp5x-LweKcaTBH_1I0Zh1XgMuvt4mR5eDpXuf3GoDnb3JCcOEln7FGJM5hJTTsfhCCwYf8SHHx184-jjRlCeMvszlJXnuMBT76u95QW4_fby9um5uvn3-cvXhpjFS8aUxnRuZQtMqHEbeuUEIYXsrHEg-MqkAlHBoB6uM7FxnDBtHZG7PFAe-Z-KCvNtijzn9XG1Z9OyLsSFgtGktGoa6eNu17f_RVsheSsGHir59hN6lNcf6Dw01SkkJ_BSoNqpOqJRsnTZ-eRjiktEHDUyfatNbbbrWpk-1aV5NeGQes58x3z_p8M0plY2Tzf-86QnpzSY5TBqn7Iv-8Z0zkIxVg7dS_AEiobXN
CitedBy_id crossref_primary_10_1007_s11356_017_8875_y
crossref_primary_10_1177_11786302231188270
crossref_primary_10_3390_en17205218
crossref_primary_10_1007_s12649_018_0325_7
crossref_primary_10_1016_j_watres_2019_115076
crossref_primary_10_1007_s10811_020_02177_2
crossref_primary_10_1016_j_biteb_2023_101746
crossref_primary_10_1038_s41598_019_46551_8
crossref_primary_10_1016_j_jwpe_2020_101165
crossref_primary_10_1016_j_rser_2018_07_050
crossref_primary_10_3389_fbioe_2020_00453
crossref_primary_10_1080_07388551_2023_2233692
crossref_primary_10_1007_s10811_017_1191_6
crossref_primary_10_1007_s11027_025_10249_2
crossref_primary_10_1016_j_rser_2016_12_120
crossref_primary_10_1016_j_algal_2024_103629
crossref_primary_10_1016_j_cej_2020_127390
crossref_primary_10_1016_j_watres_2021_117038
crossref_primary_10_1002_cjce_22407
crossref_primary_10_1007_s10811_018_1688_7
crossref_primary_10_1186_s40643_016_0136_2
crossref_primary_10_1016_j_rser_2018_04_086
crossref_primary_10_1016_j_copbio_2017_11_017
crossref_primary_10_1016_j_jece_2025_116094
crossref_primary_10_1080_10408398_2025_2475240
crossref_primary_10_1016_j_biortech_2016_11_025
crossref_primary_10_3390_molecules25122834
crossref_primary_10_1007_s00449_021_02531_9
crossref_primary_10_1016_j_algal_2018_02_012
crossref_primary_10_1016_j_biteb_2018_08_001
crossref_primary_10_1111_wej_12646
crossref_primary_10_1016_j_algal_2021_102379
crossref_primary_10_1016_j_pecs_2023_101071
crossref_primary_10_1016_j_algal_2023_103332
crossref_primary_10_1007_s40071_015_0107_9
crossref_primary_10_1016_j_algal_2018_03_001
crossref_primary_10_1016_j_aquaculture_2019_734648
crossref_primary_10_1016_j_rser_2021_111904
crossref_primary_10_1016_j_algal_2017_11_004
crossref_primary_10_1016_j_chemosphere_2023_139699
crossref_primary_10_3390_pr12071303
crossref_primary_10_1002_adts_202000281
crossref_primary_10_1016_j_biortech_2015_02_048
crossref_primary_10_1016_j_biteb_2022_101321
crossref_primary_10_1007_s00449_020_02293_w
crossref_primary_10_1016_j_biteb_2022_101286
crossref_primary_10_1016_j_biortech_2015_07_101
crossref_primary_10_1111_pre_12160
crossref_primary_10_1016_j_biortech_2015_11_042
crossref_primary_10_1016_j_seppur_2024_127153
crossref_primary_10_3390_life15091427
crossref_primary_10_3390_su151813678
crossref_primary_10_1016_j_biortech_2014_10_008
crossref_primary_10_1016_j_biteb_2019_100333
crossref_primary_10_1016_j_jcou_2017_01_025
crossref_primary_10_1007_s11802_020_4302_y
crossref_primary_10_1016_j_jclepro_2018_06_303
crossref_primary_10_3389_fbioe_2021_774143
crossref_primary_10_1016_j_desal_2024_117424
crossref_primary_10_1016_j_cej_2020_128138
crossref_primary_10_1080_09593330_2019_1604816
crossref_primary_10_1016_j_rser_2018_08_027
crossref_primary_10_1007_s10811_016_0931_3
crossref_primary_10_1016_j_biortech_2021_124870
crossref_primary_10_1016_j_scitotenv_2017_10_127
crossref_primary_10_1016_j_scitotenv_2024_177012
crossref_primary_10_1007_s10811_017_1331_z
crossref_primary_10_1007_s12010_017_2620_3
crossref_primary_10_1016_j_anifeedsci_2020_114761
crossref_primary_10_1016_j_renene_2025_123961
crossref_primary_10_1088_1755_1315_963_1_012034
crossref_primary_10_1016_j_biortech_2017_07_096
crossref_primary_10_4014_jmb_2011_11004
crossref_primary_10_1016_j_biombioe_2014_04_005
crossref_primary_10_1007_s00449_020_02373_x
crossref_primary_10_1007_s42535_021_00186_1
crossref_primary_10_1007_s41208_020_00218_8
crossref_primary_10_1016_j_renene_2017_04_001
crossref_primary_10_32604_biocell_2024_050540
crossref_primary_10_1007_s12562_018_1201_x
crossref_primary_10_1016_j_envres_2024_118397
crossref_primary_10_1016_j_algal_2025_104079
crossref_primary_10_1016_j_rsma_2023_103291
crossref_primary_10_1007_s11356_025_35958_8
crossref_primary_10_1007_s11356_019_06287_4
crossref_primary_10_1016_j_biortech_2022_127387
crossref_primary_10_1038_srep32860
crossref_primary_10_1016_j_fuel_2022_123192
crossref_primary_10_3390_en16031316
crossref_primary_10_1088_1755_1315_963_1_012015
crossref_primary_10_1186_s13068_018_1225_6
crossref_primary_10_1039_D2SE00574C
crossref_primary_10_1016_j_seta_2022_102749
crossref_primary_10_1016_j_scitotenv_2019_135303
crossref_primary_10_3390_en12010130
crossref_primary_10_1016_j_algal_2016_11_021
crossref_primary_10_1088_1757_899X_543_1_012054
crossref_primary_10_1016_j_jtice_2017_02_017
crossref_primary_10_1007_s10811_015_0567_8
crossref_primary_10_1007_s13399_024_06121_z
crossref_primary_10_1002_ep_13378
crossref_primary_10_1007_s10499_020_00522_3
crossref_primary_10_1016_j_rser_2021_111396
crossref_primary_10_1016_j_biombioe_2021_106108
crossref_primary_10_1016_j_bcab_2024_103373
crossref_primary_10_1080_17597269_2018_1448634
crossref_primary_10_1002_btpr_2891
crossref_primary_10_1002_ejlt_201700152
crossref_primary_10_1016_j_algal_2016_05_018
crossref_primary_10_3390_pr11071892
crossref_primary_10_1016_j_algal_2024_103405
crossref_primary_10_1007_s10811_017_1150_2
crossref_primary_10_1016_j_algal_2023_103126
crossref_primary_10_1007_s10811_019_1737_x
crossref_primary_10_1007_s00253_022_11815_3
crossref_primary_10_1080_09593330_2024_2428445
crossref_primary_10_1016_j_chemosphere_2023_138236
crossref_primary_10_1007_s00248_022_02091_9
crossref_primary_10_1016_j_envres_2022_114978
crossref_primary_10_1016_j_fuel_2020_119058
crossref_primary_10_1007_s11356_023_25728_9
crossref_primary_10_1007_s10668_021_01910_2
crossref_primary_10_3390_life12030371
crossref_primary_10_3390_pr9101769
crossref_primary_10_1007_s11356_021_16719_9
crossref_primary_10_1016_j_algal_2023_103113
crossref_primary_10_1007_s13369_024_09601_6
crossref_primary_10_1016_j_scitotenv_2023_164516
crossref_primary_10_1080_10826068_2021_1941102
crossref_primary_10_1016_j_algal_2016_05_007
crossref_primary_10_1007_s10811_020_02311_0
crossref_primary_10_3389_fmars_2018_00382
crossref_primary_10_1080_09593330_2016_1158867
crossref_primary_10_1016_j_biteb_2021_100917
crossref_primary_10_1007_s10811_024_03375_y
crossref_primary_10_1016_j_tibtech_2021_06_005
crossref_primary_10_1038_s41598_018_37611_6
crossref_primary_10_1089_ees_2017_0521
Cites_doi 10.1016/0144-8609(94)00010-X
10.1007/978-3-662-10863-5_12
10.1007/BF02179776
10.1016/j.biombioe.2011.02.021
10.1016/j.chemosphere.2013.04.023
10.1093/plankt/16.4.375
10.1016/j.biotechadv.2007.02.001
10.1002/clen.201100402
10.1111/j.1529-8817.2009.00734.x
10.1002/bit.22033
10.1023/A:1023830707022
10.1002/jctb.1529
10.1007/s10811-012-9846-9
10.1139/m62-029
10.1016/j.jclepro.2013.04.005
10.1023/A:1003725626504
10.1016/j.biombioe.2012.01.046
10.1007/s00253-008-1518-y
10.4319/lo.2006.51.4.1708
10.1007/s10811-012-9873-6
10.3354/meps110293
10.1016/j.renene.2011.02.002
10.1016/j.biombioe.2013.03.026
10.3390/en5030731
10.1016/j.tibtech.2011.06.006
10.1016/0144-4565(87)90006-0
10.1016/j.rser.2009.07.020
10.1021/jf0010376
10.1016/S1389-0344(03)00061-3
10.1146/annurev.arplant.56.032604.144052
10.1016/0044-8486(93)90328-V
10.1023/A:1008165606234
10.1128/EC.00272-09
10.1111/jpy.12071
10.1016/j.biombioe.2012.08.011
10.1093/jxb/erm112
10.1111/j.0022-3646.1990.00393.x
10.2166/wst.2012.024
10.1007/s00253-011-3174-x
10.1007/978-1-4899-7180-7
10.1016/S0168-1656(00)00353-9
10.1016/j.rser.2009.10.009
10.1007/s10811-008-9392-7
10.1007/BF02186231
10.1039/c2gc16195h
10.1016/S0044-8486(00)00533-0
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: Springer Science+Business Media Dordrecht 2014
DBID FBQ
AAYXX
CITATION
3V.
7TN
7X2
8FE
8FH
8FK
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M0K
M7N
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
H98
7S9
L.6
DOI 10.1007/s10811-013-0177-2
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Agricultural Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Agricultural Science Database

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
Ecology
EISSN 1573-5176
EndPage 1437
ExternalDocumentID 3594407921
10_1007_s10811_013_0177_2
US201400100254
Genre Feature
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1OL
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
XOL
YLTOR
YQT
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
ZMTXR
ZOVNA
~A9
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TN
8FK
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
M7N
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
H98
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c472t-c6fd07ac57a9d26f9333e8e3f142d0471173fae9e7c46f6cc0dda0fb07212b03
IEDL.DBID RSV
ISICitedReferencesCount 154
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336371400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-8971
IngestDate Thu Sep 04 15:09:34 EDT 2025
Sun Nov 09 10:32:59 EST 2025
Tue Nov 04 16:24:42 EST 2025
Sat Nov 29 06:37:22 EST 2025
Tue Nov 18 22:37:46 EST 2025
Fri Feb 21 02:40:05 EST 2025
Wed Dec 27 19:03:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Oil accumulation
pH
FAME analysis
Algae biodiesel
Invaders
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-c6fd07ac57a9d26f9333e8e3f142d0471173fae9e7c46f6cc0dda0fb07212b03
Notes http://dx.doi.org/10.1007/s10811-013-0177-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1655744125
PQPubID 2034534
PageCount 7
ParticipantIDs proquest_miscellaneous_1999925655
proquest_miscellaneous_1534844329
proquest_journals_1655744125
crossref_citationtrail_10_1007_s10811_013_0177_2
crossref_primary_10_1007_s10811_013_0177_2
springer_journals_10_1007_s10811_013_0177_2
fao_agris_US201400100254
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied phycology
PublicationTitleAbbrev J Appl Phycol
PublicationYear 2014
Publisher Springer-Verlag
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Netherlands
– name: Springer Nature B.V
References Rocha, Garcia, Henriques (CR38) 2003; 20
Stoecker, Gifford, Putt (CR44) 1994; 110
Price, Badger, Woodger, Long (CR33) 2008; 59
Arudchelvam, Nirmalakhandan (CR2) 2012; 46
Moheimani, Borowitzka (CR31) 2011; 90
Richmond, Lichtenberg, Stahl, Vonshak (CR37) 1990; 2
Yamasaki, Hirata (CR51) 1995; 14
Maberly, Ball, Raven, Sultemeyer (CR26) 2009; 45
James, Janardhanam, Hanson (CR23) 2013; 49
Cheng-Wu, Zmora, Kopel, Richmond (CR10) 2001; 195
SevrinReyssac, Blier, Dumas, Ouelette (CR41) 1996; 35
Karl, Melino, Peterson (CR24) 2009
Patil, Reddy, Muppaneni, Mannarswamy, Holguin, Schaub, Nirmalakhandan, Cooke, Deng (CR32) 2012; 14
Giordano, Beardall, Raven (CR18) 2005; 56
Leakey, Burkill, Sleigh (CR25) 1994; 16
Van Wagenen, Miller, Hobbs, Hook, Crowe, Huesemann (CR47) 2012; 5
CR7
Rodolfi, Chini Zittelli, Bassi, Padovani, Biondi, Bonini, Tredici (CR39) 2008; 102
Guillard, Ryther (CR20) 1962; 8
Chini Zittelli, Rodolfi, Tredici (CR13) 2003; 15
Huang, Huang, Wen, Yan (CR22) 2013; 25
Rebolloso-Fuentes, Navarro-Perez, Garćia-Camacho, Ramos-Miras, Guil-Guerrero (CR34) 2001; 49
Spolaore, Joannis-Cassan, Duran, Isambert (CR43) 2006; 81
Tufvesson, Lantz, Borjesson (CR46) 2013; 53
Chini Zittelli, Pastorelli, Tredici (CR12) 2000; 12
Weisse, Stadler (CR50) 2006; 51
Franchino, Comino, Bona, Riggio (CR17) 2013; 92
Borowitzka, Wong, Tam (CR5) 1998
Wang, Ullrich, Joo, Waffenschmidt, Goodenough (CR49) 2009; 8
Sukenik, Zmora, Carmeli (CR45) 1993; 117
Boussiba, Vonshak, Cohen, Avissar, Richmond (CR6) 1987; 12
Roessler (CR40) 1990; 26
Griffiths, Harrison (CR19) 2009; 21
Moheimani (CR30) 2013; 25
Das, Aziz, Obbard (CR15) 2011; 36
Hsu (CR21) 1996
Mata, Martins, Caetano (CR27) 2010; 14
Richmond, Cheng-Wu (CR36) 2001; 85
Brown, Garland, Jeffrey, Jameson, Leroi (CR9) 1993; 5
Sigala, Unc (CR42) 2012; 65
Becker (CR4) 1994
Doan, Sivaloganathan, Obbard (CR16) 2011; 35
Moazami, Ashori, Ranjbar, Tangestani, Eghtesadi, Nejad (CR29) 2012; 39
Bartley, Boeing, Corcoran, Holguin, Schaub (CR3) 2013; 54
Chi, O’Fallon, Chen (CR11) 2011; 29
Brennan, Owende (CR8) 2010; 14
Wang, Li, Wu, Lan (CR48) 2008; 79
Chisti (CR14) 2007; 25
Menke, Sennhenn, Sachse, Majewski, Huchzermeyer, Rath (CR28) 2012; 40
Abu-Rezq, Al-Musallam, Al-Shimmari, Dias (CR1) 1999; 403
Richmond, Becker, Richmond (CR35) 1986
J SevrinReyssac (177_CR41) 1996; 35
PG Roessler (177_CR40) 1990; 26
M Franchino (177_CR17) 2013; 92
NR Moheimani (177_CR30) 2013; 25
DK Stoecker (177_CR44) 1994; 110
S Boussiba (177_CR6) 1987; 12
ZT Wang (177_CR49) 2009; 8
EW Becker (177_CR4) 1994
G Chini Zittelli (177_CR13) 2003; 15
T Weisse (177_CR50) 2006; 51
A Richmond (177_CR36) 2001; 85
TTY Doan (177_CR16) 2011; 35
RJG Leakey (177_CR25) 1994; 16
177_CR7
TM Mata (177_CR27) 2010; 14
Z Chi (177_CR11) 2011; 29
L Rodolfi (177_CR39) 2008; 102
N Moazami (177_CR29) 2012; 39
NR Moheimani (177_CR31) 2011; 90
B Wang (177_CR48) 2008; 79
LM Tufvesson (177_CR46) 2013; 53
RRL Guillard (177_CR20) 1962; 8
S Yamasaki (177_CR51) 1995; 14
S Menke (177_CR28) 2012; 40
MM Rebolloso-Fuentes (177_CR34) 2001; 49
A Richmond (177_CR35) 1986
L Brennan (177_CR8) 2010; 14
TS Abu-Rezq (177_CR1) 1999; 403
MJ Griffiths (177_CR19) 2009; 21
J Rocha (177_CR38) 2003; 20
GD Price (177_CR33) 2008; 59
J Sigala (177_CR42) 2012; 65
J Hsu (177_CR21) 1996
SC Maberly (177_CR26) 2009; 45
P Spolaore (177_CR43) 2006; 81
Y Chisti (177_CR14) 2007; 25
Z Cheng-Wu (177_CR10) 2001; 195
M Giordano (177_CR18) 2005; 56
P Das (177_CR15) 2011; 36
SC James (177_CR23) 2013; 49
P Patil (177_CR32) 2012; 14
MA Borowitzka (177_CR5) 1998
A Richmond (177_CR37) 1990; 2
A Sukenik (177_CR45) 1993; 117
XX Huang (177_CR22) 2013; 25
J Wagenen Van (177_CR47) 2012; 5
ML Bartley (177_CR3) 2013; 54
Y Arudchelvam (177_CR2) 2012; 46
TR Karl (177_CR24) 2009
MR Brown (177_CR9) 1993; 5
G Chini Zittelli (177_CR12) 2000; 12
References_xml – volume: 14
  start-page: 357
  year: 1995
  end-page: 365
  ident: CR51
  article-title: CO  concentration change in   sp. culture medium
  publication-title: Aquacult Eng
  doi: 10.1016/0144-8609(94)00010-X
– start-page: 203
  year: 1998
  end-page: 218
  ident: CR5
  article-title: Limits to growth
  publication-title: Wastewater treatment with algae
  doi: 10.1007/978-3-662-10863-5_12
– volume: 2
  start-page: 195
  year: 1990
  end-page: 206
  ident: CR37
  article-title: Quantitative assessment of the major limitations on the productivity of in open raceways
  publication-title: J Appl Phycol
  doi: 10.1007/BF02179776
– volume: 35
  start-page: 2534
  year: 2011
  end-page: 2544
  ident: CR16
  article-title: Screening of marine microalgae for biodiesel feedstock
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.02.021
– volume: 92
  start-page: 738
  year: 2013
  end-page: 744
  ident: CR17
  article-title: Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.04.023
– volume: 16
  start-page: 375
  year: 1994
  end-page: 389
  ident: CR25
  article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations
  publication-title: J Plankton Res
  doi: 10.1093/plankt/16.4.375
– start-page: 245
  year: 1986
  end-page: 264
  ident: CR35
  article-title: Technological aspects of mass cultivation—a general outline
  publication-title: CRC handbook of microalgal mass culture
– volume: 25
  start-page: 294
  year: 2007
  end-page: 306
  ident: CR14
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 40
  start-page: 1401
  year: 2012
  end-page: 1407
  ident: CR28
  article-title: Screening of microalgae for feasible mass production in industrial hypersaline wastewater using disposable bioreactors
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201100402
– volume: 45
  start-page: 1052
  year: 2009
  end-page: 1061
  ident: CR26
  article-title: Inorganic carbon acquisition by Chrysophytes
  publication-title: J Phycol
  doi: 10.1111/j.1529-8817.2009.00734.x
– volume: 102
  start-page: 100
  year: 2008
  end-page: 112
  ident: CR39
  article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22033
– volume: 15
  start-page: 107
  year: 2003
  end-page: 114
  ident: CR13
  article-title: Mass cultivation of sp. in annular reactors
  publication-title: J Appl Phycol
  doi: 10.1023/A:1023830707022
– volume: 81
  start-page: 1049
  year: 2006
  end-page: 1056
  ident: CR43
  article-title: Optimization of growth using the response surface method
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1529
– volume: 25
  start-page: 129
  year: 2013
  end-page: 137
  ident: CR22
  article-title: Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae ( , and )
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9846-9
– volume: 8
  start-page: 229
  year: 1962
  end-page: 239
  ident: CR20
  article-title: Studies of marine planktonic diatoms. I. Hustedt and Cleve
  publication-title: Can J Microbiol
  doi: 10.1139/m62-029
– volume: 53
  start-page: 214
  year: 2013
  end-page: 223
  ident: CR46
  article-title: Environmental performance of biogas produced from industrial residues including competition with animal feed—life-cycle calculations according to different methodologies and standards
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2013.04.005
– volume: 403
  start-page: 97
  year: 1999
  end-page: 107
  ident: CR1
  article-title: Optimum production conditions for different high-quality marine algae
  publication-title: Hydrobiologia
  doi: 10.1023/A:1003725626504
– volume: 39
  start-page: 449
  year: 2012
  end-page: 453
  ident: CR29
  article-title: Large-scale biodiesel production using microalgae biomass of
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.046
– volume: 79
  start-page: 707
  year: 2008
  end-page: 718
  ident: CR48
  article-title: CO bio-mitigation using microalgae
  publication-title: Appl Microbiol Biot
  doi: 10.1007/s00253-008-1518-y
– volume: 51
  start-page: 1708
  year: 2006
  end-page: 1715
  ident: CR50
  article-title: Effects of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2006.51.4.1708
– volume: 25
  start-page: 387
  year: 2013
  end-page: 398
  ident: CR30
  article-title: Inorganic carbon and pH effect on growth and lipid productivity of and sp (Chlorophyta) grown outdoor in bag photobioreactors
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9873-6
– volume: 110
  start-page: 293
  year: 1994
  end-page: 299
  ident: CR44
  article-title: Preservation of marine planktonic ciliates—losses and cell shrinkage during fixation
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps110293
– volume: 36
  start-page: 2524
  year: 2011
  end-page: 2528
  ident: CR15
  article-title: Two phase microalgae growth in the open system for enhanced lipid productivity
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2011.02.002
– volume: 54
  start-page: 83
  year: 2013
  end-page: 88
  ident: CR3
  article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga and invading organisms
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.03.026
– volume: 5
  start-page: 731
  year: 2012
  end-page: 740
  ident: CR47
  article-title: Effects of light and temperature on fatty acid production in
  publication-title: Energies
  doi: 10.3390/en5030731
– volume: 29
  start-page: 537
  year: 2011
  end-page: 541
  ident: CR11
  article-title: Bicarbonate produced from carbon capture for algae culture
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2011.06.006
– volume: 12
  start-page: 37
  year: 1987
  end-page: 47
  ident: CR6
  article-title: Lipid and biomass production by the halotolerant microalgae
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90006-0
– volume: 14
  start-page: 217
  year: 2010
  end-page: 232
  ident: CR27
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.07.020
– volume: 49
  start-page: 2966
  year: 2001
  end-page: 2972
  ident: CR34
  article-title: Biomass nutrient profiles of the microalga
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0010376
– volume: 20
  start-page: 237
  year: 2003
  end-page: 242
  ident: CR38
  article-title: Growth aspects of the marine microalga
  publication-title: Biomol Eng
  doi: 10.1016/S1389-0344(03)00061-3
– volume: 56
  start-page: 99
  year: 2005
  end-page: 131
  ident: CR18
  article-title: CO concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.56.032604.144052
– volume: 117
  start-page: 313
  year: 1993
  end-page: 326
  ident: CR45
  article-title: Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. sp
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(93)90328-V
– volume: 12
  start-page: 521
  year: 2000
  end-page: 526
  ident: CR12
  article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of sp. under artificial illumination
  publication-title: J Appl Phycol
  doi: 10.1023/A:1008165606234
– year: 1994
  ident: CR4
  publication-title: Microalgae biotechnology and microbiology
– volume: 8
  start-page: 1856
  year: 2009
  end-page: 1868
  ident: CR49
  article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00272-09
– volume: 49
  start-page: 608
  year: 2013
  end-page: 615
  ident: CR23
  article-title: Simulating pH effects in an algal-growth hydrodynamics model
  publication-title: J Phycol
  doi: 10.1111/jpy.12071
– volume: 46
  start-page: 757
  year: 2012
  end-page: 764
  ident: CR2
  article-title: Energetic optimization of algal lipid production in bubble columns: part 1: evaluation of gas sparging
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.08.011
– volume: 59
  start-page: 1441
  year: 2008
  end-page: 1461
  ident: CR33
  article-title: Advances in understanding the cyanobacterial CO -concentrating mechanism (CCM): functional components, C transporters, diversity, genetic regulation and prospects for engineering into plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm112
– volume: 26
  start-page: 393
  year: 1990
  end-page: 399
  ident: CR40
  article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions
  publication-title: J Phycol
  doi: 10.1111/j.0022-3646.1990.00393.x
– volume: 65
  start-page: 1323
  year: 2012
  end-page: 1331
  ident: CR42
  article-title: A PCR–DGGE approach to evaluate the impact of wastewater source on the antibiotic resistance diversity in treated wastewater effluent
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2012.024
– volume: 90
  start-page: 1399
  year: 2011
  end-page: 1407
  ident: CR31
  article-title: Increased CO and the effect of pH on growth and calcification of and (Haptophyta) in semicontinuous cultures
  publication-title: Appl Microbiol Biot
  doi: 10.1007/s00253-011-3174-x
– year: 1996
  ident: CR21
  publication-title: Multiple comparisons: theory and methods
  doi: 10.1007/978-1-4899-7180-7
– volume: 85
  start-page: 259
  year: 2001
  end-page: 269
  ident: CR36
  article-title: Optimization of a flat plate glass reactor for mass production of sp. outdoors
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(00)00353-9
– volume: 14
  start-page: 557
  year: 2010
  end-page: 577
  ident: CR8
  article-title: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.10.009
– volume: 21
  start-page: 493
  year: 2009
  end-page: 507
  ident: CR19
  article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-008-9392-7
– volume: 5
  start-page: 285
  year: 1993
  end-page: 296
  ident: CR9
  article-title: The gross and amino acid compositions of batch and semi-continuous cultures of sp. (clone T. ISO), and
  publication-title: J Appl Phycol
  doi: 10.1007/BF02186231
– volume: 14
  start-page: 809
  year: 2012
  ident: CR32
  article-title: Power dissipation in microwave-enhanced in-situ transesterification of algal biomass to biodiesel
  publication-title: Green Chem
  doi: 10.1039/c2gc16195h
– volume: 195
  start-page: 35
  year: 2001
  end-page: 49
  ident: CR10
  article-title: An industrial-size flat plate glass reactor for mass production of sp. (Eustigmatophyceae)
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(00)00533-0
– year: 2009
  ident: CR24
  publication-title: Global climate change impacts in the United States
– ident: CR7
– volume: 35
  start-page: 41
  year: 1996
  end-page: 68
  ident: CR41
  article-title: Intensive microalgae cultures integrated in an experimental lagooning recycling swine manure
  publication-title: Ann Biol
– volume-title: Multiple comparisons: theory and methods
  year: 1996
  ident: 177_CR21
  doi: 10.1007/978-1-4899-7180-7
– volume: 56
  start-page: 99
  year: 2005
  ident: 177_CR18
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.56.032604.144052
– volume: 49
  start-page: 2966
  year: 2001
  ident: 177_CR34
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0010376
– volume: 65
  start-page: 1323
  year: 2012
  ident: 177_CR42
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2012.024
– volume: 54
  start-page: 83
  year: 2013
  ident: 177_CR3
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.03.026
– volume: 46
  start-page: 757
  year: 2012
  ident: 177_CR2
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.08.011
– volume-title: Global climate change impacts in the United States
  year: 2009
  ident: 177_CR24
– volume: 25
  start-page: 387
  year: 2013
  ident: 177_CR30
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9873-6
– ident: 177_CR7
– start-page: 203
  volume-title: Wastewater treatment with algae
  year: 1998
  ident: 177_CR5
  doi: 10.1007/978-3-662-10863-5_12
– volume: 14
  start-page: 809
  year: 2012
  ident: 177_CR32
  publication-title: Green Chem
  doi: 10.1039/c2gc16195h
– volume: 40
  start-page: 1401
  year: 2012
  ident: 177_CR28
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201100402
– volume: 49
  start-page: 608
  year: 2013
  ident: 177_CR23
  publication-title: J Phycol
  doi: 10.1111/jpy.12071
– volume: 51
  start-page: 1708
  year: 2006
  ident: 177_CR50
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2006.51.4.1708
– volume: 12
  start-page: 37
  year: 1987
  ident: 177_CR6
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90006-0
– volume: 53
  start-page: 214
  year: 2013
  ident: 177_CR46
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2013.04.005
– volume: 14
  start-page: 217
  year: 2010
  ident: 177_CR27
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.07.020
– volume: 8
  start-page: 229
  year: 1962
  ident: 177_CR20
  publication-title: Can J Microbiol
  doi: 10.1139/m62-029
– volume: 14
  start-page: 557
  year: 2010
  ident: 177_CR8
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.10.009
– volume: 39
  start-page: 449
  year: 2012
  ident: 177_CR29
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.046
– volume: 59
  start-page: 1441
  year: 2008
  ident: 177_CR33
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm112
– volume: 35
  start-page: 41
  year: 1996
  ident: 177_CR41
  publication-title: Ann Biol
– volume: 81
  start-page: 1049
  year: 2006
  ident: 177_CR43
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1529
– volume: 20
  start-page: 237
  year: 2003
  ident: 177_CR38
  publication-title: Biomol Eng
  doi: 10.1016/S1389-0344(03)00061-3
– volume: 16
  start-page: 375
  year: 1994
  ident: 177_CR25
  publication-title: J Plankton Res
  doi: 10.1093/plankt/16.4.375
– volume: 117
  start-page: 313
  year: 1993
  ident: 177_CR45
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(93)90328-V
– volume: 14
  start-page: 357
  year: 1995
  ident: 177_CR51
  publication-title: Aquacult Eng
  doi: 10.1016/0144-8609(94)00010-X
– volume: 102
  start-page: 100
  year: 2008
  ident: 177_CR39
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22033
– volume: 403
  start-page: 97
  year: 1999
  ident: 177_CR1
  publication-title: Hydrobiologia
  doi: 10.1023/A:1003725626504
– volume: 35
  start-page: 2534
  year: 2011
  ident: 177_CR16
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.02.021
– volume-title: Microalgae biotechnology and microbiology
  year: 1994
  ident: 177_CR4
– volume: 45
  start-page: 1052
  year: 2009
  ident: 177_CR26
  publication-title: J Phycol
  doi: 10.1111/j.1529-8817.2009.00734.x
– volume: 90
  start-page: 1399
  year: 2011
  ident: 177_CR31
  publication-title: Appl Microbiol Biot
  doi: 10.1007/s00253-011-3174-x
– volume: 12
  start-page: 521
  year: 2000
  ident: 177_CR12
  publication-title: J Appl Phycol
  doi: 10.1023/A:1008165606234
– volume: 92
  start-page: 738
  year: 2013
  ident: 177_CR17
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.04.023
– volume: 195
  start-page: 35
  year: 2001
  ident: 177_CR10
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(00)00533-0
– start-page: 245
  volume-title: CRC handbook of microalgal mass culture
  year: 1986
  ident: 177_CR35
– volume: 79
  start-page: 707
  year: 2008
  ident: 177_CR48
  publication-title: Appl Microbiol Biot
  doi: 10.1007/s00253-008-1518-y
– volume: 36
  start-page: 2524
  year: 2011
  ident: 177_CR15
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2011.02.002
– volume: 29
  start-page: 537
  year: 2011
  ident: 177_CR11
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2011.06.006
– volume: 8
  start-page: 1856
  year: 2009
  ident: 177_CR49
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00272-09
– volume: 85
  start-page: 259
  year: 2001
  ident: 177_CR36
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(00)00353-9
– volume: 26
  start-page: 393
  year: 1990
  ident: 177_CR40
  publication-title: J Phycol
  doi: 10.1111/j.0022-3646.1990.00393.x
– volume: 2
  start-page: 195
  year: 1990
  ident: 177_CR37
  publication-title: J Appl Phycol
  doi: 10.1007/BF02179776
– volume: 21
  start-page: 493
  year: 2009
  ident: 177_CR19
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-008-9392-7
– volume: 25
  start-page: 294
  year: 2007
  ident: 177_CR14
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 5
  start-page: 285
  year: 1993
  ident: 177_CR9
  publication-title: J Appl Phycol
  doi: 10.1007/BF02186231
– volume: 15
  start-page: 107
  year: 2003
  ident: 177_CR13
  publication-title: J Appl Phycol
  doi: 10.1023/A:1023830707022
– volume: 110
  start-page: 293
  year: 1994
  ident: 177_CR44
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps110293
– volume: 5
  start-page: 731
  year: 2012
  ident: 177_CR47
  publication-title: Energies
  doi: 10.3390/en5030731
– volume: 25
  start-page: 129
  year: 2013
  ident: 177_CR22
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9846-9
SSID ssj0009818
Score 2.4658558
Snippet Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation,...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1431
SubjectTerms Accumulation
Algae
Bacillariophyceae
Bacillariophyta
Biofuels
Biomedical and Life Sciences
Buffers
carbon
Carbon dioxide
Carbon sources
Ciliophora
Ecology
energy
Environmental changes
Esters
fatty acids
Freshwater & Marine Ecology
Growth rate
Inorganic carbon
Life Sciences
Microalgae
Nannochloropsis
Nannochloropsis salina
Plant Physiology
Plant Sciences
Predators
production technology
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoKRI9sAxFnVKQkTiBLLzEcXxCBVH1VFWiSL1Fjpc20kwcxjOV-u-xE0-HIjEXznEcO8_2e37L9wHwQYnGlFxXyDiuUaGlRIpZgmRDmRVcNKUYySbE-Xl1dSUvssMt5LTK9Zk4HNTG6-Qj_0xKzkXU3ZR_6X-hxBqVoquZQmMHPE4oCXRI3bvYgO5Wg38PS0pQJQVZRzXH0rlqqChL2URCIPpAL-045R-YnH9FSQflc_r8f4f9AjzLZic8GdfJS_DIdhOwf3K9yNAbdgKejLSUdxOw99VHk_HuFQj9GcwJH9B38Dpe2Zc3UHUGztq-NVBpvZpn_i_oHYzGJGxa71Z2Bucp0y8VilgYT_DO65uZX_g-tAEGlaqAh37a7nZI4ocju1SYhwNwefr98tsZyiwNSBeCLpEuncFCaS6UNLR0kjFmK8scKajBUfcRwZyy0gpdlK7UGhujsGsSMBttMHsNdjvf2UMAieasYFiVVtlCMyyFSaztXBJNOZVkCvBaRLXOCOaJSGNWb7CXk1TrKNU6SbWmU_Dx_pV-hO_Y1vgwyr1W8d-H-ucPmi6fmAx4AVNwvBZvnTd5qDeynYL394_j9kwxF9VZv4pt4pSqomBUbmkTjXQZTU8e-_m0Xmh_fOZf4z3aPqg34GmawpjXdgx2l4uVfQv29O2yDYt3w075DTRnFnU
  priority: 102
  providerName: ProQuest
Title pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms
URI https://link.springer.com/article/10.1007/s10811-013-0177-2
https://www.proquest.com/docview/1655744125
https://www.proquest.com/docview/1534844329
https://www.proquest.com/docview/1999925655
Volume 26
WOSCitedRecordID wos000336371400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1573-5176
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009818
  issn: 0921-8971
  databaseCode: M0K
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1573-5176
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009818
  issn: 0921-8971
  databaseCode: M7P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-5176
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009818
  issn: 0921-8971
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-5176
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009818
  issn: 0921-8971
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBbNBe1D2m5bsm26qNCnFoMOy7Iek7IhULosSVryZmQdiWHXWla7gfz7Sj5ykQTaF2PwWNY9I8_M9wHwVfJSZ0zlibZMJakSIpHU4ESUhBrOeJnxlmyCTyb5-bmYdnncvo92712SzU59J9ktb3LAYvwP50nYd7eCtssjX8PJ6Z9bpN28-amHBMFJLjjuXZmPFXFPGW1Y6e7ZmQ9co43GOXr9X3V9A3Y7AxMetDPiLXhh6gF4dXCx7EA2zADstASU1wOwfeiCcRhudsYNevX1O-AXx7AL8oCuhhfhmL66hLLWcFYtKg2lUut5x_kFnYXBgIRl5ezazOA8RvfF5BADw65dO3U5c0u38JWHXsbM36acqr5qAvdhyyjl5_49ODsan_04TjpmhkSlnKwSlVmNuFSMS6FJZgWl1OSGWpwSjYK-w5xaaYThKs1sphTSWiJbRjA2UiL6AWzWrjZ7AGLFaEqRzIw0qaJIcB2Z2pnAijAi8BCgfoQK1aGWR_KMWXGLtxz7ugh9XcS-LsgQfLt5ZdFCdjwnvBeGvZBhFHzx-5TEAyfCDUbAEOz3c6HoFrYvcMYYDyYkYUPw5eZxWJLRzyJr49ZBJjQpT1NKxDMywTAXwdxkoZzv_Ry685mn6vvxn6Q_gZexRW1o2z7YXC3X5jPYVleryi9HYOtwPJmejMDGL_QzXvl01Kylvxi-EiM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61pQg48FhAXShgJLhQRSROHMcHhMqj2qplVYlF6s1ybKeNtBuHZLfV_ij-I3YeXYrE3nrgHMexnc_zsGfmA3gjaKpiIhNPZUR6kWTME6EOPJbiUFNC05i2ZBN0PE5OT9nJBvzqc2FcWGUvExtBrYx0Z-Tvg5gQanU3Jh_Ln55jjXK3qz2FRguLI728tC5b_eHwi_2_bzE--Dr5PPI6VgFPRhTPPRlnyqdCEiqYwnFmPfpQJzrMgggr38rqgIaZ0ExTGcVZLKWvlPCz1BUSw6kf2m434ZYbCW0iBU9WNX6T5jjRZzjwEkaD_hK1zdRLmgQ2F7xEqYevqcHNTJhrFu5fl7KNrjt48J-t0kO43xnVaL_dBY9gQxcDuLd_VnWFRfQAbrekm8sBbH8y1iBePoa6HKEunAWZAp1V5nJ-jkSh0DQvc4WElItZx26GTIasqYzS3GQLPUUzF8fo0mA0svqpMPJ8aipT1nmNauFynJt-8uKiSVFALXdWPaufwOQm1uEpbBWm0DuAAknCKPRFrIWOZOgzqhwnPWGBxASzYAh-jwguu_rsjiZkyleVpR2IuAURdyDieAjvrl4p2-Ik6xrvWJhxYde-5j--Y-da-0FTDWEIuz2aeCfCar6C0hBeXz22wsfdKIlCm4VtY6eURFGI2Zo21gVh1rAmtp-9Htd_fOZf4322flCv4M5o8u2YHx-Oj57DXTedNoJvF7bm1UK_gG15Mc_r6mWzSRHwG4b7bwXFc3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7auoHGA5cCWmGAkeCFKVrixHH8gNDGVm0aqioY0t4sx7G3SG3cNe2m_jT-HXYuK0Oib3vgOY5jO5_POfa5fAAfBE2zmMjEyzSRXiQZ80SoAo-lOFSU0DSmNdkEHQyS83M2XINfbS6MC6tsZWIlqDMj3R35XhATQq3uxmRPN2ERw8P-l8mV5xiknKe1pdOoIXKqFjf2-FZ-Pjm0__ojxv2js6_HXsMw4MmI4pknY535VEhCBctwrO3pPlSJCnUQ4cy3cjugoRaKKSqjWMdS-lkmfJ26omI49UPb7TpsUGtjRB3YODgaDL8vK_4m1eWiz3DgJYwGrUu1zttLqnQ2F8pEqYfvKMV1Lcwde_cvF22l-fpP_uM1ewqPG3Mb7df74xmsqaILj_Yvpk3JEdWFBzUd56ILmwfGmsqL51BOjlET6IJMgS6m5mZ2iUSRoVE-yTMkpJyPG94zZDSyRjRKc6PnaoTGLsLRJcgoZDVXYeTlyEzNpMxLVAqX_Vz1kxfXVfICqlm1ynH5As7uYx1eQqcwhdoGFEgSRqEvYiVUJEOf0cyx1RMWSEwwC3rgt-jgsqnc7ghERnxZc9oBiltAcQcojnvw6faVSV22ZFXjbQs5Luzal_znD-wO3X5Q1UnowU6LLN4It5IvYdWD97ePrVhyviZRKDO3beyUkigKMVvRxh5OmDW5ie1nt8X4H5_513hfrR7UO3hoUc6_nQxOX8OWm00d2rcDndl0rt7Aprye5eX0bbNjEfB7xvtvLoJ9gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+effects+on+growth+and+lipid+accumulation+of+the+biofuel+microalgae+Nannochloropsis+salina+and+invading+organisms&rft.jtitle=Journal+of+applied+phycology&rft.au=Bartley%2C+Meridith+L.&rft.au=Boeing%2C+Wiebke+J.&rft.au=Dungan%2C+Barry+N.&rft.au=Holguin%2C+F.+Omar&rft.date=2014-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=26&rft.issue=3&rft.spage=1431&rft.epage=1437&rft_id=info:doi/10.1007%2Fs10811-013-0177-2&rft.externalDocID=10_1007_s10811_013_0177_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon