A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarized piezoelectric zones

A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Ročník 53; číslo 5; s. 1028 - 1036
Hlavní autoři: Estanbouli, Y., Hayward, G., Ramadas, N., Barbenel, J.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0885-3010, 1525-8955
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work
AbstractList A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work.
A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work
[...] emphasis has been placed on the physical relationships and this is considered a major contribution of the work
A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work.A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work.
Author Hayward, G.
Estanbouli, Y.
Barbenel, J.C.
Ramadas, N.
Author_xml – sequence: 1
  givenname: Y.
  surname: Estanbouli
  fullname: Estanbouli, Y.
  organization: Centre for Ultrasonic Eng., Strathclyde Univ., Glasgow
– sequence: 2
  givenname: G.
  surname: Hayward
  fullname: Hayward, G.
  organization: Centre for Ultrasonic Eng., Strathclyde Univ., Glasgow
– sequence: 3
  givenname: N.
  surname: Ramadas
  fullname: Ramadas, N.
  organization: Centre for Ultrasonic Eng., Strathclyde Univ., Glasgow
– sequence: 4
  givenname: J.C.
  surname: Barbenel
  fullname: Barbenel, J.C.
  organization: Centre for Ultrasonic Eng., Strathclyde Univ., Glasgow
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17768968$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16764456$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFLwASipCAUxbbiR37WK1YQKrEpT1bzmRc3GbjYCeHrsR3x9td_mgPhYM1kv17I8-8d0ZOhjAgIS8ZXTJG9Yer6_V6teSUyiWTFZeaPyELJrgolRbihCyoUqKsKKOn5CylW0pZXWv-jJwy2ci6FnJBflwUbR_grui8vYl2U2xCh30RXDF9w3w83A2Y0sN1MXrcBuwRpuihmKIdUjcDxgLCMFk_-OGm6Gab5eMYkp-wvy_G0Nvot9gdqbd5lvScPHW2T_jiUM_J9frj1epzefn105fVxWUJdcOn0jJHa6agrStNXcsFNLyyVEOn0dXaiaZqubaUg2t4C04wrEACgNNct7apzsn7fd8xhu8zpslsfALseztgmJNRWnIqtNiR7x4lpaKyYkr-E-SKKd1I_R9gNrCpeAbfHIG3YY5D3otRUihBNa8y9PoAze0GOzNGv7Hx3vxyNANvD4BNYHuXTQKf_nBNI_O0KnNqz0EMKUV0BvxkJ5-djNb3hlGzC5l5CJnZhcwcQpal_Ej6u_tjold7kUfEv769f_0J2tbeXg
CODEN ITUCER
CitedBy_id crossref_primary_10_1134_S1028335808030063
crossref_primary_10_1134_S1064230714020026
crossref_primary_10_3103_S0025654409060119
crossref_primary_10_1088_0256_307X_28_11_114301
crossref_primary_10_3103_S0025654417010101
crossref_primary_10_1016_j_ultras_2011_01_002
crossref_primary_10_1063_1_3681187
Cites_doi 10.1109/T-SU.1971.29608
10.1121/1.1908709
10.1109/TUFFC.2003.1251139
10.1109/58.308512
10.1109/ULTSYM.2003.1293146
10.1109/TUFFC.2005.1417269
10.1016/0041-624X(85)90058-7
10.1016/0041-624X(84)90030-1
10.1121/1.1919129
10.1109/T-SU.1966.29370
10.1109/58.212561
10.1109/58.677611
10.1121/1.391138
10.1063/1.326568
10.1007/978-1-4613-2943-5_25
10.1016/0041-624X(77)90027-0
10.1016/0041-624X(74)90007-9
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SP
7U5
8FD
F28
FR3
L7M
H8D
7X8
DOI 10.1109/TUFFC.2006.1632692
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Aerospace Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
Aerospace Database
MEDLINE - Academic
DatabaseTitleList PubMed

Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 1036
ExternalDocumentID 2343856361
16764456
17768968
10_1109_TUFFC_2006_1632692
1632692
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
IQODW
RIG
ABTAH
NPM
PKN
Z5M
7SP
7U5
8FD
F28
FR3
L7M
H8D
7X8
ID FETCH-LOGICAL-c472t-a1f0418cb4390fb25c723a09cd9ef49f573b29a02cf72bcf51e3c6cccf929ba73
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237369600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3010
IngestDate Sun Sep 28 10:31:35 EDT 2025
Sun Nov 09 14:01:26 EST 2025
Sun Nov 09 11:17:21 EST 2025
Mon Sep 29 06:28:02 EDT 2025
Mon Jun 30 04:09:56 EDT 2025
Wed Feb 19 01:44:27 EST 2025
Mon Jul 21 09:16:10 EDT 2025
Sat Nov 29 01:51:09 EST 2025
Tue Nov 18 20:49:21 EST 2025
Wed Aug 27 03:07:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electroacoustic transducer
Polarization
Isotropic medium
Function block diagram
Piezoelectric sensor
Experimental study
Block diagram
Layer thickness
Electrical model
Modeling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-a1f0418cb4390fb25c723a09cd9ef49f573b29a02cf72bcf51e3c6cccf929ba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 16764456
PQID 865850923
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_28189769
proquest_journals_865850923
proquest_miscellaneous_28006732
proquest_miscellaneous_896205957
pubmed_primary_16764456
crossref_citationtrail_10_1109_TUFFC_2006_1632692
proquest_miscellaneous_68063186
ieee_primary_1632692
pascalfrancis_primary_17768968
crossref_primary_10_1109_TUFFC_2006_1632692
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref11
ref10
ref1
ref17
ref16
ref19
ref18
ref8
ref7
kino (ref2) 1987
ref9
ref4
ref3
ref6
ref5
mason (ref12) 1948
lewis (ref14) 1980; 8
References_xml – ident: ref13
  doi: 10.1109/T-SU.1971.29608
– ident: ref17
  doi: 10.1121/1.1908709
– ident: ref10
  doi: 10.1109/TUFFC.2003.1251139
– ident: ref8
  doi: 10.1109/58.308512
– ident: ref11
  doi: 10.1109/ULTSYM.2003.1293146
– ident: ref18
  doi: 10.1109/TUFFC.2005.1417269
– ident: ref19
  doi: 10.1016/0041-624X(85)90058-7
– year: 1948
  ident: ref12
  publication-title: Electromechanical Transducers and Wave Filters
– ident: ref16
  doi: 10.1016/0041-624X(84)90030-1
– ident: ref5
  doi: 10.1121/1.1919129
– ident: ref1
  doi: 10.1109/T-SU.1966.29370
– ident: ref4
  doi: 10.1109/58.212561
– ident: ref7
  doi: 10.1109/58.677611
– ident: ref15
  doi: 10.1121/1.391138
– ident: ref9
  doi: 10.1063/1.326568
– year: 1987
  ident: ref2
  publication-title: Acoustic waves Devices Imaging and Analog Signal Processing
– volume: 8
  start-page: 395
  year: 1980
  ident: ref14
  article-title: A matrix technique for analyzing the performance of multi-layered front matched and backed piezoelectric ceramic transducers
  publication-title: Acoust Imaging
  doi: 10.1007/978-1-4613-2943-5_25
– ident: ref3
  doi: 10.1016/0041-624X(77)90027-0
– ident: ref6
  doi: 10.1016/0041-624X(74)90007-9
SSID ssj0014492
Score 1.8264132
Snippet A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing...
[...] emphasis has been placed on the physical relationships and this is considered a major contribution of the work
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1028
SubjectTerms Acoustics
Admittance
Bandwidth
Block diagrams
Boundaries
Damping
Devices
Exact sciences and technology
Finite element analysis
Finite element methods
Frequency
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Linear systems
Mathematical models
Physics
Piezoelectric polarization
Piezoelectric transducers
Piezoelectricity
Studies
Transducers
Ultrasonic imaging
Ultrasonic transducers
Ultrasonics, quantum acoustics, and physical effects of sound
Title A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarized piezoelectric zones
URI https://ieeexplore.ieee.org/document/1632692
https://www.ncbi.nlm.nih.gov/pubmed/16764456
https://www.proquest.com/docview/865850923
https://www.proquest.com/docview/28006732
https://www.proquest.com/docview/28189769
https://www.proquest.com/docview/68063186
https://www.proquest.com/docview/896205957
Volume 53
WOSCitedRecordID wos000237369600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1525-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014492
  issn: 0885-3010
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCiR64NHSEgqLD9wg1K_E9rGqWHGqOLTS3qLYsaVVq81qs4vESvx3xk522yK2ErfIGVt-zHg-22N_AJ8Mc8aja8-d9CKXhXW5McHnkTma6oaJWtpENqEuL_VkYn7swZftXRjvfQo-81_jZzrLb1q3iltlZ4gdeGlwwn2ilOrvam1PDKRMBMhoNEWOSks3F2SoObu6Ho8v-nOHoYQHTiixqsSYyLrDbgk9n8VuwJkcz_jl_1X5FbwYACY57zXiNez52SEc3Ht28BCepbBP1x3B73Ni0ZvdENSSGKZFEjEOaQNBXEhiKPxNnApTMplP_brtaXOmjiyjk2tQMRYkhrv3RBMk3uwi7TyFgvnbX2QeV87TtW_-yr2OFAFv4Hr87eriez4QMuBIKr7MaxaoZNpZRDE0WF44xUVNjWuMD9KEQgnLTU25C4pbFwrmhSudcwFBmK2VOIb9GZb_FohV1mDH-MBKKwvqERU1tClsEEx4yUMGbDNClRteK4-kGbdVWrVQU6VRjSyaZTV0cgaft3nm_Vsdj0ofxeG6k9wkjx4owt1_hSszU-oMTjeaUQ323lUagRxCLy4y-Lj9i4YaT1_qmW9XXcV1IgXij0kwjf1gdkuUGhEl02UGZIcE1pAjYi5UBie91t5roELwW5Tv_t3wU3jeby_FYM73sL9crPwHeOp-LqfdYoQmN9GjZHJ_AC9uKq0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6aBgg48GODEQabD9wgm-3YcXycJqohRsWhk3aLYseWqk1N1bRIq8T_zrOTdhuik7hFzrNlPz_7fbaf_QF80sxqh649tcJlqZDGplp7lwbmaFrULKuEiWQTajgsLi_1zy34sr4L45yLwWfuKHzGs_y6sYuwVXaM2IHnGifcR1IIzrrbWuszAyEiBTIOG5mi2dLVFRmqj0cXg8Fpd_LQl3HPDUVelRAVWbWoGN8xWmyGnNH1DF7-X6VfwYseYpKTziZew5ab7MDzOw8P7sCTGPhp2134fUIM-rMrgnYSArVIpMYhjSeIDEkIhr8Kk2FMJtOxWzYdcc7YknlwczWaxoyEgPeOaoKEu12kmcZgMHd9Q6Zh7Txeuvqv3MtAEvAGLgZfR6dnaU_JgH2p-DytmKeCFdYgjqHecGkVzyqqba2dF9pLlRmuK8qtV9xYL5nLbG6t9QjDTKWyt7A9wfLfATHKaFSM8yw3QlKHuKimtTQ-Y5kT3CfAVj1U2v698kCbcV3GdQvVZezVwKOZl72SE_i8zjPtXut4UHo3dNet5Cr54J4h3P5XuDbTeZHA_soyyn7Et2WBUA7BF88SOFz_xaEazl-qiWsWbcmLSAvEH5JgBepBb5bIC8SUrMgTIBsksIYcMbNUCex1VnungQrhr8zf_7vhh_D0bPTjvDz_Nvy-D8-6zaYQ2vkBtuezhfsIj-2v-bidHcSB9wfA6i0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+block+diagram+model+of+the+thickness+mode+piezoelectric+transducer+containing+dual+oppositely+polarized+piezoelectric+zones&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Estanbouli%2C+Y&rft.au=Hayward%2C+G&rft.au=Ramadas%2C+N&rft.au=Barbenel%2C+J+C&rft.date=2006-05-01&rft.issn=0885-3010&rft.volume=53&rft.issue=5&rft.spage=1028&rft.epage=1036&rft_id=info:doi/10.1109%2FTUFFC.2006.1632692&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon