Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis
Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dyna...
Uložené v:
| Vydané v: | Biomaterials Ročník 227; s. 119552 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier Ltd
01.01.2020
|
| Predmet: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering.
•Prolonged M1 phase and an M2 transformation failure occur in critical size bone defects.•PEM hydrogels participate in early immune regulation of bone repair and promotes M1-to-M2 transition of macrophages.•PEM hydrogels play a promoting role in the process angiogenesis and osteogenic differentiation of bone repair.•PEM hydrogels coordinate and guide several overlapping bone regeneration events.•PEM hydrogels showed superior bone healing properties. |
|---|---|
| AbstractList | Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering.Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering. Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering. •Prolonged M1 phase and an M2 transformation failure occur in critical size bone defects.•PEM hydrogels participate in early immune regulation of bone repair and promotes M1-to-M2 transition of macrophages.•PEM hydrogels play a promoting role in the process angiogenesis and osteogenic differentiation of bone repair.•PEM hydrogels coordinate and guide several overlapping bone regeneration events.•PEM hydrogels showed superior bone healing properties. Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering. |
| ArticleNumber | 119552 |
| Author | Fan, Shunwu Tang, Zhibin Lin, Xianfeng Chen, Kai Chen, Pengfei Fang, Bin Li, Mobai Qiu, Pengcheng |
| Author_xml | – sequence: 1 givenname: Pengcheng surname: Qiu fullname: Qiu, Pengcheng organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 2 givenname: Mobai surname: Li fullname: Li, Mobai organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 3 givenname: Kai surname: Chen fullname: Chen, Kai organization: School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia – sequence: 4 givenname: Bin surname: Fang fullname: Fang, Bin organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 5 givenname: Pengfei surname: Chen fullname: Chen, Pengfei organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 6 givenname: Zhibin surname: Tang fullname: Tang, Zhibin organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 7 givenname: Xianfeng surname: Lin fullname: Lin, Xianfeng email: xianfeng_lin@zju.edu.cn organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China – sequence: 8 givenname: Shunwu surname: Fan fullname: Fan, Shunwu email: shunwu_fan@zju.edu.cn organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31670079$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9uEzEQxi1URNPAKyCLE5cN9v6zzQkoFJAqwQHOlteeTRy8drC9hbwBj12naSXUUy4ejT3z-zzzXaAzHzwg9IqSFSW0f7NdDTZMKkO0yqVVTahYUSq6rn6CFpQzXnWCdGdoQWhbV6Kn9Tm6SGlLSk7a-hk6b2jPCGFigf59L5SQMiiHCzLav5UpNzdg8GZvYliDw7sYppAh4aH8A0fYKRtx3sQwrzdYeQwquj220zTfPa9np7INHusw71wB_bF5g8FvlNclU35tQ1WCwQfdouAh2fQcPR3LNPDiPi7Rz6tPPy6_VNffPn-9fH9d6ZbVuVIwMg1kMGagneEDazpGBWeGi6Zv9KiEKgdlpDWqFbwhnHTNKMaagxj6QTVL9PrILVP9niFlOdmkwTnlIcxJ1g0vG-woaU8opYRR3hXpJXp5XzoPExi5i3ZScS8fFl0K3h0LdAwpRRiltvluTTkq6yQl8uCt3Mr_vZUHb-XR24J4-wjxoHJS88djM5Td3liIMmkLB0NsBJ2lCfY0zIdHGO2st1q5X7A_FXILggPhoA |
| CitedBy_id | crossref_primary_10_1111_jcpe_13725 crossref_primary_10_1016_j_cej_2024_151789 crossref_primary_10_1016_j_mtbio_2025_101759 crossref_primary_10_1089_ten_teb_2022_0076 crossref_primary_10_1002_adhm_202404975 crossref_primary_10_1080_09205063_2023_2204779 crossref_primary_10_1063_5_0228692 crossref_primary_10_1002_advs_202304761 crossref_primary_10_1002_jbm_a_37829 crossref_primary_10_1016_j_biomaterials_2022_121519 crossref_primary_10_1002_adhm_202102818 crossref_primary_10_1016_j_matdes_2025_113996 crossref_primary_10_48165_ijvsbt_18_4_23 crossref_primary_10_1016_j_matdes_2021_110240 crossref_primary_10_1016_j_mtbio_2025_101874 crossref_primary_10_1002_advs_202304641 crossref_primary_10_1186_s40824_023_00428_0 crossref_primary_10_1016_j_compositesb_2022_109620 crossref_primary_10_3389_fphy_2023_1218179 crossref_primary_10_1016_j_bioactmat_2020_10_014 crossref_primary_10_1016_j_ijpharm_2025_125972 crossref_primary_10_1016_j_biomaterials_2023_122461 crossref_primary_10_1016_j_ijbiomac_2024_133202 crossref_primary_10_1016_j_bioactmat_2022_02_032 crossref_primary_10_1016_j_cej_2024_157088 crossref_primary_10_1016_j_ultsonch_2025_107431 crossref_primary_10_3389_fbioe_2022_887970 crossref_primary_10_1016_j_cej_2025_168276 crossref_primary_10_1016_j_mtbio_2025_102299 crossref_primary_10_1016_j_bioadv_2022_212803 crossref_primary_10_1016_j_matdes_2022_111045 crossref_primary_10_1002_advs_202403976 crossref_primary_10_1016_j_bioactmat_2025_04_018 crossref_primary_10_1155_2020_1425402 crossref_primary_10_1063_5_0220157 crossref_primary_10_1111_odi_14910 crossref_primary_10_1038_s41536_023_00305_3 crossref_primary_10_1186_s13287_025_04307_4 crossref_primary_10_3390_ph14111133 crossref_primary_10_1002_adhm_202001695 crossref_primary_10_1002_adhm_202304668 crossref_primary_10_1002_smll_202409747 crossref_primary_10_1016_j_tice_2021_101494 crossref_primary_10_1016_j_matdes_2022_111070 crossref_primary_10_1016_j_compositesb_2022_110099 crossref_primary_10_3390_bioengineering11080772 crossref_primary_10_1016_j_mtbio_2025_102264 crossref_primary_10_1186_s40779_023_00469_5 crossref_primary_10_1186_s40824_022_00281_7 crossref_primary_10_1016_j_colsurfa_2021_126458 crossref_primary_10_1097_SCS_0000000000011452 crossref_primary_10_1016_j_ijbiomac_2022_06_137 crossref_primary_10_1039_D5RA01932J crossref_primary_10_1177_20417314241231452 crossref_primary_10_1016_j_mtnano_2022_100290 crossref_primary_10_3389_fcell_2023_1193765 crossref_primary_10_1007_s10853_021_06675_7 crossref_primary_10_1016_j_compositesb_2024_111277 crossref_primary_10_1016_j_apmt_2024_102236 crossref_primary_10_1016_j_jmst_2025_03_041 crossref_primary_10_1002_advs_202302674 crossref_primary_10_3892_br_2023_1625 crossref_primary_10_3389_fbioe_2022_1038250 crossref_primary_10_1002_adma_202108430 crossref_primary_10_1038_s41598_025_12663_7 crossref_primary_10_3389_fchem_2020_00124 crossref_primary_10_1016_j_ijbiomac_2025_140902 crossref_primary_10_1016_j_molimm_2023_09_010 crossref_primary_10_1016_j_mtbio_2025_102088 crossref_primary_10_1038_s12276_021_00631_w crossref_primary_10_1063_5_0035504 crossref_primary_10_1155_2021_9954205 crossref_primary_10_1016_j_biomaterials_2023_122266 crossref_primary_10_1016_j_bioactmat_2022_08_005 crossref_primary_10_1016_j_actbio_2024_10_014 crossref_primary_10_3389_fbioe_2021_840421 crossref_primary_10_1016_j_cej_2024_154333 crossref_primary_10_1002_adfm_202214095 crossref_primary_10_1111_jop_13581 crossref_primary_10_1016_j_bioactmat_2022_01_039 crossref_primary_10_1016_j_biomaterials_2021_120998 crossref_primary_10_1016_j_actbio_2021_03_054 crossref_primary_10_1016_j_bioactmat_2024_03_021 crossref_primary_10_1177_08853282221135095 crossref_primary_10_1002_adma_202208781 crossref_primary_10_1002_mabi_202200496 crossref_primary_10_1016_j_apmt_2022_101370 crossref_primary_10_1016_j_cej_2024_150990 crossref_primary_10_1093_rb_rbac009 crossref_primary_10_3390_ph15091094 crossref_primary_10_1016_j_bioactmat_2022_05_023 crossref_primary_10_1016_j_biomaterials_2020_120561 crossref_primary_10_1016_j_cej_2021_130380 crossref_primary_10_1186_s12951_024_02996_2 crossref_primary_10_1002_adfm_202003542 crossref_primary_10_1002_adhm_202201548 crossref_primary_10_1002_adhm_202303134 crossref_primary_10_1002_adhm_202401296 crossref_primary_10_1177_08853282211027678 crossref_primary_10_1186_s12951_024_02320_y crossref_primary_10_1186_s13018_024_05371_x crossref_primary_10_3389_fdmed_2023_1163562 crossref_primary_10_1002_adhm_202303814 crossref_primary_10_1016_j_bioactmat_2021_10_042 crossref_primary_10_1016_j_bioactmat_2022_05_028 crossref_primary_10_1016_j_jsps_2024_102209 crossref_primary_10_1002_bit_28896 crossref_primary_10_1016_j_bioactmat_2023_12_006 crossref_primary_10_3389_fbioe_2023_1190171 crossref_primary_10_1016_j_cej_2023_141630 crossref_primary_10_1002_advs_202401368 crossref_primary_10_1186_s12951_021_01228_1 crossref_primary_10_1016_j_cej_2023_142605 crossref_primary_10_1088_1758_5090_abcf8d crossref_primary_10_1002_mabi_202300339 crossref_primary_10_3389_fbioe_2023_1181580 crossref_primary_10_1016_j_biomaterials_2022_121683 crossref_primary_10_1186_s12951_025_03363_5 crossref_primary_10_1007_s10856_024_06850_7 crossref_primary_10_1016_j_bioactmat_2021_09_014 crossref_primary_10_1002_advs_202205041 crossref_primary_10_3390_ijms25042162 crossref_primary_10_3390_ma14010235 crossref_primary_10_1038_s41419_020_2496_y crossref_primary_10_1039_D2BM00894G crossref_primary_10_3389_fbioe_2023_1232427 crossref_primary_10_1016_j_compositesb_2023_110620 crossref_primary_10_1002_adhm_202102534 crossref_primary_10_1089_ten_tea_2024_0112 crossref_primary_10_1093_rb_rbad118 crossref_primary_10_1097_SCS_0000000000010534 crossref_primary_10_1039_D5TC00628G crossref_primary_10_3390_gels11030175 crossref_primary_10_1002_adfm_202000015 crossref_primary_10_1002_smll_202203680 crossref_primary_10_1016_j_bioactmat_2025_05_004 crossref_primary_10_1016_j_jddst_2023_104677 crossref_primary_10_1186_s13036_022_00311_x crossref_primary_10_1186_s40580_024_00447_0 crossref_primary_10_1016_j_compositesb_2021_109524 crossref_primary_10_1016_j_compositesb_2024_111202 crossref_primary_10_1093_rb_rbad006 crossref_primary_10_1039_D2BM01036D crossref_primary_10_1002_EXP_20220173 crossref_primary_10_1016_j_bioactmat_2022_04_025 crossref_primary_10_1002_mabi_202400322 crossref_primary_10_1016_j_bioadv_2022_213058 crossref_primary_10_1016_j_colsurfb_2023_113537 crossref_primary_10_1016_j_ijbiomac_2025_145449 crossref_primary_10_1016_j_mtchem_2021_100612 crossref_primary_10_1002_adma_202308894 crossref_primary_10_2147_IJN_S428429 crossref_primary_10_1016_j_bioactmat_2022_07_006 crossref_primary_10_1002_adhm_202100215 crossref_primary_10_1016_j_matdes_2020_109231 crossref_primary_10_1016_j_actbio_2023_01_042 crossref_primary_10_3390_biom12091222 crossref_primary_10_1002_jbm_b_35326 crossref_primary_10_1039_D1BM00470K crossref_primary_10_1002_advs_202406287 crossref_primary_10_1016_j_bioactmat_2021_06_028 crossref_primary_10_1002_adhm_202001851 crossref_primary_10_1021_acsnano_4c18240 crossref_primary_10_1093_rb_rbae113 crossref_primary_10_3389_fbioe_2023_1219460 crossref_primary_10_1002_adma_202310876 crossref_primary_10_1016_j_mtcomm_2022_104070 crossref_primary_10_3390_gels8050294 crossref_primary_10_1002_advs_202510349 crossref_primary_10_1016_j_bioactmat_2025_08_007 crossref_primary_10_1016_j_cclet_2024_109564 crossref_primary_10_1016_j_ijbiomac_2024_131643 crossref_primary_10_1093_rb_rbad025 crossref_primary_10_1002_smll_202403003 crossref_primary_10_3390_ijms242417483 crossref_primary_10_1016_j_bioactmat_2021_08_005 crossref_primary_10_1002_adfm_201909874 crossref_primary_10_1016_j_bioadv_2024_214001 crossref_primary_10_1002_adfm_202006226 crossref_primary_10_1016_j_cej_2023_148220 crossref_primary_10_1016_j_cej_2021_133459 crossref_primary_10_1038_s41536_022_00224_9 crossref_primary_10_3389_fbioe_2020_589094 crossref_primary_10_1016_j_matdes_2024_112903 crossref_primary_10_1016_j_compositesb_2022_110149 crossref_primary_10_1016_j_biomaterials_2024_122650 crossref_primary_10_1016_j_biomaterials_2024_122772 crossref_primary_10_1016_j_matdes_2025_113714 crossref_primary_10_1002_advs_202105194 crossref_primary_10_1016_j_actbio_2025_02_026 crossref_primary_10_1016_j_bioactmat_2020_08_015 crossref_primary_10_1016_j_bioactmat_2020_08_012 crossref_primary_10_1134_S1990519X20060127 crossref_primary_10_1007_s40883_025_00443_8 crossref_primary_10_1016_j_apmt_2021_100942 crossref_primary_10_1016_j_matdes_2023_111705 crossref_primary_10_1016_j_jmst_2022_08_028 crossref_primary_10_1186_s12951_023_02073_0 crossref_primary_10_3390_mi13071073 crossref_primary_10_1007_s12274_022_4106_z crossref_primary_10_1016_j_heliyon_2023_e20521 crossref_primary_10_1186_s13287_024_03745_w crossref_primary_10_1016_j_ijbiomac_2025_145525 crossref_primary_10_1016_j_microc_2020_104713 crossref_primary_10_1002_biot_202300094 crossref_primary_10_1016_j_bioactmat_2022_03_023 crossref_primary_10_1016_j_cej_2020_126203 crossref_primary_10_1016_j_bioactmat_2023_04_018 crossref_primary_10_3389_fbioe_2022_845342 crossref_primary_10_1016_j_ceramint_2025_03_079 crossref_primary_10_1016_j_biomaterials_2024_122992 crossref_primary_10_1042_BST20190079 crossref_primary_10_1002_smll_202403835 crossref_primary_10_1016_j_carbpol_2024_122787 crossref_primary_10_1002_adfm_202422817 crossref_primary_10_1016_j_cej_2022_134870 crossref_primary_10_2147_DDDT_S344036 crossref_primary_10_3390_ijms241914484 crossref_primary_10_1016_j_bioactmat_2022_07_030 crossref_primary_10_1016_j_bioadv_2024_213883 crossref_primary_10_1016_j_carbpol_2024_123082 crossref_primary_10_1186_s12951_023_01982_4 crossref_primary_10_1007_s00210_023_02880_0 crossref_primary_10_1016_j_cej_2025_166662 crossref_primary_10_1016_j_bioadv_2022_212759 crossref_primary_10_1002_mabi_202300295 crossref_primary_10_2217_rme_2023_0101 crossref_primary_10_1002_smtd_202300843 crossref_primary_10_1016_j_ijpharm_2020_119543 crossref_primary_10_1016_j_tdr_2025_100037 crossref_primary_10_1016_j_copbio_2021_10_010 crossref_primary_10_1016_j_scib_2023_12_006 crossref_primary_10_1016_j_jmst_2022_07_008 crossref_primary_10_1002_adhm_202401460 crossref_primary_10_1016_j_biomaterials_2022_121604 crossref_primary_10_1039_D5RA04178C crossref_primary_10_1007_s00266_023_03305_2 crossref_primary_10_1016_j_matdes_2023_112252 crossref_primary_10_1016_j_apmt_2020_100779 |
| Cites_doi | 10.1016/j.actbio.2018.10.040 10.1186/s40634-017-0079-3 10.1016/j.bone.2014.08.007 10.1016/j.actbio.2015.02.020 10.1002/pmic.200800297 10.1016/j.biomaterials.2017.05.011 10.1016/j.bone.2004.07.014 10.1007/s10439-016-1685-4 10.1016/j.addr.2015.06.002 10.1016/j.biomaterials.2014.06.060 10.1016/j.actbio.2017.12.019 10.1016/j.actbio.2017.11.046 10.1016/j.biomaterials.2012.02.034 10.1002/advs.201700678 10.1038/mt.2009.315 10.1016/j.bone.2014.09.017 10.1016/j.biomaterials.2018.09.037 10.1002/1873-3468.12703 10.1016/j.carbpol.2018.04.101 10.1016/j.biomaterials.2016.10.039 10.1016/j.biomaterials.2013.03.052 10.1016/j.actbio.2018.04.001 10.1002/term.1505 10.1002/jbmr.2735 10.1007/s00441-011-1205-7 10.1902/jop.2012.110684 10.7150/thno.27385 10.1038/nrm3176 10.1016/j.biomaterials.2014.10.017 10.1021/acsnano.7b09107 10.1073/pnas.1806908115 10.1002/mabi.201100289 10.1002/adhm.201700659 10.1002/jbmr.2238 10.1016/j.biomaterials.2014.08.025 10.1002/adhm.201801578 10.1155/2016/7276150 10.3390/ijms20030636 10.1016/j.ejvs.2017.10.012 10.1002/jor.23460 10.4049/jimmunol.0903356 10.1002/adhm.201700660 10.1007/s00401-014-1369-9 10.1097/00003086-199810001-00003 10.1002/adfm.201705739 10.1016/j.actbio.2016.11.068 10.1002/adma.201602628 10.1016/j.biomaterials.2018.07.012 10.1038/nrrheum.2014.164 10.1016/j.bone.2015.10.019 10.1002/jbm.a.35894 10.1002/adhm.201700289 10.1186/1741-7015-9-66 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2019.119552 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 31670079 10_1016_j_biomaterials_2019_119552 S0142961219306519 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c472t-aef7ce0bddb15d8b73571987d89363cfa9acfa1704da498308053f9f28e9b6ba3 |
| ISICitedReferencesCount | 292 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498276700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Thu Oct 02 11:17:49 EDT 2025 Thu Oct 02 08:46:12 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Sat Nov 29 07:22:54 EST 2025 Tue Nov 18 22:14:19 EST 2025 Fri Feb 23 02:49:13 EST 2024 Tue Oct 14 19:30:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biomineralization Decellularized periosteum matrix hydrogel Angiogenesis Early inflammatory immune regulation Macrophages Bone regeneration |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c472t-aef7ce0bddb15d8b73571987d89363cfa9acfa1704da498308053f9f28e9b6ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31670079 |
| PQID | 2310718589 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2388785104 proquest_miscellaneous_2310718589 pubmed_primary_31670079 crossref_citationtrail_10_1016_j_biomaterials_2019_119552 crossref_primary_10_1016_j_biomaterials_2019_119552 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119552 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119552 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lovati, Bottagisio, Moretti (bib25) 2016; 2016 Zou, Liu, Sun, Yang, Xu, Rao, Jiang, Zhu, Liu, Wu, Chang, Mao, Ling, Quan, Zeng (bib19) 2018; 28 Johnson, Dequach, Gaetani, Ungerleider, Elhag, Nigam, Behfar, Christman (bib56) 2014; 2014 Chen, Cescon, Zuccolotto, Nobbio, Colombelli, Filaferro, Vitale, Feltri, Bonaldo (bib30) 2015; 129 Dimitriou, Jones, McGonagle, Giannoudis (bib1) 2011; 9 Liu, Liu, Luo, Xue, Yang, Gu, Zhou, Wang (bib33) 2016; 28 Saldin, Cramer, Velankar, White, Badylak (bib17) 2017; 49 Mountziaris, Mikos (bib42) 2008; 14 Schell, Duda, Peters, Tsitsilonis, Johnson, Schmidt-Bleek (bib43) 2017; 4 Agrawal, Kelly, Tottey, Daly, Johnson, Siu, Reing, Badylak (bib58) 2011; 17 Schmidt-Bleek, Schell, Lienau, Schulz, Hoff, Pfaff, Schmidt, Martin, Perka, Buttgereit, Volk, Duda (bib7) 2014; 8 Allen, Hock, Burr (bib22) 2004; 35 Roberts, van Gastel, Carmeliet, Luyten (bib57) 2015; 70 Kaigler, Silva, Mooney (bib35) 2013; 84 Lin, Zhao, Zhu, Chen, Yu, Cai, Zhang, Qin, Fan (bib23) 2018; 7 Boersema, Aye, van Veen, Heck, Mohammed (bib26) 2008; 8 Alhamdi, Peng, Al-Naggar, Hawley, Spiller, Kuhn (bib45) 2019; 196 Agrawal, Tottey, Johnson, Freund, Siu, Badylak (bib59) 2011; 17 Rowley, Nagalla, Wang, Liu (bib31) 2019; 8 Lucas, Waisman, Ranjan, Roes, Krieg, Muller, Roers, Eming (bib47) 2010; 184 Raimondo, Mooney (bib13) 2018; 115 Herbert, Stainier (bib41) 2011; 12 Einhorn (bib2) 1998 Spang, Christman (bib18) 2018; 68 Zhang, Liu, Zhang, Zhu, Qi, Cao, Fang, Che, Han, He, Han, Li (bib12) 2018; 8 Sicari, Dziki, Siu, Medberry, Dearth, Badylak (bib20) 2014; 35 Spiller, Nassiri, Witherel, Anfang, Ng, Nakazawa, Yu, Vunjak-Novakovic (bib38) 2015; 37 Sun (bib11) 2017; 6 Stegen, van Gastel, Carmeliet (bib51) 2015; 70 Lohmann, Willuweit, Neffe, Geisler, Gebauer, Beer, Coenen, Fischer, Hermanns-Sachweh, Lendlein, Shah, Kiessling, Langen (bib34) 2017; 113 Phadke, Shih, Varghese (bib53) 2012; 12 Kumar, Wan, Ramaswamy, Clemens, Ponnazhagan (bib28) 2010; 18 Wang, Christman (bib54) 2016; 96 Yoon, Esquivies, Ahn, Gray, Ye, Kwiatkowski, Choe (bib27) 2014; 29 Kostenuik, Mirza (bib44) 2017; 35 Diaz-Rodriguez, Garcia-Trinanes, Echezarreta Lopez, Santovena, Landin (bib52) 2018; 195 Cha, Shin, Leijten, Li, Singh, Liu, Annabi, Abdi, Dokmeci, Vrana, Ghaemmaghami, Khademhosseini (bib10) 2017; 6 Lin, Liu, Chen, Qiu, Rao, Liu, Zhu, Yan, Mao, Zhu, Quan, Liu (bib21) 2018; 73 Einhorn, Gerstenfeld (bib50) 2015; 11 Mariani, Lisignoli, Borzi, Pulsatelli (bib55) 2019; 20 Li, Wen, Li, Li, Qiao, Shen, Jin, Jiang, Yeung, Chu (bib40) 2018; 5 Chen, Lin, Zhang, Ni, Li, Xiao, Wang, Ye, Chen, Jin, Chen (bib24) 2015; 19 Seo, Jung, Kim (bib46) 2018; 67 Schmidt-Bleek, Schell, Schulz, Hoff, Perka, Buttgereit, Volk, Lienau, Duda (bib6) 2012; 347 Ahlfeld, Akkineni, Forster, Kohler, Knaack, Gelinsky, Lode (bib37) 2017; 45 Juban, Chazaud (bib8) 2017; 591 Brown, Ratner, Goodman, Amar, Badylak (bib9) 2012; 33 Wang, Li, Yang, Zou, Liu, Liang, Yin, Niu, Yan, Zhang (bib32) 2018; 55 Schlundt, El Khassawna, Serra, Dienelt, Wendler, Schell, van Rooijen, Radbruch, Lucius, Hartmann, Duda, Schmidt-Bleek (bib5) 2018; 106 Jia, Yang, Zhang, Qiu, Xu, Wang, Chai (bib15) 2019; 83 Schmidt-Bleek, Kwee, Mooney, Duda (bib3) 2015; 21 Sinder, Pettit, McCauley (bib4) 2015; 30 Han, Kim, Lim, Kim, Kong, Kang, Choo, Jun, Ryu, Jeong, Park, Jeong, Lee, Eom, Ahn, Kim (bib14) 2018; 12 Dziki, Wang, Pineda, Sicari, Rausch, Badylak (bib49) 2017; 105 Annabi, Rana, Shirzaei Sani, Portillo-Lara, Gifford, Fares, Mithieux, Weiss (bib29) 2017; 139 Li, Fan, Liu, Liu, Zhang, Zhou, Wu, Yang, Shen, Chen, Jin (bib36) 2013; 34 Ma, Zhao, Liu, Jin, Song, Wang, Zhang, Chen, Zhang (bib39) 2014; 35 Weaver, Song, Yang, Ricordi, Pileggi, Buchwald, Stabler (bib48) 2015; 21 Kumar, Gupta, Bhattacharjee, Nandi, Mandal (bib16) 2018; 187 Mountziaris (10.1016/j.biomaterials.2019.119552_bib42) 2008; 14 Lin (10.1016/j.biomaterials.2019.119552_bib23) 2018; 7 Seo (10.1016/j.biomaterials.2019.119552_bib46) 2018; 67 Dimitriou (10.1016/j.biomaterials.2019.119552_bib1) 2011; 9 Ahlfeld (10.1016/j.biomaterials.2019.119552_bib37) 2017; 45 Annabi (10.1016/j.biomaterials.2019.119552_bib29) 2017; 139 Lohmann (10.1016/j.biomaterials.2019.119552_bib34) 2017; 113 Li (10.1016/j.biomaterials.2019.119552_bib36) 2013; 34 Alhamdi (10.1016/j.biomaterials.2019.119552_bib45) 2019; 196 Schlundt (10.1016/j.biomaterials.2019.119552_bib5) 2018; 106 Johnson (10.1016/j.biomaterials.2019.119552_bib56) 2014; 2014 Agrawal (10.1016/j.biomaterials.2019.119552_bib58) 2011; 17 Diaz-Rodriguez (10.1016/j.biomaterials.2019.119552_bib52) 2018; 195 Sicari (10.1016/j.biomaterials.2019.119552_bib20) 2014; 35 Weaver (10.1016/j.biomaterials.2019.119552_bib48) 2015; 21 Sun (10.1016/j.biomaterials.2019.119552_bib11) 2017; 6 Kumar (10.1016/j.biomaterials.2019.119552_bib28) 2010; 18 Schell (10.1016/j.biomaterials.2019.119552_bib43) 2017; 4 Spiller (10.1016/j.biomaterials.2019.119552_bib38) 2015; 37 Juban (10.1016/j.biomaterials.2019.119552_bib8) 2017; 591 Boersema (10.1016/j.biomaterials.2019.119552_bib26) 2008; 8 Sinder (10.1016/j.biomaterials.2019.119552_bib4) 2015; 30 Lucas (10.1016/j.biomaterials.2019.119552_bib47) 2010; 184 Agrawal (10.1016/j.biomaterials.2019.119552_bib59) 2011; 17 Kumar (10.1016/j.biomaterials.2019.119552_bib16) 2018; 187 Dziki (10.1016/j.biomaterials.2019.119552_bib49) 2017; 105 Lin (10.1016/j.biomaterials.2019.119552_bib21) 2018; 73 Jia (10.1016/j.biomaterials.2019.119552_bib15) 2019; 83 Han (10.1016/j.biomaterials.2019.119552_bib14) 2018; 12 Wang (10.1016/j.biomaterials.2019.119552_bib32) 2018; 55 Cha (10.1016/j.biomaterials.2019.119552_bib10) 2017; 6 Lovati (10.1016/j.biomaterials.2019.119552_bib25) 2016; 2016 Einhorn (10.1016/j.biomaterials.2019.119552_bib2) 1998 Roberts (10.1016/j.biomaterials.2019.119552_bib57) 2015; 70 Spang (10.1016/j.biomaterials.2019.119552_bib18) 2018; 68 Einhorn (10.1016/j.biomaterials.2019.119552_bib50) 2015; 11 Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib6) 2012; 347 Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib7) 2014; 8 Saldin (10.1016/j.biomaterials.2019.119552_bib17) 2017; 49 Raimondo (10.1016/j.biomaterials.2019.119552_bib13) 2018; 115 Chen (10.1016/j.biomaterials.2019.119552_bib24) 2015; 19 Mariani (10.1016/j.biomaterials.2019.119552_bib55) 2019; 20 Zhang (10.1016/j.biomaterials.2019.119552_bib12) 2018; 8 Kostenuik (10.1016/j.biomaterials.2019.119552_bib44) 2017; 35 Ma (10.1016/j.biomaterials.2019.119552_bib39) 2014; 35 Zou (10.1016/j.biomaterials.2019.119552_bib19) 2018; 28 Yoon (10.1016/j.biomaterials.2019.119552_bib27) 2014; 29 Phadke (10.1016/j.biomaterials.2019.119552_bib53) 2012; 12 Wang (10.1016/j.biomaterials.2019.119552_bib54) 2016; 96 Chen (10.1016/j.biomaterials.2019.119552_bib30) 2015; 129 Liu (10.1016/j.biomaterials.2019.119552_bib33) 2016; 28 Li (10.1016/j.biomaterials.2019.119552_bib40) 2018; 5 Kaigler (10.1016/j.biomaterials.2019.119552_bib35) 2013; 84 Allen (10.1016/j.biomaterials.2019.119552_bib22) 2004; 35 Rowley (10.1016/j.biomaterials.2019.119552_bib31) 2019; 8 Herbert (10.1016/j.biomaterials.2019.119552_bib41) 2011; 12 Stegen (10.1016/j.biomaterials.2019.119552_bib51) 2015; 70 Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib3) 2015; 21 Brown (10.1016/j.biomaterials.2019.119552_bib9) 2012; 33 |
| References_xml | – volume: 37 start-page: 194 year: 2015 end-page: 207 ident: bib38 article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds publication-title: Biomaterials – volume: 49 start-page: 1 year: 2017 end-page: 15 ident: bib17 article-title: Extracellular matrix hydrogels from decellularized tissues: structure and function publication-title: Acta Biomater. – volume: 129 start-page: 97 year: 2015 end-page: 113 ident: bib30 article-title: Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization publication-title: Acta Neuropathol. – volume: 34 start-page: 5048 year: 2013 end-page: 5058 ident: bib36 article-title: The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a publication-title: Biomaterials – volume: 73 start-page: 326 year: 2018 end-page: 338 ident: bib21 article-title: Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects publication-title: Acta Biomater. – volume: 55 start-page: 257 year: 2018 end-page: 265 ident: bib32 article-title: Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro publication-title: Eur. J. Vasc. Endovasc. Surg. – volume: 347 start-page: 567 year: 2012 end-page: 573 ident: bib6 article-title: Inflammatory phase of bone healing initiates the regenerative healing cascade publication-title: Cell Tissue Res. – volume: 113 start-page: 158 year: 2017 end-page: 169 ident: bib34 article-title: Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect publication-title: Biomaterials – volume: 8 start-page: 4624 year: 2008 end-page: 4632 ident: bib26 article-title: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates publication-title: Proteomics – volume: 187 start-page: 1 year: 2018 end-page: 17 ident: bib16 article-title: Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization publication-title: Biomaterials – volume: 28 start-page: 1705739 year: 2018 ident: bib19 article-title: Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation publication-title: Adv. Funct. Mater. – volume: 591 start-page: 3007 year: 2017 end-page: 3021 ident: bib8 article-title: Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration publication-title: FEBS Lett. – volume: 6 year: 2017 ident: bib11 article-title: Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing publication-title: Adv. Healthc. Mater. – volume: 28 start-page: 8740 year: 2016 end-page: 8748 ident: bib33 article-title: Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold publication-title: Adv. Mater. – volume: 12 start-page: 1959 year: 2018 end-page: 1977 ident: bib14 article-title: Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair publication-title: ACS Nano – volume: 35 start-page: 8605 year: 2014 end-page: 8612 ident: bib20 article-title: The promotion of a constructive macrophage phenotype by solubilized extracellular matrix publication-title: Biomaterials – volume: 7 year: 2018 ident: bib23 article-title: Periosteum extracellular-matrix-mediated acellular mineralization during bone formation publication-title: Adv. Healthc. Mater. – volume: 29 start-page: 1950 year: 2014 end-page: 1959 ident: bib27 article-title: An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2 publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res. – volume: 8 year: 2019 ident: bib31 article-title: Extracellular matrix-based strategies for immunomodulatory biomaterials engineering publication-title: Adv. Healthc. Mater. – volume: 67 start-page: 270 year: 2018 end-page: 281 ident: bib46 article-title: Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis publication-title: Acta Biomater. – volume: 35 start-page: 1003 year: 2004 end-page: 1012 ident: bib22 article-title: Periosteum: biology, regulation, and response to osteoporosis therapies publication-title: Bone – volume: 19 start-page: 46 year: 2015 end-page: 55 ident: bib24 article-title: Decellularized periosteum as a potential biologic scaffold for bone tissue engineering publication-title: Acta Biomater. – volume: 8 start-page: 5348 year: 2018 end-page: 5361 ident: bib12 article-title: Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization publication-title: Theranostics – volume: 70 start-page: 10 year: 2015 end-page: 18 ident: bib57 article-title: Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath publication-title: Bone – start-page: S7 year: 1998 end-page: S21 ident: bib2 article-title: The cell and molecular biology of fracture healing publication-title: Clin. Orthop. Relat. Res. – volume: 9 start-page: 66 year: 2011 ident: bib1 article-title: Bone regeneration: current concepts and future directions publication-title: BMC Med. – volume: 2016 start-page: 7276150 year: 2016 ident: bib25 article-title: Decellularized and engineered tendons as biological substitutes: a critical review publication-title: Stem Cell. Int. – volume: 8 start-page: 120 year: 2014 end-page: 130 ident: bib7 article-title: Initial immune reaction and angiogenesis in bone healing publication-title: J. Tissue Eng. Regenerat. Med. – volume: 11 start-page: 45 year: 2015 end-page: 54 ident: bib50 article-title: Fracture healing: mechanisms and interventions publication-title: Nat. Rev. Rheumatol. – volume: 2014 start-page: 60283D year: 2014 ident: bib56 article-title: Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel publication-title: Biomater Sci. – volume: 6 year: 2017 ident: bib10 article-title: Integrin-mediated interactions control macrophage polarization in 3D hydrogels publication-title: Adv. Healthc. Mater. – volume: 45 start-page: 224 year: 2017 end-page: 236 ident: bib37 article-title: Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel publication-title: Ann. Biomed. Eng. – volume: 35 start-page: 9853 year: 2014 end-page: 9867 ident: bib39 article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization publication-title: Biomaterials – volume: 21 start-page: 2250 year: 2015 end-page: 2261 ident: bib48 article-title: Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation, tissue engineering publication-title: Part A – volume: 83 start-page: 291 year: 2019 end-page: 301 ident: bib15 article-title: Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes publication-title: Acta Biomater. – volume: 106 start-page: 78 year: 2018 end-page: 89 ident: bib5 article-title: Macrophages in bone fracture healing: their essential role in endochondral ossification publication-title: Bone – volume: 4 start-page: 5 year: 2017 ident: bib43 article-title: The haematoma and its role in bone healing publication-title: J. Exp. Orthop. – volume: 17 start-page: 2435 year: 2011 end-page: 2443 ident: bib59 article-title: Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation, Tissue engineering publication-title: Part A – volume: 196 start-page: 90 year: 2019 end-page: 99 ident: bib45 article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings publication-title: Biomaterials – volume: 105 start-page: 138 year: 2017 end-page: 147 ident: bib49 article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype publication-title: J. Biomed. Mater. Res. A – volume: 5 start-page: 1700678 year: 2018 ident: bib40 article-title: Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation publication-title: Adv. Sci. – volume: 14 start-page: 179 year: 2008 end-page: 186 ident: bib42 article-title: Modulation of the inflammatory response for enhanced bone tissue regeneration, Tissue engineering publication-title: Part B Rev. – volume: 35 start-page: 213 year: 2017 end-page: 223 ident: bib44 article-title: Fracture healing physiology and the quest for therapies for delayed healing and nonunion publication-title: J. Orthop. Res. : Off. Publ. Orthop. Res. Soc. – volume: 12 start-page: 1022 year: 2012 end-page: 1032 ident: bib53 article-title: Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells publication-title: Macromol. Biosci. – volume: 20 year: 2019 ident: bib55 article-title: Biomaterials: foreign bodies or tuners for the immune response? publication-title: Int. J. Mol. Sci. – volume: 84 start-page: 230 year: 2013 end-page: 238 ident: bib35 article-title: Guided bone regeneration using injectable vascular endothelial growth factor delivery gel publication-title: J. Periodontol. – volume: 17 start-page: 3033 year: 2011 end-page: 3044 ident: bib58 article-title: An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation, Tissue engineering publication-title: Part A – volume: 139 start-page: 229 year: 2017 end-page: 243 ident: bib29 article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing publication-title: Biomaterials – volume: 12 start-page: 551 year: 2011 end-page: 564 ident: bib41 article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 184 start-page: 3964 year: 2010 end-page: 3977 ident: bib47 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. – volume: 33 start-page: 3792 year: 2012 end-page: 3802 ident: bib9 article-title: Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine publication-title: Biomaterials – volume: 96 start-page: 77 year: 2016 end-page: 82 ident: bib54 article-title: Decellularized myocardial matrix hydrogels: in basic research and preclinical studies publication-title: Adv. Drug Deliv. Rev. – volume: 18 start-page: 1026 year: 2010 end-page: 1034 ident: bib28 article-title: Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect publication-title: Mol. Ther. – volume: 195 start-page: 235 year: 2018 end-page: 242 ident: bib52 article-title: Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications publication-title: Carbohydr. Polym. – volume: 115 start-page: 10648 year: 2018 end-page: 10653 ident: bib13 article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 start-page: 2140 year: 2015 end-page: 2149 ident: bib4 article-title: Macrophages: their emerging roles in bone publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res. – volume: 21 start-page: 354 year: 2015 end-page: 364 ident: bib3 article-title: Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis, tissue engineering publication-title: Part B Rev. – volume: 68 start-page: 1 year: 2018 end-page: 14 ident: bib18 article-title: Extracellular matrix hydrogel therapies: in vivo applications and development publication-title: Acta Biomater. – volume: 70 start-page: 19 year: 2015 end-page: 27 ident: bib51 article-title: Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration publication-title: Bone – volume: 83 start-page: 291 year: 2019 ident: 10.1016/j.biomaterials.2019.119552_bib15 article-title: Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.10.040 – volume: 4 start-page: 5 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib43 article-title: The haematoma and its role in bone healing publication-title: J. Exp. Orthop. doi: 10.1186/s40634-017-0079-3 – volume: 70 start-page: 10 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib57 article-title: Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath publication-title: Bone doi: 10.1016/j.bone.2014.08.007 – volume: 19 start-page: 46 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib24 article-title: Decellularized periosteum as a potential biologic scaffold for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.02.020 – volume: 8 start-page: 4624 issue: 22 year: 2008 ident: 10.1016/j.biomaterials.2019.119552_bib26 article-title: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates publication-title: Proteomics doi: 10.1002/pmic.200800297 – volume: 139 start-page: 229 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib29 article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.011 – volume: 35 start-page: 1003 issue: 5 year: 2004 ident: 10.1016/j.biomaterials.2019.119552_bib22 article-title: Periosteum: biology, regulation, and response to osteoporosis therapies publication-title: Bone doi: 10.1016/j.bone.2004.07.014 – volume: 45 start-page: 224 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib37 article-title: Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1685-4 – volume: 96 start-page: 77 year: 2016 ident: 10.1016/j.biomaterials.2019.119552_bib54 article-title: Decellularized myocardial matrix hydrogels: in basic research and preclinical studies publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.06.002 – volume: 14 start-page: 179 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2019.119552_bib42 article-title: Modulation of the inflammatory response for enhanced bone tissue regeneration, Tissue engineering publication-title: Part B Rev. – volume: 35 start-page: 8605 issue: 30 year: 2014 ident: 10.1016/j.biomaterials.2019.119552_bib20 article-title: The promotion of a constructive macrophage phenotype by solubilized extracellular matrix publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.06.060 – volume: 68 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib18 article-title: Extracellular matrix hydrogel therapies: in vivo applications and development publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.019 – volume: 67 start-page: 270 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib46 article-title: Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.046 – volume: 33 start-page: 3792 issue: 15 year: 2012 ident: 10.1016/j.biomaterials.2019.119552_bib9 article-title: Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.034 – volume: 5 start-page: 1700678 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib40 article-title: Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation publication-title: Adv. Sci. doi: 10.1002/advs.201700678 – volume: 18 start-page: 1026 issue: 5 year: 2010 ident: 10.1016/j.biomaterials.2019.119552_bib28 article-title: Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect publication-title: Mol. Ther. doi: 10.1038/mt.2009.315 – volume: 70 start-page: 19 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib51 article-title: Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration publication-title: Bone doi: 10.1016/j.bone.2014.09.017 – volume: 187 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib16 article-title: Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.037 – volume: 591 start-page: 3007 issue: 19 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib8 article-title: Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration publication-title: FEBS Lett. doi: 10.1002/1873-3468.12703 – volume: 195 start-page: 235 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib52 article-title: Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.04.101 – volume: 17 start-page: 2435 issue: 19–20 year: 2011 ident: 10.1016/j.biomaterials.2019.119552_bib59 article-title: Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation, Tissue engineering publication-title: Part A – volume: 113 start-page: 158 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib34 article-title: Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.10.039 – volume: 34 start-page: 5048 issue: 21 year: 2013 ident: 10.1016/j.biomaterials.2019.119552_bib36 article-title: The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.052 – volume: 73 start-page: 326 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib21 article-title: Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.04.001 – volume: 8 start-page: 120 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2019.119552_bib7 article-title: Initial immune reaction and angiogenesis in bone healing publication-title: J. Tissue Eng. Regenerat. Med. doi: 10.1002/term.1505 – volume: 30 start-page: 2140 issue: 12 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib4 article-title: Macrophages: their emerging roles in bone publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res. doi: 10.1002/jbmr.2735 – volume: 347 start-page: 567 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2019.119552_bib6 article-title: Inflammatory phase of bone healing initiates the regenerative healing cascade publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1205-7 – volume: 84 start-page: 230 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2019.119552_bib35 article-title: Guided bone regeneration using injectable vascular endothelial growth factor delivery gel publication-title: J. Periodontol. doi: 10.1902/jop.2012.110684 – volume: 8 start-page: 5348 issue: 19 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib12 article-title: Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization publication-title: Theranostics doi: 10.7150/thno.27385 – volume: 12 start-page: 551 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2019.119552_bib41 article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3176 – volume: 37 start-page: 194 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib38 article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.017 – volume: 12 start-page: 1959 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib14 article-title: Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair publication-title: ACS Nano doi: 10.1021/acsnano.7b09107 – volume: 115 start-page: 10648 issue: 42 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib13 article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1806908115 – volume: 12 start-page: 1022 issue: 8 year: 2012 ident: 10.1016/j.biomaterials.2019.119552_bib53 article-title: Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100289 – volume: 21 start-page: 2250 issue: 15–16 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib48 article-title: Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation, tissue engineering publication-title: Part A – volume: 17 start-page: 3033 issue: 23–24 year: 2011 ident: 10.1016/j.biomaterials.2019.119552_bib58 article-title: An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation, Tissue engineering publication-title: Part A – volume: 6 issue: 23 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib11 article-title: Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700659 – volume: 29 start-page: 1950 issue: 9 year: 2014 ident: 10.1016/j.biomaterials.2019.119552_bib27 article-title: An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2 publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res. doi: 10.1002/jbmr.2238 – volume: 35 start-page: 9853 issue: 37 year: 2014 ident: 10.1016/j.biomaterials.2019.119552_bib39 article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.08.025 – volume: 8 issue: 8 year: 2019 ident: 10.1016/j.biomaterials.2019.119552_bib31 article-title: Extracellular matrix-based strategies for immunomodulatory biomaterials engineering publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801578 – volume: 2016 start-page: 7276150 year: 2016 ident: 10.1016/j.biomaterials.2019.119552_bib25 article-title: Decellularized and engineered tendons as biological substitutes: a critical review publication-title: Stem Cell. Int. doi: 10.1155/2016/7276150 – volume: 2014 start-page: 60283D year: 2014 ident: 10.1016/j.biomaterials.2019.119552_bib56 article-title: Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel publication-title: Biomater Sci. – volume: 20 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2019.119552_bib55 article-title: Biomaterials: foreign bodies or tuners for the immune response? publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030636 – volume: 55 start-page: 257 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib32 article-title: Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2017.10.012 – volume: 35 start-page: 213 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib44 article-title: Fracture healing physiology and the quest for therapies for delayed healing and nonunion publication-title: J. Orthop. Res. : Off. Publ. Orthop. Res. Soc. doi: 10.1002/jor.23460 – volume: 184 start-page: 3964 issue: 7 year: 2010 ident: 10.1016/j.biomaterials.2019.119552_bib47 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. doi: 10.4049/jimmunol.0903356 – volume: 7 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib23 article-title: Periosteum extracellular-matrix-mediated acellular mineralization during bone formation publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700660 – volume: 129 start-page: 97 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib30 article-title: Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization publication-title: Acta Neuropathol. doi: 10.1007/s00401-014-1369-9 – start-page: S7 issue: 355 Suppl year: 1998 ident: 10.1016/j.biomaterials.2019.119552_bib2 article-title: The cell and molecular biology of fracture healing publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199810001-00003 – volume: 28 start-page: 1705739 issue: 13 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib19 article-title: Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705739 – volume: 49 start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib17 article-title: Extracellular matrix hydrogels from decellularized tissues: structure and function publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.068 – volume: 28 start-page: 8740 issue: 39 year: 2016 ident: 10.1016/j.biomaterials.2019.119552_bib33 article-title: Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold publication-title: Adv. Mater. doi: 10.1002/adma.201602628 – volume: 196 start-page: 90 year: 2019 ident: 10.1016/j.biomaterials.2019.119552_bib45 article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.012 – volume: 11 start-page: 45 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib50 article-title: Fracture healing: mechanisms and interventions publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2014.164 – volume: 106 start-page: 78 year: 2018 ident: 10.1016/j.biomaterials.2019.119552_bib5 article-title: Macrophages in bone fracture healing: their essential role in endochondral ossification publication-title: Bone doi: 10.1016/j.bone.2015.10.019 – volume: 105 start-page: 138 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib49 article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.35894 – volume: 6 issue: 21 year: 2017 ident: 10.1016/j.biomaterials.2019.119552_bib10 article-title: Integrin-mediated interactions control macrophage polarization in 3D hydrogels publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700289 – volume: 21 start-page: 354 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2019.119552_bib3 article-title: Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis, tissue engineering publication-title: Part B Rev. – volume: 9 start-page: 66 year: 2011 ident: 10.1016/j.biomaterials.2019.119552_bib1 article-title: Bone regeneration: current concepts and future directions publication-title: BMC Med. doi: 10.1186/1741-7015-9-66 |
| SSID | ssj0014042 |
| Score | 2.683242 |
| Snippet | Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119552 |
| SubjectTerms | Angiogenesis Animals bioactive properties biocompatible materials Biomineralization blood vessels body fluids bone formation Bone Regeneration bones Cell Differentiation collagen Decellularized periosteum matrix hydrogel Early inflammatory immune regulation extracellular matrix Hydrogels immunity in vitro studies Macrophages osteoblasts Osteogenesis Rats Tissue Engineering |
| Title | Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219306519 https://dx.doi.org/10.1016/j.biomaterials.2019.119552 https://www.ncbi.nlm.nih.gov/pubmed/31670079 https://www.proquest.com/docview/2310718589 https://www.proquest.com/docview/2388785104 |
| Volume | 227 |
| WOSCitedRecordID | wos000498276700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2W1SVA4JCoTwqI3GrUmXzWNtCHApqxatVDwXtLXISZ5tqSaJ9afkHSPxpZmI7SVUtWg5cvCsntpN8n8dje2ZMyBvpMS9QIfS0zGUOSEnpSBFKJ8PRMnZVqmoD2e9f2cUFH43EZa_32_rCLCesKPhqJar_CjXkAdjoOvsPcDeVQgb8B9AhBdgh3Qj4S2gEPTfQLQTj76-cFHKWoFhe_0yn5VhN0CgLEFKzo7gs8NiUSubT5sQe6PCqjnqco-sIXh6bI76OknJRTay9uiqutfWALMZ56dS7ENgutADiM5_d2i7OS3gW_fbNUmu-0AbCxRiIYwZQNA2q7QvOQc7kre2BFo5f2qwzs8793kQONwsXnttZuFBa2HKYwYbCDbvS2NOhAow8xYB0OsLtHVGvVx1ujuPOG6Cpnji-WwgQqn7UeKPjP6hFoh3-GqNEe2mLbHssFLxPtk8-nY4-N5tSAQg4G7e2NhFc1_Qu2bGVrVN31k1narXm6iF5YOYj9ETz6BHpqWKP3O9EqdwjO-fG_uIx-dWSi94mF7XkopZcFMlFNbmoIReVBa3JRTW5aEsuashFkVzUkotqcsFPSrvkekK-nZ1effjomLM8nCRg3tyRKmOJcuM0jQdhymPmhwzXu1LQl4d-kkkhIRkwN0hlILgPE5nQz0TmcSXiYSz9fdIv4LGfEYo6faZcLoecB7EcQApSJfU8DlWDtnlAhP3kUWIC3eN5K5PIWjTeRF3kIkQu0sgdEL8pW-lwLxuVemuRjaxDMwzBEVB1o9LvmtJG7dXq7MblX1syRTA24IafLFS5gJtg7ga6Z8jF3-4BNQOmXS58t6eaic2bWxI_X3vlBdltu_ZL0p9PF-oVuZcs5_lseki22Igfmm70B6lE8zc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periosteal+matrix-derived+hydrogel+promotes+bone+repair+through+an+early+immune+regulation+coupled+with+enhanced+angio-+and+osteogenesis&rft.jtitle=Biomaterials&rft.au=Qiu%2C+Pengcheng&rft.au=Li%2C+Mobai&rft.au=Chen%2C+Kai&rft.au=Fang%2C+Bin&rft.date=2020-01-01&rft.eissn=1878-5905&rft.volume=227&rft.spage=119552&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119552&rft_id=info%3Apmid%2F31670079&rft.externalDocID=31670079 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |