Genetic Neural Architecture Search for automatic assessment of human sperm images

Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem. However, manual SMA is an inexact, subjective, non-reproducible, and hard to teach process. Therefore, in this paper, we introduce a novel automa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 188; s. 115937
Hlavní autoři: Miahi, Erfan, Mirroshandel, Seyed Abolghasem, Nasr, Alexis
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.02.2022
Elsevier BV
Elsevier
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem. However, manual SMA is an inexact, subjective, non-reproducible, and hard to teach process. Therefore, in this paper, we introduce a novel automatic SMA technique that is based on the neural architecture search algorithm, named Genetic Neural Architecture Search (GeNAS). For this purpose, we used a collection of images termed MHSMA dataset, which contains 1540 sperm images that have been collected from 235 patients with infertility problems. In detail, GeNAS consists of a special genetic algorithm that acts as a meta-controller which explores the constrained search space of plain convolutional neural network architectures. Every individual of this genetic algorithm is a convolutional neural network trained to predict morphological deformities in different segments of human sperm (head, vacuole, and acrosome). The fitness of each individual is calculated by a novel proposed method, named GeNAS Weighting Factor (GeNAS-WF). This technique is specially designed to evaluate the fitness of neural networks which, during their learning process, validation accuracy highly fluctuates. To speed up the algorithm, a hashing method is practiced to save each trained neural architecture fitness, so we could reuse them during fitness evaluation. In terms of running time and computational power, our proposed architecture search method is far more efficient than most of the other existing neural architecture search algorithms. Moreover, whereas most of the existing neural architecture search algorithms are designed to work well with well-prepared benchmark datasets, the overall paradigm of GeNAS is specially designed to address the challenges of real-world datasets, particularly shortage of data and class imbalance. In our experiments, the best neural architecture found by GeNAS has reached an accuracy of 91.66%, 77.33%, and 77.66% in the vacuole, head, and acrosome abnormality detection, respectively. In comparison to other proposed algorithms for MHSMA dataset, GeNAS achieved state-of-the-art results. •A novel neural architecture search based on Genetic Algorithm.•A novel neural architecture encoding for exploration of search space.•A specific Crossover and Mutation operations for neural architecture search.•Work on imbalanced datasets, low resolution images, and non-stained sperms.•State-of-the-art accuracy & Real-time sperm morphological analysis.
AbstractList Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem. However, manual SMA is an inexact, subjective, non-reproducible, and hard to teach process. Therefore, in this paper, we introduce a novel automatic SMA technique that is based on the neural architecture search algorithm, named Genetic Neural Architecture Search (GeNAS). For this purpose, we used a collection of images termed MHSMA dataset, which contains 1540 sperm images that have been collected from 235 patients with infertility problems. In detail, GeNAS consists of a special genetic algorithm that acts as a meta-controller which explores the constrained search space of plain convolutional neural network architectures. Every individual of this genetic algorithm is a convolutional neural network trained to predict morphological deformities in different segments of human sperm (head, vacuole, and acrosome). The fitness of each individual is calculated by a novel proposed method, named GeNAS Weighting Factor (GeNAS-WF). This technique is specially designed to evaluate the fitness of neural networks which, during their learning process, validation accuracy highly fluctuates. To speed up the algorithm, a hashing method is practiced to save each trained neural architecture fitness, so we could reuse them during fitness evaluation. In terms of running time and computational power, our proposed architecture search method is far more efficient than most of the other existing neural architecture search algorithms. Moreover, whereas most of the existing neural architecture search algorithms are designed to work well with well-prepared benchmark datasets, the overall paradigm of GeNAS is specially designed to address the challenges of real-world datasets, particularly shortage of data and class imbalance. In our experiments, the best neural architecture found by GeNAS has reached an accuracy of 91.66%, 77.33%, and 77.66% in the vacuole, head, and acrosome abnormality detection, respectively. In comparison to other proposed algorithms for MHSMA dataset, GeNAS achieved state-of-the-art results. •A novel neural architecture search based on Genetic Algorithm.•A novel neural architecture encoding for exploration of search space.•A specific Crossover and Mutation operations for neural architecture search.•Work on imbalanced datasets, low resolution images, and non-stained sperms.•State-of-the-art accuracy & Real-time sperm morphological analysis.
Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem. However, manual SMA is an inexact, subjective, nonreproducible, and hard to teach process. Therefore, in this paper, we introduce a novel automatic SMA technique that is based on the neural architecture search algorithm, named Genetic Neural Architecture Search (GeNAS). For this purpose, we used a collection of images termed MHSMA dataset, which contains 1, 540 sperm images that have been collected from 235 patients with infertility problems. In detail, GeNAS consists of a special genetic algorithm that acts as a meta-controller which explores the constrained search space of plain convolutional neural network architectures. Every individual of this genetic algorithm is a convolutional neural network trained to predict morphological deformities in different segments of human sperm (head, vacuole, and acrosome). The fitness of each individual is calculated by a novel proposed method, named GeNAS Weighting Factor (GeNAS-WF). This technique is specially designed to evaluate the fitness of neural networks which, during their learning process, validation accuracy highly fluctuates. To speed up the algorithm, a hashing method is practiced to save each trained neural architecture fitness, so we could reuse them during fitness evaluation. In terms of running time and computational power, our proposed architecture search method is far more efficient than most of the other existing neural architecture search algorithms. Moreover, whereas most of the existing neural architecture search algorithms are designed to work well with well-prepared benchmark datasets, the overall paradigm of GeNAS is specially designed to address the challenges of real-world datasets, particularly shortage of data and class imbalance. In our experiments, the best neural architecture found by GeNAS has reached an accuracy of 91.66%, 77.33%, and 77.66% in the vacuole, head, and acrosome abnormality detection, respectively. In comparison to other proposed algorithms for MHSMA dataset, GeNAS achieved state-of-the-art results.
Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem. However, manual SMA is an inexact, subjective, non-reproducible, and hard to teach process. Therefore, in this paper, we introduce a novel automatic SMA technique that is based on the neural architecture search algorithm, named Genetic Neural Architecture Search (GeNAS). For this purpose, we used a collection of images termed MHSMA dataset, which contains 1540 sperm images that have been collected from 235 patients with infertility problems. In detail, GeNAS consists of a special genetic algorithm that acts as a meta-controller which explores the constrained search space of plain convolutional neural network architectures. Every individual of this genetic algorithm is a convolutional neural network trained to predict morphological deformities in different segments of human sperm (head, vacuole, and acrosome). The fitness of each individual is calculated by a novel proposed method, named GeNAS Weighting Factor (GeNAS-WF). This technique is specially designed to evaluate the fitness of neural networks which, during their learning process, validation accuracy highly fluctuates. To speed up the algorithm, a hashing method is practiced to save each trained neural architecture fitness, so we could reuse them during fitness evaluation. In terms of running time and computational power, our proposed architecture search method is far more efficient than most of the other existing neural architecture search algorithms. Moreover, whereas most of the existing neural architecture search algorithms are designed to work well with well-prepared benchmark datasets, the overall paradigm of GeNAS is specially designed to address the challenges of real-world datasets, particularly shortage of data and class imbalance. In our experiments, the best neural architecture found by GeNAS has reached an accuracy of 91.66%, 77.33%, and 77.66% in the vacuole, head, and acrosome abnormality detection, respectively. In comparison to other proposed algorithms for MHSMA dataset, GeNAS achieved state-of-the-art results.
ArticleNumber 115937
Author Nasr, Alexis
Mirroshandel, Seyed Abolghasem
Miahi, Erfan
Author_xml – sequence: 1
  givenname: Erfan
  surname: Miahi
  fullname: Miahi, Erfan
  email: mhi.erfan1@gmail.com
  organization: Department of Computer Engineering, University of Guilan, Rasht, Iran
– sequence: 2
  givenname: Seyed Abolghasem
  orcidid: 0000-0001-8853-9112
  surname: Mirroshandel
  fullname: Mirroshandel, Seyed Abolghasem
  email: mirroshandel@guilan.ac.ir
  organization: Department of Computer Engineering, University of Guilan, Rasht, Iran
– sequence: 3
  givenname: Alexis
  surname: Nasr
  fullname: Nasr, Alexis
  email: alexis.nasr@univ-amu.fr
  organization: Laboratoire dÍnformatique et Systemes, Aix Marseille Université, Marseille, France
BackLink https://hal.science/hal-03585035$$DView record in HAL
BookMark eNp9kU1P7CAUhonRxPHjD7giceWic4HSQhM3E-NXMrnGqGvClIPDZFpGoHPjv5emurkLN5xA3gfOeThBh73vAaELSuaU0PrPZg7xn54zwuic0qopxQGaUSnKohZNeYhmpKlEwangx-gkxg0hVBAiZuj5HnpIrsV_YQh6ixehXbsEbRoC4BfQeYutD1gPyXd6DOoYIcYO-oS9xeuh0z2OOwgddp1-h3iGjqzeRjj_rqfo7e729eahWD7dP94slkXLBUtFY1YrCVYIKwxQ0hguLbe84mLVaMYNyNpIxumqqjm1klAjDWXcGmIFcGDlKbqa7l3rrdqF_Hj4VF479bBYqvGMlJWs8rKnOXs5ZXfBfwwQk9r4IfS5PcVqInlT11WZU3JKtcHHGMCq1qU8s-9T0G6rKFGjbLVRo2w1ylaT7Iyy_9Cfjn6FricIsqa9g6Bi66BvwbiQf0AZ737DvwA89Jn6
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106152
crossref_primary_10_3390_math11030515
crossref_primary_10_1016_j_compmedimag_2024_102441
crossref_primary_10_1080_21681163_2024_2347978
crossref_primary_10_1109_TAI_2024_3477457
crossref_primary_10_3390_diagnostics13061100
crossref_primary_10_3390_electronics14091820
crossref_primary_10_1016_j_engfailanal_2024_108426
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_3390_healthcare12070781
crossref_primary_10_1111_rda_70024
crossref_primary_10_3390_genes14020451
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1145_3603704
crossref_primary_10_1016_j_imu_2024_101565
crossref_primary_10_1016_j_neucom_2024_127664
crossref_primary_10_1016_j_apm_2023_10_025
Cites_doi 10.1016/j.anireprosci.2013.04.002
10.1109/JPROC.2015.2494218
10.1016/j.compbiomed.2019.04.030
10.1109/5.726791
10.1016/j.cmpb.2015.08.013
10.1016/j.bspc.2017.11.009
10.26415/2572-004X-vol2iss4p301-307
10.5120/743-1050
10.1155/2018/7068349
10.1038/s42003-019-0491-6
10.1109/CVPR.2009.5206848
10.1016/j.compbiomed.2017.03.004
10.1016/j.theriogenology.2011.10.039
10.1609/aaai.v33i01.33014780
10.1002/j.1939-4640.2004.tb02807.x
10.1016/j.compbiomed.2019.103342
10.1038/s41591-018-0316-z
10.1109/COGANN.1992.273950
10.1016/j.compbiomed.2008.01.005
10.1016/j.contraception.2005.05.007
10.4236/jbise.2012.57049
10.1109/TSMC.1979.4310076
10.1016/j.fertnstert.2007.08.071
10.1162/106365602320169811
10.1109/CVPR.2018.00257
10.1002/for.3980040103
10.1007/978-3-030-05318-5_3
10.1093/humrep/deq075
10.1016/j.cmpb.2014.06.018
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Feb 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.eswa.2021.115937
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID oai:HAL:hal-03585035v1
10_1016_j_eswa_2021_115937
S0957417421012914
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
1XC
ID FETCH-LOGICAL-c472t-9dbb8ef77f7de109d48f4f4547b9a24de86d8241b5641f801d8d124fd0f7e4e23
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768193500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Oct 14 20:32:03 EDT 2025
Sun Jul 13 04:41:18 EDT 2025
Sat Nov 29 07:10:08 EST 2025
Tue Nov 18 19:52:40 EST 2025
Fri Feb 23 02:42:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Neural architecture search
Human sperm morphometry
Genetic algorithm
Infertility
Human Sperm Morphometry
Neural Architecture Search
Deep Learning
Genetic Algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-9dbb8ef77f7de109d48f4f4547b9a24de86d8241b5641f801d8d124fd0f7e4e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8853-9112
OpenAccessLink https://doi.org/10.48550/arxiv.1909.09432
PQID 2608496653
PQPubID 2045477
ParticipantIDs hal_primary_oai_HAL_hal_03585035v1
proquest_journals_2608496653
crossref_citationtrail_10_1016_j_eswa_2021_115937
crossref_primary_10_1016_j_eswa_2021_115937
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115937
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Zoph, Le (b69) 2016
Ghasemian, Mirroshandel, Monji-Azad, Azarnia, Zahiri (b18) 2015; 122
Kotikalapudi (b30) 2017
Abràmoff, Magalhães, Ram (b3) 2004; 11
Suganuma, Shirakawa, Nagao (b60) 2017
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998. Gradient-based learning applied to document recognition. In
Elsken, T., Metzen, J. H., & Hutter, F. 2019. Efficient multi-objective neural architecture search via Lamarckian evolution. In
Vicente-Fiel, Palacin, Santolaria, Yániz (b62) 2013; 139
Meyer-Lee, Uppili, Zhao (b41) 2017
Mitchell (b43) 1998
He, Zhao, Chu (b20) 2019
Maree, Du Plessis, Menkveld, Van der Horst (b39) 2010; 25
Riordon, McCallum, Sinton (b49) 2019
Alegre, Biehl, Petkov, Sánchez (b4) 2008; 38
LeCun, Bottou, Orr, Müller (b35) 2012
Xie, Yuille (b64) 2017
Chang, Saavedra, Castañeda, Sarabia, Hitschfeld, Härtel (b11) 2014; 117
Yániz, Vicente-Fiel, Capistrós, Palacín, Santolaria (b65) 2012; 77
Elsken, Metzen, Hutter (b14) 2018
Baker, Gupta, Raskar, Naik (b6) 2017
Ramos, de Boer, Meuleman, Braat, Wetzels (b46) 2004; 25
Pham, Guan, Zoph, Le, Dean (b45) 2018
Boumaza, Loukil, Aarizou (b8) 2018; 2
Krizhevsky, Sutskever, Hinton (b33) 2012
Sanchez, Petkov, Alegre (b51) 2006; 52
Shahriari, Swersky, Wang, Adams, De Freitas (b54) 2016; 104
(pp. 2171–2180).
(pp. 248–255).
McCallum, Riordon, Wang, Kong, You, Sanner (b40) 2019; 2
Zoph, Vasudevan, Shlens, Le (b70) 2017
.
Kingma, Ba (b26) 2014
Baker, Gupta, Naik, Raskar (b5) 2017
Ilhan, Aydin (b21) 2018; 41
Stanley, Miikkulainen (b58) 2002; 10
Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier architecture search. In
Abadi, Barham, Chen, Chen, Davis, Dean (b1) 2016; 16
Liu, H., Simonyan, K., & Yang, Y. (2091). DARTS: Differentiable architecture search. In
Miller, Todd, Hegde (b42) 1989; 89
Schaffer, J. D., Whitley, D., & Eshelman, L. J. (1992). Combinations of genetic algorithms and neural networks: A survey of the state of the art. In
Chollet (b12) 2015
Zeiler, Fergus (b66) 2013
Jin, Song, Hu (b24) 2018
Javadi, Mirroshandel (b23) 2019; 109
Kitano (b27) 1990; 4
Krizhevsky, Sutskever, Hinton (b32) 2012
IEEE (pp. 1–37).
Esteva, Robicquet, Ramsundar, Kuleshov, DePristo, Chou (b16) 2019; 25
Klambauer, Unterthiner, Mayr, Hochreiter (b28) 2017
Krizhevsky, Hinton (b31) 2009
Abbiramy, Shanthi (b2) 2010; 3
Li, Tseng, Dong, Li, Zhao, Ding (b36) 2014
Sánchez, Petkov, Alegre (b50) 2005
Bijar, Benavent, Mikaeili (b7) 2012; 5
URL
Zhang (b67) 2017
Liu, Simonyan, Vinyals, Fernando, Kavukcuoglu (b37) 2017
Otsu (b44) 1979; 9
Haugen, Andersen, Witczak, Hammer, Hicks, Borgli (b19) 2019
Selvaraju, Das, Vedantam, Cogswell, Parikh, Batra (b53) 2016
Real, Moore, Selle, Saxena, Suematsu, Tan (b48) 2017
(pp. 4780–4789).
(pp. 2278–2324).
Gardner Jr (b17) 1985; 4
Snoek, Larochelle, Adams (b56) 2012
Chang, Garcia, Hitschfeld, Härtel (b10) 2017; 83
Voulodimos, Doulamis, Doulamis, Protopapadakis (b63) 2018; 2018
Szegedy, Ioffe, Vanhoucke (b61) 2016
Kandasamy, Neiswanger, Schneider, Poczos, Xing (b25) 2018
Klein, Falkner, Bartels, Hennig, Hutter (b29) 2017; vol. 54
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., & Sundaram, N., et al. (2015). Scalable bayesian optimization using deep neural networks. In
Stouffs, Tournaye, Van der Elst, Liebaers, Lissens (b59) 2008; 90
Deng, J., Dong, W., Socher, R., & and, L. L. 2009. ImageNet: A large-scale hierarchical image database. In
(pp. 2423–2432).
Cai, Chen, Zhang, Yu, Wang (b9) 2018
Isidori, Latini, Romanelli (b22) 2005; 72
Shaker (b55) 2017
Zhong, Z., Yan, J., Wu, W., Shao, J., & Liu, C.-L. (2018). Practical block-wise neural network architecture generation. In
Real (10.1016/j.eswa.2021.115937_b48) 2017
Stanley (10.1016/j.eswa.2021.115937_b58) 2002; 10
Chollet (10.1016/j.eswa.2021.115937_b12) 2015
Klein (10.1016/j.eswa.2021.115937_b29) 2017; vol. 54
10.1016/j.eswa.2021.115937_b47
Liu (10.1016/j.eswa.2021.115937_b37) 2017
Suganuma (10.1016/j.eswa.2021.115937_b60) 2017
Mitchell (10.1016/j.eswa.2021.115937_b43) 1998
Klambauer (10.1016/j.eswa.2021.115937_b28) 2017
Zoph (10.1016/j.eswa.2021.115937_b70) 2017
Li (10.1016/j.eswa.2021.115937_b36) 2014
Zhang (10.1016/j.eswa.2021.115937_b67) 2017
Kingma (10.1016/j.eswa.2021.115937_b26) 2014
Cai (10.1016/j.eswa.2021.115937_b9) 2018
Javadi (10.1016/j.eswa.2021.115937_b23) 2019; 109
Kotikalapudi (10.1016/j.eswa.2021.115937_b30) 2017
Shaker (10.1016/j.eswa.2021.115937_b55) 2017
Baker (10.1016/j.eswa.2021.115937_b6) 2017
Alegre (10.1016/j.eswa.2021.115937_b4) 2008; 38
Maree (10.1016/j.eswa.2021.115937_b39) 2010; 25
Elsken (10.1016/j.eswa.2021.115937_b14) 2018
Krizhevsky (10.1016/j.eswa.2021.115937_b33) 2012
Pham (10.1016/j.eswa.2021.115937_b45) 2018
Bijar (10.1016/j.eswa.2021.115937_b7) 2012; 5
10.1016/j.eswa.2021.115937_b15
10.1016/j.eswa.2021.115937_b13
10.1016/j.eswa.2021.115937_b57
Riordon (10.1016/j.eswa.2021.115937_b49) 2019
Meyer-Lee (10.1016/j.eswa.2021.115937_b41) 2017
10.1016/j.eswa.2021.115937_b52
Krizhevsky (10.1016/j.eswa.2021.115937_b31) 2009
LeCun (10.1016/j.eswa.2021.115937_b35) 2012
Chang (10.1016/j.eswa.2021.115937_b11) 2014; 117
Ramos (10.1016/j.eswa.2021.115937_b46) 2004; 25
Voulodimos (10.1016/j.eswa.2021.115937_b63) 2018; 2018
Baker (10.1016/j.eswa.2021.115937_b5) 2017
Snoek (10.1016/j.eswa.2021.115937_b56) 2012
Shahriari (10.1016/j.eswa.2021.115937_b54) 2016; 104
Ilhan (10.1016/j.eswa.2021.115937_b21) 2018; 41
Selvaraju (10.1016/j.eswa.2021.115937_b53) 2016
Sánchez (10.1016/j.eswa.2021.115937_b50) 2005
Zoph (10.1016/j.eswa.2021.115937_b69) 2016
Zeiler (10.1016/j.eswa.2021.115937_b66) 2013
Esteva (10.1016/j.eswa.2021.115937_b16) 2019; 25
Kitano (10.1016/j.eswa.2021.115937_b27) 1990; 4
10.1016/j.eswa.2021.115937_b68
McCallum (10.1016/j.eswa.2021.115937_b40) 2019; 2
Miller (10.1016/j.eswa.2021.115937_b42) 1989; 89
Vicente-Fiel (10.1016/j.eswa.2021.115937_b62) 2013; 139
Boumaza (10.1016/j.eswa.2021.115937_b8) 2018; 2
Sanchez (10.1016/j.eswa.2021.115937_b51) 2006; 52
Abadi (10.1016/j.eswa.2021.115937_b1) 2016; 16
Kandasamy (10.1016/j.eswa.2021.115937_b25) 2018
Yániz (10.1016/j.eswa.2021.115937_b65) 2012; 77
Haugen (10.1016/j.eswa.2021.115937_b19) 2019
He (10.1016/j.eswa.2021.115937_b20) 2019
10.1016/j.eswa.2021.115937_b38
10.1016/j.eswa.2021.115937_b34
Abbiramy (10.1016/j.eswa.2021.115937_b2) 2010; 3
Jin (10.1016/j.eswa.2021.115937_b24) 2018
Otsu (10.1016/j.eswa.2021.115937_b44) 1979; 9
Xie (10.1016/j.eswa.2021.115937_b64) 2017
Gardner Jr (10.1016/j.eswa.2021.115937_b17) 1985; 4
Chang (10.1016/j.eswa.2021.115937_b10) 2017; 83
Isidori (10.1016/j.eswa.2021.115937_b22) 2005; 72
Abràmoff (10.1016/j.eswa.2021.115937_b3) 2004; 11
Ghasemian (10.1016/j.eswa.2021.115937_b18) 2015; 122
Szegedy (10.1016/j.eswa.2021.115937_b61) 2016
Krizhevsky (10.1016/j.eswa.2021.115937_b32) 2012
Stouffs (10.1016/j.eswa.2021.115937_b59) 2008; 90
References_xml – year: 2015
  ident: b12
  article-title: Keras
– volume: 109
  start-page: 182
  year: 2019
  end-page: 194
  ident: b23
  article-title: A novel deep learning method for automatic assessment of human sperm images
  publication-title: Computers in Biology and Medicine
– year: 2017
  ident: b55
  article-title: Human sperm head morphology dataset (HuSHeM)
  publication-title: Mendeley Data
– year: 2016
  ident: b61
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: CoRR
– reference: ; IEEE (pp. 1–37).
– year: 2017
  ident: b5
  article-title: Designing neural network architectures using reinforcement learning
  publication-title: 5th international conference on learning representations, 2017, Toulon, France, April 24-26, 2017, conference track proceedings
– volume: 72
  start-page: 314
  year: 2005
  end-page: 318
  ident: b22
  article-title: Treatment of male infertility
  publication-title: Contraception
– volume: 25
  start-page: 406
  year: 2004
  end-page: 411
  ident: b46
  article-title: Evaluation of ICSI-selected epididymal sperm samples of obstructive azoospermic males by the CKIA system
  publication-title: Journal of Andrology
– volume: 117
  start-page: 225
  year: 2014
  end-page: 237
  ident: b11
  article-title: Gold-standard and improved framework for sperm head segmentation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  ident: b3
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– volume: 139
  start-page: 182
  year: 2013
  end-page: 189
  ident: b62
  article-title: A comparative study of sperm morphometric subpopulations in cattle, goat, sheep and pigs using a computer-assisted fluorescence method (CASMA-F)
  publication-title: Animal Reproduction Science
– reference: . URL
– start-page: 1388
  year: 2017
  end-page: 1397
  ident: b64
  article-title: Genetic CNN
  publication-title: ICCV
– year: 2016
  ident: b53
  article-title: Grad-CAM: Why did you say that?
– reference: Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier architecture search. In
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b32
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– year: 2018
  ident: b25
  article-title: Neural architecture search with bayesian optimisation and optimal transport
– year: 2013
  ident: b66
  article-title: Visualizing and understanding convolutional networks
  publication-title: CoRR
– volume: 122
  start-page: 409
  year: 2015
  end-page: 420
  ident: b18
  article-title: An efficient method for automatic morphological abnormality detection from human sperm images
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 89
  start-page: 379
  year: 1989
  end-page: 384
  ident: b42
  article-title: Designing neural networks using genetic algorithms
  publication-title: ICGA
– volume: 2
  start-page: 250
  year: 2019
  ident: b40
  article-title: Deep learning-based selection of human sperm with high DNA integrity
  publication-title: Communications Biology
– volume: 25
  start-page: 1369
  year: 2010
  end-page: 1382
  ident: b39
  article-title: Morphometric dimensions of the human sperm head depend on the staining method used
  publication-title: Human Reproduction
– volume: 10
  start-page: 99
  year: 2002
  end-page: 127
  ident: b58
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
– year: 2019
  ident: b19
  article-title: VISEM: A multimodal video dataset of human spermatozoa
– volume: 77
  start-page: 1343
  year: 2012
  end-page: 1350
  ident: b65
  article-title: Automatic evaluation of ram sperm morphometry
  publication-title: Theriogenology
– volume: 4
  start-page: 461
  year: 1990
  end-page: 476
  ident: b27
  article-title: Designing neural networks using genetic algorithms with graph generation system
  publication-title: Complex Systems
– volume: 2018
  year: 2018
  ident: b63
  article-title: Deep learning for computer vision: A brief review
  publication-title: Computational Intelligence and Neuroscience
– reference: (pp. 248–255).
– year: 2018
  ident: b14
  article-title: Neural architecture search: A survey
– year: 2017
  ident: b37
  article-title: Hierarchical representations for efficient architecture search
– start-page: 338
  year: 2017
  end-page: 341
  ident: b67
  article-title: Animal sperm morphology analysis system based on computer vision
  publication-title: 2017 eighth international conference on intelligent control and information processing
– volume: 16
  start-page: 265
  year: 2016
  end-page: 283
  ident: b1
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: OSDI
– reference: Deng, J., Dong, W., Socher, R., & and, L. L. 2009. ImageNet: A large-scale hierarchical image database. In
– start-page: 88
  year: 2005
  end-page: 95
  ident: b50
  article-title: Statistical approach to boar semen head classification based on intracellular intensity distribution
  publication-title: International conference on computer analysis of images and patterns
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b54
  article-title: Taking the human out of the loop: A review of bayesian optimization
  publication-title: Proceedings of the IEEE
– volume: 90
  start-page: 1787
  year: 2008
  end-page: 1791
  ident: b59
  article-title: Is there a role for the nuclear export factor 2 gene in male infertility?
  publication-title: Fertility and Sterility
– year: 2017
  ident: b6
  article-title: Accelerating neural architecture search using performance prediction
– year: 1998
  ident: b43
  article-title: An introduction to genetic algorithms
– volume: 3
  start-page: 19
  year: 2010
  end-page: 23
  ident: b2
  article-title: Spermatozoa segmentation and morphological parameter analysis based detection of teratozoospermia
  publication-title: International Journal of Computer Applications
– volume: 5
  start-page: 384
  year: 2012
  ident: b7
  article-title: Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear
  publication-title: Journal of Biomedical Science and Engineering
– volume: 83
  start-page: 143
  year: 2017
  end-page: 150
  ident: b10
  article-title: Gold-standard for computer-assisted morphological sperm analysis
  publication-title: Computers in Biology and Medicine
– year: 2014
  ident: b26
  article-title: Adam: A method for stochastic optimization
– start-page: 108
  year: 2014
  end-page: 113
  ident: b36
  article-title: Human sperm health diagnosis with principal component analysis and K-nearest neighbor algorithm
  publication-title: Medical biometrics, 2014 international conference on
– reference: (pp. 4780–4789).
– volume: vol. 54
  start-page: 528
  year: 2017
  end-page: 536
  ident: b29
  article-title: Fast Bayesian optimization of machine learning hyperparameters on large datasets
  publication-title: Proceedings of the 20th international conference on artificial intelligence and statistics
– year: 2017
  ident: b48
  article-title: Large-scale evolution of image classifiers
– volume: 52
  start-page: 38
  year: 2006
  end-page: 43
  ident: b51
  article-title: Statistical approach to boar semen evaluation using intracellular intensity distribution of head images
  publication-title: Cellular and Molecular Biology
– year: 2016
  ident: b69
  article-title: Neural architecture search with reinforcement learning
– reference: Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., & Sundaram, N., et al. (2015). Scalable bayesian optimization using deep neural networks. In
– volume: 38
  start-page: 461
  year: 2008
  end-page: 468
  ident: b4
  article-title: Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ
  publication-title: Computers in Biology and Medicine
– year: 2019
  ident: b49
  article-title: Deep learning for the classification of human sperm
  publication-title: Computers in Biology and Medicine
– volume: 2
  start-page: 301
  year: 2018
  end-page: 307
  ident: b8
  article-title: Automatic human sperm concentrartion in microscopic videos
  publication-title: Medical Technologies Journal
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b33
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems 25
– reference: Elsken, T., Metzen, J. H., & Hutter, F. 2019. Efficient multi-objective neural architecture search via Lamarckian evolution. In
– reference: (pp. 2278–2324).
– reference: Zhong, Z., Yan, J., Wu, W., Shao, J., & Liu, C.-L. (2018). Practical block-wise neural network architecture generation. In
– year: 2017
  ident: b70
  article-title: Learning transferable architectures for scalable image recognition
– reference: (pp. 2423–2432).
– reference: (pp. 2171–2180).
– year: 2009
  ident: b31
  article-title: Learning multiple layers of features from tiny images
– volume: 41
  start-page: 129
  year: 2018
  end-page: 139
  ident: b21
  article-title: A novel data acquisition and analyzing approach to spermiogram tests
  publication-title: Biomedical Signal Processing and Control
– year: 2017
  ident: b30
  article-title: Keras-vis
– volume: 25
  start-page: 24
  year: 2019
  ident: b16
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
– volume: 4
  start-page: 1
  year: 1985
  end-page: 28
  ident: b17
  article-title: Exponential smoothing: The state of the art
  publication-title: Journal of Forecasting
– year: 2019
  ident: b20
  article-title: AutoML: A survey of the state-of-the-art
– start-page: 9
  year: 2012
  end-page: 48
  ident: b35
  article-title: Efficient BackProp
  publication-title: Neural networks: tricks of the trade
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: b56
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in neural information processing systems
– reference: .
– year: 2017
  ident: b60
  article-title: A genetic programming approach to designing convolutional neural network architectures
  publication-title: CoRR
– start-page: 971
  year: 2017
  end-page: 980
  ident: b28
  article-title: Self-normalizing neural networks
  publication-title: Advances in neural information processing systems
– year: 2017
  ident: b41
  article-title: Evolving deep neural networks
  publication-title: CoRR
– reference: Schaffer, J. D., Whitley, D., & Eshelman, L. J. (1992). Combinations of genetic algorithms and neural networks: A survey of the state of the art. In
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b44
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 4095
  year: 2018
  end-page: 4104
  ident: b45
  article-title: Efficient neural architecture search via parameters sharing
  publication-title: Proceedings of the 35th international conference on machine learning
– reference: Liu, H., Simonyan, K., & Yang, Y. (2091). DARTS: Differentiable architecture search. In
– year: 2018
  ident: b9
  article-title: Efficient architecture search by network transformation
– year: 2018
  ident: b24
  article-title: Efficient neural architecture search with network morphism
– reference: Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998. Gradient-based learning applied to document recognition. In
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b6
– volume: 139
  start-page: 182
  issue: 1–4
  year: 2013
  ident: 10.1016/j.eswa.2021.115937_b62
  article-title: A comparative study of sperm morphometric subpopulations in cattle, goat, sheep and pigs using a computer-assisted fluorescence method (CASMA-F)
  publication-title: Animal Reproduction Science
  doi: 10.1016/j.anireprosci.2013.04.002
– year: 2019
  ident: 10.1016/j.eswa.2021.115937_b19
– start-page: 2951
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b56
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115937_b54
  article-title: Taking the human out of the loop: A review of bayesian optimization
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: 10.1016/j.eswa.2021.115937_b38
– volume: 16
  start-page: 265
  year: 2016
  ident: 10.1016/j.eswa.2021.115937_b1
  article-title: Tensorflow: a system for large-scale machine learning
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b30
– ident: 10.1016/j.eswa.2021.115937_b57
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b60
  article-title: A genetic programming approach to designing convolutional neural network architectures
  publication-title: CoRR
– year: 2019
  ident: 10.1016/j.eswa.2021.115937_b20
– volume: 109
  start-page: 182
  year: 2019
  ident: 10.1016/j.eswa.2021.115937_b23
  article-title: A novel deep learning method for automatic assessment of human sperm images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.04.030
– ident: 10.1016/j.eswa.2021.115937_b34
  doi: 10.1109/5.726791
– volume: 122
  start-page: 409
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2021.115937_b18
  article-title: An efficient method for automatic morphological abnormality detection from human sperm images
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2015.08.013
– year: 2016
  ident: 10.1016/j.eswa.2021.115937_b69
– year: 2013
  ident: 10.1016/j.eswa.2021.115937_b66
  article-title: Visualizing and understanding convolutional networks
  publication-title: CoRR
– volume: 41
  start-page: 129
  year: 2018
  ident: 10.1016/j.eswa.2021.115937_b21
  article-title: A novel data acquisition and analyzing approach to spermiogram tests
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.11.009
– volume: 2
  start-page: 301
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2021.115937_b8
  article-title: Automatic human sperm concentrartion in microscopic videos
  publication-title: Medical Technologies Journal
  doi: 10.26415/2572-004X-vol2iss4p301-307
– volume: 3
  start-page: 19
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2021.115937_b2
  article-title: Spermatozoa segmentation and morphological parameter analysis based detection of teratozoospermia
  publication-title: International Journal of Computer Applications
  doi: 10.5120/743-1050
– year: 1998
  ident: 10.1016/j.eswa.2021.115937_b43
– volume: 2018
  year: 2018
  ident: 10.1016/j.eswa.2021.115937_b63
  article-title: Deep learning for computer vision: A brief review
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2018/7068349
– volume: 2
  start-page: 250
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115937_b40
  article-title: Deep learning-based selection of human sperm with high DNA integrity
  publication-title: Communications Biology
  doi: 10.1038/s42003-019-0491-6
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b55
  article-title: Human sperm head morphology dataset (HuSHeM)
  publication-title: Mendeley Data
– start-page: 1388
  year: 2017
  ident: 10.1016/j.eswa.2021.115937_b64
  article-title: Genetic CNN
– ident: 10.1016/j.eswa.2021.115937_b13
  doi: 10.1109/CVPR.2009.5206848
– volume: 83
  start-page: 143
  year: 2017
  ident: 10.1016/j.eswa.2021.115937_b10
  article-title: Gold-standard for computer-assisted morphological sperm analysis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.03.004
– volume: vol. 54
  start-page: 528
  year: 2017
  ident: 10.1016/j.eswa.2021.115937_b29
  article-title: Fast Bayesian optimization of machine learning hyperparameters on large datasets
– volume: 77
  start-page: 1343
  issue: 7
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b65
  article-title: Automatic evaluation of ram sperm morphometry
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.10.039
– year: 2018
  ident: 10.1016/j.eswa.2021.115937_b25
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b37
– ident: 10.1016/j.eswa.2021.115937_b47
  doi: 10.1609/aaai.v33i01.33014780
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b48
– start-page: 1097
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b32
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2016
  ident: 10.1016/j.eswa.2021.115937_b61
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: CoRR
– volume: 89
  start-page: 379
  year: 1989
  ident: 10.1016/j.eswa.2021.115937_b42
  article-title: Designing neural networks using genetic algorithms
– volume: 25
  start-page: 406
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2021.115937_b46
  article-title: Evaluation of ICSI-selected epididymal sperm samples of obstructive azoospermic males by the CKIA system
  publication-title: Journal of Andrology
  doi: 10.1002/j.1939-4640.2004.tb02807.x
– year: 2019
  ident: 10.1016/j.eswa.2021.115937_b49
  article-title: Deep learning for the classification of human sperm
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.103342
– start-page: 971
  year: 2017
  ident: 10.1016/j.eswa.2021.115937_b28
  article-title: Self-normalizing neural networks
– year: 2018
  ident: 10.1016/j.eswa.2021.115937_b9
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115937_b16
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0316-z
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b70
– ident: 10.1016/j.eswa.2021.115937_b52
  doi: 10.1109/COGANN.1992.273950
– year: 2016
  ident: 10.1016/j.eswa.2021.115937_b53
– start-page: 4095
  year: 2018
  ident: 10.1016/j.eswa.2021.115937_b45
  article-title: Efficient neural architecture search via parameters sharing
– year: 2015
  ident: 10.1016/j.eswa.2021.115937_b12
– volume: 38
  start-page: 461
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2021.115937_b4
  article-title: Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2008.01.005
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b5
  article-title: Designing neural network architectures using reinforcement learning
– start-page: 9
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b35
  article-title: Efficient BackProp
– volume: 72
  start-page: 314
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2021.115937_b22
  article-title: Treatment of male infertility
  publication-title: Contraception
  doi: 10.1016/j.contraception.2005.05.007
– start-page: 338
  year: 2017
  ident: 10.1016/j.eswa.2021.115937_b67
  article-title: Animal sperm morphology analysis system based on computer vision
– volume: 5
  start-page: 384
  issue: 07
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b7
  article-title: Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear
  publication-title: Journal of Biomedical Science and Engineering
  doi: 10.4236/jbise.2012.57049
– year: 2017
  ident: 10.1016/j.eswa.2021.115937_b41
  article-title: Evolving deep neural networks
  publication-title: CoRR
– year: 2009
  ident: 10.1016/j.eswa.2021.115937_b31
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.eswa.2021.115937_b44
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 90
  start-page: 1787
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2021.115937_b59
  article-title: Is there a role for the nuclear export factor 2 gene in male infertility?
  publication-title: Fertility and Sterility
  doi: 10.1016/j.fertnstert.2007.08.071
– start-page: 108
  year: 2014
  ident: 10.1016/j.eswa.2021.115937_b36
  article-title: Human sperm health diagnosis with principal component analysis and K-nearest neighbor algorithm
– volume: 52
  start-page: 38
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2021.115937_b51
  article-title: Statistical approach to boar semen evaluation using intracellular intensity distribution of head images
  publication-title: Cellular and Molecular Biology
– volume: 4
  start-page: 461
  issue: 4
  year: 1990
  ident: 10.1016/j.eswa.2021.115937_b27
  article-title: Designing neural networks using genetic algorithms with graph generation system
  publication-title: Complex Systems
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2021.115937_b58
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602320169811
– year: 2018
  ident: 10.1016/j.eswa.2021.115937_b24
– year: 2018
  ident: 10.1016/j.eswa.2021.115937_b14
– ident: 10.1016/j.eswa.2021.115937_b68
  doi: 10.1109/CVPR.2018.00257
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  ident: 10.1016/j.eswa.2021.115937_b3
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– volume: 4
  start-page: 1
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2021.115937_b17
  article-title: Exponential smoothing: The state of the art
  publication-title: Journal of Forecasting
  doi: 10.1002/for.3980040103
– year: 2014
  ident: 10.1016/j.eswa.2021.115937_b26
– ident: 10.1016/j.eswa.2021.115937_b15
  doi: 10.1007/978-3-030-05318-5_3
– start-page: 1097
  year: 2012
  ident: 10.1016/j.eswa.2021.115937_b33
  article-title: ImageNet classification with deep convolutional neural networks
– start-page: 88
  year: 2005
  ident: 10.1016/j.eswa.2021.115937_b50
  article-title: Statistical approach to boar semen head classification based on intracellular intensity distribution
– volume: 25
  start-page: 1369
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2021.115937_b39
  article-title: Morphometric dimensions of the human sperm head depend on the staining method used
  publication-title: Human Reproduction
  doi: 10.1093/humrep/deq075
– volume: 117
  start-page: 225
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2021.115937_b11
  article-title: Gold-standard and improved framework for sperm head segmentation
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2014.06.018
SSID ssj0017007
Score 2.5062916
Snippet Male infertility is a disease that affects approximately 7% of men. Sperm morphology analysis (SMA) is one of the main diagnosis methods for this problem....
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115937
SubjectTerms Artificial Intelligence
Artificial neural networks
Bioinformatics
Computer architecture
Computer Science
Datasets
Deep learning
Evaluation
Fitness
Genetic algorithm
Genetic algorithms
Human sperm morphometry
Infertility
Machine learning
Medical imaging
Morphology
Neural architecture search
Neural networks
Search algorithms
Search methods
Sperm
Title Genetic Neural Architecture Search for automatic assessment of human sperm images
URI https://dx.doi.org/10.1016/j.eswa.2021.115937
https://www.proquest.com/docview/2608496653
https://hal.science/hal-03585035
Volume 188
WOSCitedRecordID wos000768193500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg44EXfiMKA1mItylT4rqx_VihoYFgAm1IfbPixGaZ1nRqsrH997uLnaStYAIkXqLKaurq7vP5fL77jpB3KlbGWQ4LKU1cxA3LoizNRZQJEzvbXsXEbbMJcXgoZzP1NeSq1m07AVFV8upKnf9XVcMYKBtLZ_9C3f2PwgB8BqXDE9QOzz9SPBJJIwsr0m6g_FdvCnxysc-cvGgWga61J-dsPcc2qo_84fPdcg7Wpl4L3iMzchP4n7vKuJU78F5_ZdZ2CwY76wb8fSmXsCljrN7nBhzZa_B3p2Zx9uMEdtN5H5nO6mVXfVOuBSbgTBuvJXn0FTNDepIPO4qIJ74zz571RleKcZQK3ylxsMrylxbeBxtO92z9E2mjWAJGf6I8ccwGc_YRToZzMSQxU9jufJuJiQL7vT39uD_71F83idjX1Xd_LlRX-UTAzZl-58HcPcFU2o0dvXVTjh-RB-F8QaceF4_JHVs9IQ-73h00mPKn5FuACfUwoaswoR4mFGBCe5jQASZ04WgLE9rChHqYPCPfP-wfvz-IQnuNKOeCNZEqjJHWCeFEgauy4NJxhwRvRmWMF1amhQQHz0xSnjjwZApZgDfoitgJyy0bPydb1aKyLwiFbS-Ho0NsXA7SlsywXIArmWfgHkkm2Igknch0HrjnsQXKme6SDE81ilmjmLUX84js9u-ce-aVW7896TShg-_ofUINwLn1vbegtn4CJFs_mH7WOBaP4SgNj8tkRHY6reqw0mvN0lhylaaT8ct_nPsVuT-smx2y1Swv7GtyL79synr5JmD0BvLEqmo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Neural+Architecture+Search+for+automatic+assessment+of+human+sperm+images&rft.jtitle=Expert+systems+with+applications&rft.au=Miahi%2C+Erfan&rft.au=Mirroshandel%2C+Seyed+Abolghasem&rft.au=Nasr%2C+Alexis&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=188&rft_id=info:doi/10.1016%2Fj.eswa.2021.115937&rft.externalDocID=S0957417421012914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon