Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm
The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables i...
Saved in:
| Published in: | Energy (Oxford) Vol. 75; pp. 295 - 303 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.10.2014
Elsevier |
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN–TLBO model and the classical back propagation-trained ANN model (ANN–BP (teaching–learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN–TLBO model better predicted the energy consumption compared to the ANN–BP model. After determining the best configuration for the ANN–TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020.
•This study is associated with predicting energy consumption in Turkey.•GDP (gross domestic product), population, import and export were used as predictor variables.•TLBO (teaching–learning-based optimization) and BP (back-propagation) were used to train ANNs (artificial neural networks).•ANN–TLBO predicted the energy consumption more accurately than ANN–BP.•Using the ANN–TLBO model, the energy consumption was forecasted until 2020. |
|---|---|
| AbstractList | The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN–TLBO model and the classical back propagation-trained ANN model (ANN–BP (teaching–learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN–TLBO model better predicted the energy consumption compared to the ANN–BP model. After determining the best configuration for the ANN–TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020. The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN–TLBO model and the classical back propagation-trained ANN model (ANN–BP (teaching–learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN–TLBO model better predicted the energy consumption compared to the ANN–BP model. After determining the best configuration for the ANN–TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020. •This study is associated with predicting energy consumption in Turkey.•GDP (gross domestic product), population, import and export were used as predictor variables.•TLBO (teaching–learning-based optimization) and BP (back-propagation) were used to train ANNs (artificial neural networks).•ANN–TLBO predicted the energy consumption more accurately than ANN–BP.•Using the ANN–TLBO model, the energy consumption was forecasted until 2020. |
| Author | Akpınar, Adem Kankal, Murat Dede, Tayfun Uzlu, Ergun |
| Author_xml | – sequence: 1 givenname: Ergun surname: Uzlu fullname: Uzlu, Ergun email: uzluergun@gmail.com, ergunuzlu@hotmail.com organization: Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering, 61080 Trabzon, Turkey – sequence: 2 givenname: Murat surname: Kankal fullname: Kankal, Murat organization: Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering, 61080 Trabzon, Turkey – sequence: 3 givenname: Adem surname: Akpınar fullname: Akpınar, Adem organization: Uludağ University, Faculty of Engineering, Department of Civil Engineering, 16059 Bursa, Turkey – sequence: 4 givenname: Tayfun surname: Dede fullname: Dede, Tayfun organization: Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering, 61080 Trabzon, Turkey |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28816445$$DView record in Pascal Francis |
| BookMark | eNqFkb9uFDEQh10EiSTwBhRukGj2Ynu99i4FEorCHykSTaitWd_snS-79mF7iS4V78Ab5knwZUNDQaSRZorv9yu-OSMnPngk5A1nK864utit0GPcHFaCcbliukx7Qk5ZrVjVSClekrOUdoyxpu26U3K4StlNkDHRMNAlSm3waZ722QVPnac3c7zFA52T8xvqcY4wlpXvQrxN9M7lLc1bpBnBbgvx8Ov3iBB9OaseEq5pKE2Tu4fHPhg3IZbM9Iq8GGBM-Pppn5Pvn65uLr9U198-f738eF1ZqUWuOi1w6K1qUbGuQQ2g9IBCNSj6rhVCWwkNILe4VsoKxjRvelYIW1toWV-fk3dL7z6GHzOmbCaXLI4jeAxzMuLoom6lls-iXDW87nit6oK-fUIhWRiHCN66ZPaxyIwHI9qWKymbwr1fOBtDShEHY11-NJEjuNFwZo5vMzuzuDfHtxmmy7QlLP8J_-1_JvZhiWHR-tNhNMk69MWQi2izWQf3_4I_ShO8Xg |
| CODEN | ENEYDS |
| CitedBy_id | crossref_primary_10_1007_s12008_023_01530_2 crossref_primary_10_1016_j_energy_2015_07_059 crossref_primary_10_3390_economies12050107 crossref_primary_10_1002_ceat_201900411 crossref_primary_10_1080_14786451_2022_2026357 crossref_primary_10_3390_pr10122579 crossref_primary_10_1016_j_energy_2023_128575 crossref_primary_10_1016_j_matpr_2020_02_305 crossref_primary_10_1007_s10668_023_03061_y crossref_primary_10_1016_j_tust_2017_07_017 crossref_primary_10_1016_j_energy_2019_02_191 crossref_primary_10_1007_s00366_020_00981_5 crossref_primary_10_1016_j_apacoust_2019_05_006 crossref_primary_10_32890_jict2021_20_2_4 crossref_primary_10_3390_su142316064 crossref_primary_10_3390_math11143080 crossref_primary_10_1007_s00521_017_3244_9 crossref_primary_10_1016_j_energy_2014_11_074 crossref_primary_10_1007_s12665_014_3876_3 crossref_primary_10_1007_s11600_019_00374_3 crossref_primary_10_1016_j_energy_2017_03_009 crossref_primary_10_1016_j_jngse_2021_104175 crossref_primary_10_1007_s12040_015_0644_z crossref_primary_10_1016_j_rser_2017_03_005 crossref_primary_10_1016_j_energy_2015_10_039 crossref_primary_10_1061__ASCE_GM_1943_5622_0002234 crossref_primary_10_1007_s00500_022_06735_3 crossref_primary_10_1016_j_swevo_2018_04_004 crossref_primary_10_1016_j_engappai_2022_105664 crossref_primary_10_1007_s40430_020_02390_7 crossref_primary_10_1016_j_applthermaleng_2014_11_052 crossref_primary_10_1080_15435075_2020_1865375 crossref_primary_10_1155_2014_796323 crossref_primary_10_1007_s41208_019_00173_z crossref_primary_10_1007_s40430_022_03360_x crossref_primary_10_1016_j_energy_2018_09_152 crossref_primary_10_1016_j_energy_2016_03_051 crossref_primary_10_1155_2016_9063065 crossref_primary_10_1088_1742_6596_1362_1_012074 crossref_primary_10_1016_j_energy_2021_120470 crossref_primary_10_3390_su9060893 crossref_primary_10_1016_j_apacoust_2019_107005 crossref_primary_10_1016_j_apenergy_2024_122857 crossref_primary_10_1007_s13369_020_04861_4 crossref_primary_10_1007_s13369_023_08683_y crossref_primary_10_1007_s10470_018_1366_3 crossref_primary_10_1016_j_scitotenv_2018_05_153 crossref_primary_10_1007_s00202_024_02364_1 crossref_primary_10_1016_j_asoc_2016_02_044 crossref_primary_10_3390_electronics10212689 crossref_primary_10_1016_j_ins_2016_08_061 crossref_primary_10_1016_j_apacoust_2018_03_012 crossref_primary_10_1016_j_asoc_2016_09_002 crossref_primary_10_1080_15567249_2019_1653405 crossref_primary_10_1177_09544062231153552 crossref_primary_10_3390_ijerph191610245 crossref_primary_10_1007_s00500_025_10904_5 crossref_primary_10_1016_j_jobe_2022_105293 crossref_primary_10_1007_s00773_017_0495_1 crossref_primary_10_1177_1176934317729413 crossref_primary_10_1016_j_egyr_2019_06_003 crossref_primary_10_1016_j_energy_2016_09_015 crossref_primary_10_1007_s00521_016_2409_2 crossref_primary_10_1002_ep_12558 crossref_primary_10_1016_j_energy_2017_03_094 crossref_primary_10_1007_s10489_014_0645_7 crossref_primary_10_1007_s13132_023_01183_2 crossref_primary_10_1108_IJICC_09_2019_0105 crossref_primary_10_1007_s00521_021_05980_1 crossref_primary_10_1016_j_neucom_2023_126898 crossref_primary_10_1007_s00521_016_2738_1 crossref_primary_10_3390_en11010242 crossref_primary_10_1108_RPJ_10_2024_0426 |
| Cites_doi | 10.1038/323533a0 10.1016/j.knosys.2012.06.009 10.1016/j.enpol.2005.08.024 10.1016/j.enpol.2007.01.028 10.1016/j.eneco.2010.10.001 10.1016/j.rser.2013.05.025 10.1007/s12667-013-0079-z 10.1080/009083190881562 10.1016/j.energy.2014.04.027 10.1016/j.apenergy.2009.07.006 10.1007/978-3-642-27242-4_18 10.1016/j.engstruct.2011.08.035 10.1016/j.cad.2010.12.015 10.1016/j.energy.2009.12.025 10.1080/15567240903502594 10.1016/j.energy.2013.01.028 10.1016/j.enconman.2011.08.004 10.1016/j.ins.2011.08.006 10.1016/j.enpol.2009.04.049 10.1016/j.envsci.2013.02.008 10.17159/2413-3051/2012/v23i3a3171 10.1080/00908310490441610 10.1007/s00158-013-0936-3 10.1016/j.apenergy.2012.04.017 10.12989/sem.2013.47.4.495 10.1016/S0142-0615(01)00086-2 10.1016/j.apenergy.2004.07.001 10.1080/10426914.2011.602792 10.1016/j.cageo.2008.03.002 10.1016/j.energy.2010.05.027 10.1016/j.enpol.2008.11.017 10.1016/j.engappai.2012.02.016 10.1016/j.enconman.2003.11.010 10.1016/j.enpol.2006.08.019 10.1016/j.enpol.2008.03.010 10.1016/S0196-8904(01)00033-4 10.1016/j.engappai.2012.06.007 10.1016/j.enpol.2007.04.029 10.5430/air.v1n2p22 10.1016/j.asoc.2012.12.007 10.1016/j.enpol.2006.05.009 10.1016/j.apenergy.2010.12.005 10.12989/sem.2013.47.2.209 10.1080/00908310490448631 10.1016/j.enpol.2009.12.037 10.1016/j.energy.2009.10.018 10.1016/j.energy.2012.02.023 10.1016/j.apm.2012.03.043 10.1016/j.enbuild.2003.11.001 10.1016/j.enpol.2008.02.018 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SP 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.energy.2014.07.078 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Applied Sciences |
| EndPage | 303 |
| ExternalDocumentID | 28816445 10_1016_j_energy_2014_07_078 S0360544214009116 |
| GeographicLocations | Asia Turkey Turkey (country) |
| GeographicLocations_xml | – name: Turkey (country) |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7SP 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c472t-972efbc68e6095e7aa67fe265e2b98227c4a5ae1ced66c200715b0fe2c3ca80b3 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343339900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 21:45:06 EDT 2025 Thu Oct 02 11:08:41 EDT 2025 Mon Jul 21 09:13:00 EDT 2025 Sat Nov 29 02:04:57 EST 2025 Tue Nov 18 22:39:53 EST 2025 Fri Feb 23 02:20:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Teaching–learning-based optimization algorithm Turkey Energy consumption/demand Neural networks Energy consumption Neural network Algorithm Optimization Teaching |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MeetingName | PRES'13: Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction |
| MergedId | FETCHMERGED-LOGICAL-c472t-972efbc68e6095e7aa67fe265e2b98227c4a5ae1ced66c200715b0fe2c3ca80b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1651391363 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000538474 proquest_miscellaneous_1651391363 pascalfrancis_primary_28816445 crossref_citationtrail_10_1016_j_energy_2014_07_078 crossref_primary_10_1016_j_energy_2014_07_078 elsevier_sciencedirect_doi_10_1016_j_energy_2014_07_078 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | World Energy Council Energy Turkey energy data. <http://dektmk.org.tr/upresimler/TURKIYEENERJIVERILERI2012.pdf> [accessed 05.06.13, in Turkish]. Ediger, Tatlidil (bib32) 2002; 43 Kentel, Alp (bib8) 2013; 31 International Monetary Fund (IMF). World economic outlook database. Washington; 2009. <http://www.imf.org/external/pubs/ft/weo/2009/01/weodata/weorept.aspx?sy=1980&ey=2014&scsm=1&ssd=1&sort=country&ds=.&br=1&c=186&s=NGDPD&grp=0&a=&pr1.x=37&pr1.y=11> [accessed 05.06.2013]. Republic of Turkey Ministry of Development. International economic indicators report. <http://www.kalkinma.gov.tr/DocObjects/View/14815/Uluslararasi_Ekonomik_Gostergeler–2012.pdf> [accessed 04.06.13]. Gurbuz, Ozturk, Pardalos (bib17) 2013; 4 Karasu (bib60) 2010; 35 Ekonomou (bib11) 2010; 35 Rao, Savsani, Vakharia (bib54) 2011; 43 Sozen, Arcaklioglu, Ozkaymak (bib19) 2005; 81 Kankal, Akpinar, Komurcu, Ozsahin (bib21) 2011; 88 Rao, Kalyankar (bib42) 2012; 27 Nourani, Sharghi, Aminfar (bib52) 2012; 1 Khoshnevisan, Rafiee, Omid, Yousefi, Movahedi (bib59) 2013; 52 Canyurt, Ceylan, Ozturk, Hepbasli (bib23) 2004; 26 Canyurt, Ozturk (bib1) 2008; 36 Geem, Roper (bib10) 2009; 37 Erdogdu (bib7) 2010; 87 Rao, Kalyankar (bib34) 2013; 20 Mucuk, Uysal (bib30) 2009; 1 Rao, Patel (bib33) 2012; 3 Amiri (bib56) 2012; 11 Behrang, Assareh, Assari, Ghanbarzadeh (bib13) 2011; 6 Rao, Savsani, Vakharia (bib55) 2012; 183 Oludolapo, Jimoh, Kholopane (bib12) 2012; 23 Unler (bib2) 2008; 36 Toksari (bib5) 2009; 37 Kiran, Ozceylan, Gunduz, Paksoy (bib9) 2012; 53 Cinar, Kayakutlu, Daim (bib53) 2010; 35 (bib16) 2011 Dede, Ayvaz (bib40) 2013; 47 Dilaver, Hunt (bib14) 2011; 33 Dede (bib39) 2013; 48 Ozturk, Canyurt, Hepbasli, Utlu (bib22) 2004; 36 Sozen, Akcayol, Arcaklioglu (bib20) 2006; 1 Yan, Zhang, Wai (bib58) 2008; 34 Kiran, Gunduz (bib28) 2013; 13 Togan (bib38) 2013; 47 Rao, Kalyankar (bib44) 2013; 26 Kucukali, Baris (bib4) 2010; 38 Ediger, Akar (bib29) 2007; 35 Sozen, Arcaklioglu (bib18) 2007; 35 Jeong, Koo, Hong (bib61) 2014; 71 Togan (bib37) 2012; 34 Satapathy, Naik (bib41) 2011 Ministry of Energy and Natural Resources (MENR). Activities and objectives report of establishments dependent on MENR. <http://www.enerji.gov.tr/yayinlar_raporlar/Mavi_Kitap_2012.pdf> [accessed 12.05.13, in Turkish]. Kermanshahi, Iwamiya (bib48) 2002; 24 Toksari (bib26) 2007; 35 Mahadevan, Adjaye (bib47) 2007; 35 (bib15) 2008 Kiran, Ozceylan, Gunduz, Paksoy (bib27) 2012; 36 Ceylan, Ozturk, Hepbasli, Utlu (bib24) 2005; 27 Niknam, Fard, Baziar (bib35) 2012 Melikoglu (bib3) 2013; 25 Rumelhart, Hinton, Williams (bib57) 1986; 323 Republic of Turkey Ministry of Development. Tenth Development Plan. <http://www.kalkinma.gov.tr/DocObjects/view/15051/Onuncu_Kalk%C4%B1nma_Plan%C4%B1_(TBMM'ye_sevkedilen_Taslak).pdf> [accessed 05.06.13, in Turkish]. Turkish Statistical Institute (TURKSTAT). Population and demography, population statistics. <http://www.turkstat.gov.tr/UstMenu.do?metod=temelist> [accessed 06.06.13]. Say, Yucel (bib31) 2006; 34 Rao, Kalyankar (bib43) 2012; 226 Rao, Patel (bib46) 2013; 26 Niknam, Abarghooee, Narimani (bib36) 2012; 99 Ceylan, Ozturk (bib25) 2004; 45 Rao, Patel (bib45) 2013; 37 Nourani (10.1016/j.energy.2014.07.078_bib52) 2012; 1 Rao (10.1016/j.energy.2014.07.078_bib42) 2012; 27 Karasu (10.1016/j.energy.2014.07.078_bib60) 2010; 35 Dede (10.1016/j.energy.2014.07.078_bib39) 2013; 48 Dede (10.1016/j.energy.2014.07.078_bib40) 2013; 47 10.1016/j.energy.2014.07.078_bib62 10.1016/j.energy.2014.07.078_bib63 Rao (10.1016/j.energy.2014.07.078_bib34) 2013; 20 Canyurt (10.1016/j.energy.2014.07.078_bib23) 2004; 26 Ceylan (10.1016/j.energy.2014.07.078_bib24) 2005; 27 Kiran (10.1016/j.energy.2014.07.078_bib9) 2012; 53 Rao (10.1016/j.energy.2014.07.078_bib43) 2012; 226 Toksari (10.1016/j.energy.2014.07.078_bib5) 2009; 37 Ediger (10.1016/j.energy.2014.07.078_bib29) 2007; 35 Kucukali (10.1016/j.energy.2014.07.078_bib4) 2010; 38 (10.1016/j.energy.2014.07.078_bib15) 2008 Gurbuz (10.1016/j.energy.2014.07.078_bib17) 2013; 4 Rao (10.1016/j.energy.2014.07.078_bib46) 2013; 26 Rao (10.1016/j.energy.2014.07.078_bib45) 2013; 37 Erdogdu (10.1016/j.energy.2014.07.078_bib7) 2010; 87 10.1016/j.energy.2014.07.078_bib6 Rumelhart (10.1016/j.energy.2014.07.078_bib57) 1986; 323 Sozen (10.1016/j.energy.2014.07.078_bib19) 2005; 81 Say (10.1016/j.energy.2014.07.078_bib31) 2006; 34 Sozen (10.1016/j.energy.2014.07.078_bib18) 2007; 35 Rao (10.1016/j.energy.2014.07.078_bib54) 2011; 43 Ceylan (10.1016/j.energy.2014.07.078_bib25) 2004; 45 Amiri (10.1016/j.energy.2014.07.078_bib56) 2012; 11 Ediger (10.1016/j.energy.2014.07.078_bib32) 2002; 43 Niknam (10.1016/j.energy.2014.07.078_bib36) 2012; 99 Rao (10.1016/j.energy.2014.07.078_bib55) 2012; 183 Kentel (10.1016/j.energy.2014.07.078_bib8) 2013; 31 Kankal (10.1016/j.energy.2014.07.078_bib21) 2011; 88 Unler (10.1016/j.energy.2014.07.078_bib2) 2008; 36 Togan (10.1016/j.energy.2014.07.078_bib38) 2013; 47 Niknam (10.1016/j.energy.2014.07.078_bib35) 2012 Kermanshahi (10.1016/j.energy.2014.07.078_bib48) 2002; 24 Yan (10.1016/j.energy.2014.07.078_bib58) 2008; 34 Dilaver (10.1016/j.energy.2014.07.078_bib14) 2011; 33 Togan (10.1016/j.energy.2014.07.078_bib37) 2012; 34 Canyurt (10.1016/j.energy.2014.07.078_bib1) 2008; 36 Sozen (10.1016/j.energy.2014.07.078_bib20) 2006; 1 10.1016/j.energy.2014.07.078_bib49 Toksari (10.1016/j.energy.2014.07.078_bib26) 2007; 35 Satapathy (10.1016/j.energy.2014.07.078_bib41) 2011 Ekonomou (10.1016/j.energy.2014.07.078_bib11) 2010; 35 Ozturk (10.1016/j.energy.2014.07.078_bib22) 2004; 36 Rao (10.1016/j.energy.2014.07.078_bib33) 2012; 3 Behrang (10.1016/j.energy.2014.07.078_bib13) 2011; 6 Kiran (10.1016/j.energy.2014.07.078_bib27) 2012; 36 Mahadevan (10.1016/j.energy.2014.07.078_bib47) 2007; 35 10.1016/j.energy.2014.07.078_bib50 10.1016/j.energy.2014.07.078_bib51 Oludolapo (10.1016/j.energy.2014.07.078_bib12) 2012; 23 Mucuk (10.1016/j.energy.2014.07.078_bib30) 2009; 1 Cinar (10.1016/j.energy.2014.07.078_bib53) 2010; 35 Khoshnevisan (10.1016/j.energy.2014.07.078_bib59) 2013; 52 Jeong (10.1016/j.energy.2014.07.078_bib61) 2014; 71 Melikoglu (10.1016/j.energy.2014.07.078_bib3) 2013; 25 (10.1016/j.energy.2014.07.078_bib16) 2011 Kiran (10.1016/j.energy.2014.07.078_bib28) 2013; 13 Rao (10.1016/j.energy.2014.07.078_bib44) 2013; 26 Geem (10.1016/j.energy.2014.07.078_bib10) 2009; 37 |
| References_xml | – reference: Republic of Turkey Ministry of Development. International economic indicators report. <http://www.kalkinma.gov.tr/DocObjects/View/14815/Uluslararasi_Ekonomik_Gostergeler–2012.pdf> [accessed 04.06.13]. – start-page: 563 year: 2012 end-page: 573 ident: bib35 article-title: Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants publication-title: Energy – volume: 3 start-page: 535 year: 2012 end-page: 560 ident: bib33 article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int J Ind Eng – volume: 31 start-page: 34 year: 2013 end-page: 43 ident: bib8 article-title: Hydropower in Turkey: economical, social and environmental aspects and legal challenges publication-title: Environ Sci Policy – volume: 81 start-page: 209 year: 2005 end-page: 221 ident: bib19 article-title: Turkey's net energy consumption publication-title: Appl Energy – volume: 88 start-page: 1927 year: 2011 end-page: 1939 ident: bib21 article-title: Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables publication-title: Appl Energy – volume: 26 start-page: 430 year: 2013 end-page: 445 ident: bib46 article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm publication-title: Eng Appl Artif Intell – volume: 34 start-page: 225 year: 2012 end-page: 232 ident: bib37 article-title: Design of planar steel frames using teaching–learning based optimization publication-title: Eng Struct – volume: 47 start-page: 495 year: 2013 end-page: 511 ident: bib40 article-title: Structural optimization with teaching–learning-based optimization algorithm publication-title: Struct Eng Mech – volume: 27 start-page: 978 year: 2012 end-page: 985 ident: bib42 article-title: Parameter optimization of machining processes using a new optimization algorithm publication-title: Mater Manuf Process – volume: 53 start-page: 75 year: 2012 end-page: 83 ident: bib9 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manag – volume: 35 start-page: 3984 year: 2007 end-page: 3990 ident: bib26 article-title: Ant colony optimization approach to estimate energy demand of Turkey publication-title: Energy Policy – volume: 1 start-page: 22 year: 2012 end-page: 37 ident: bib52 article-title: Integrated ANN model for earthfill dams seepage analysis: Sattarkhan dam in Iran publication-title: Artif Intell Res – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib54 article-title: Teaching–learning based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des – volume: 11 start-page: 11795 year: 2012 end-page: 11802 ident: bib56 article-title: Application of Teaching–learning-based optimization algorithm on cluster analysis publication-title: J Basic Appl Sci Res – volume: 13 start-page: 2188 year: 2013 end-page: 2203 ident: bib28 article-title: A recombination – based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl Soft Comput – volume: 35 start-page: 1701 year: 2007 end-page: 1708 ident: bib29 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy – volume: 1 start-page: 123 year: 2009 end-page: 128 ident: bib30 article-title: Turkey's energy demand publication-title: Curr Res J Soc Sci – volume: 35 start-page: 512 year: 2010 end-page: 517 ident: bib11 article-title: Greek long-term energy consumption prediction using artificial neural networks publication-title: Energy – volume: 1 start-page: 147 year: 2006 end-page: 155 ident: bib20 article-title: Forecasting net energy consumption using artificial neural network publication-title: Energy Sources B Econ Plan Policy – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib57 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 37 start-page: 4049 year: 2009 end-page: 4054 ident: bib10 article-title: Energy demand estimation of South Korea using artificial neural network publication-title: Energy Policy – year: 2011 ident: bib16 publication-title: Ministry of energy and natural resources (MENR) – volume: 47 start-page: 209 year: 2013 end-page: 225 ident: bib38 article-title: Design of pin jointed structures using teaching–learning based optimization publication-title: Struct Eng Mech – volume: 52 start-page: 333 year: 2013 end-page: 338 ident: bib59 article-title: Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks publication-title: Energy – volume: 43 start-page: 473 year: 2002 end-page: 487 ident: bib32 article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns publication-title: Energy Convers Manag – volume: 36 start-page: 93 year: 2012 end-page: 103 ident: bib27 article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey publication-title: Knowl Based Syst – volume: 35 start-page: 1724 year: 2010 end-page: 1729 ident: bib53 article-title: Development of future energy scenarios with intelligent algorithms: case of hydro in turkey publication-title: Energy – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: bib55 article-title: Teaching–learning-based optimization: a novel optimization method for continuous nonlinear large scale problems publication-title: Inf Sci – volume: 226 start-page: 1018 year: 2012 end-page: 1025 ident: bib43 article-title: Multi-objective multi-parameter optimization of the industrial LBW process using a new optimization algorithm publication-title: J Eng Manuf – volume: 36 start-page: 2562 year: 2008 end-page: 2569 ident: bib1 article-title: Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey publication-title: Energy Policy – reference: World Energy Council Energy Turkey energy data. <http://dektmk.org.tr/upresimler/TURKIYEENERJIVERILERI2012.pdf> [accessed 05.06.13, in Turkish]. – reference: Ministry of Energy and Natural Resources (MENR). Activities and objectives report of establishments dependent on MENR. <http://www.enerji.gov.tr/yayinlar_raporlar/Mavi_Kitap_2012.pdf> [accessed 12.05.13, in Turkish]. – volume: 35 start-page: 4981 year: 2007 end-page: 4992 ident: bib18 article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey publication-title: Energy Policy – year: 2008 ident: bib15 publication-title: World energy council – Turkish national committee, 2007–2008 – volume: 35 start-page: 3773 year: 2010 end-page: 3782 ident: bib60 article-title: The effect of daylight saving time options on electricity consumption of Turkey publication-title: Energy – volume: 35 start-page: 2481 year: 2007 end-page: 2490 ident: bib47 article-title: Energy consumption, economic growth and prices: a reassessment using panel VECM for developed and developing countries publication-title: Energy Policy – volume: 99 start-page: 455 year: 2012 end-page: 470 ident: bib36 article-title: An efficient scenario based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl Energy – volume: 4 start-page: 289 year: 2013 end-page: 300 ident: bib17 article-title: Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study publication-title: Energy Syst – volume: 26 start-page: 1313 year: 2004 end-page: 1320 ident: bib23 article-title: Energy demand estimation based on two-different genetic algorithm approaches publication-title: Energy Sources – volume: 37 start-page: 1181 year: 2009 end-page: 1187 ident: bib5 article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey publication-title: Energy Policy – volume: 38 start-page: 2438 year: 2010 end-page: 2445 ident: bib4 article-title: Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy – volume: 20 start-page: 967 year: 2013 end-page: 974 ident: bib34 article-title: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm publication-title: Sci Iran – volume: 71 start-page: 71 year: 2014 end-page: 79 ident: bib61 article-title: An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network) publication-title: Energy – volume: 26 start-page: 524 year: 2013 end-page: 531 ident: bib44 article-title: Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm publication-title: Eng Appl Artif Intell – volume: 25 start-page: 503 year: 2013 end-page: 510 ident: bib3 article-title: Hydropower in Turkey: analysis in the view of vision 2023 publication-title: Renew Sustain Energy Rev – volume: 45 start-page: 2525 year: 2004 end-page: 2537 ident: bib25 article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach publication-title: Energy Convers Manag – reference: Republic of Turkey Ministry of Development. Tenth Development Plan. <http://www.kalkinma.gov.tr/DocObjects/view/15051/Onuncu_Kalk%C4%B1nma_Plan%C4%B1_(TBMM'ye_sevkedilen_Taslak).pdf> [accessed 05.06.13, in Turkish]. – volume: 23 start-page: 40 year: 2012 end-page: 46 ident: bib12 article-title: Comparing performance of MLP and RBF neural network models for predicting South Africa's energy consumption publication-title: J Energy S Afr – volume: 34 start-page: 1655 year: 2008 end-page: 1664 ident: bib58 article-title: Prediction of sand ripple geometry under waves using an artificial neural network publication-title: Comput Geosci – volume: 24 start-page: 789 year: 2002 end-page: 797 ident: bib48 article-title: Up to year 2020 load forecasting using neural nets publication-title: Electr Power Energy Syst – volume: 34 start-page: 3870 year: 2006 end-page: 3876 ident: bib31 article-title: Energy consumption and CO publication-title: Energy Policy – volume: 36 start-page: 1937 year: 2008 end-page: 1944 ident: bib2 article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 publication-title: Energy Policy – start-page: 148 year: 2011 end-page: 156 ident: bib41 article-title: Data clustering based on teaching–learning based optimization publication-title: Lect Notes Comput Sci – reference: Turkish Statistical Institute (TURKSTAT). Population and demography, population statistics. <http://www.turkstat.gov.tr/UstMenu.do?metod=temelist> [accessed 06.06.13]. – volume: 37 start-page: 1147 year: 2013 end-page: 1162 ident: bib45 article-title: Multi–objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm publication-title: Appl Math Model – volume: 27 start-page: 629 year: 2005 end-page: 639 ident: bib24 article-title: Estimating energy and exergy production and consumption values using three different genetic algorithm approaches, part 2: application and scenarios publication-title: Energy Sources – volume: 33 start-page: 426 year: 2011 end-page: 436 ident: bib14 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ – volume: 48 start-page: 955 year: 2013 end-page: 964 ident: bib39 article-title: Optimum design of grillage structures to LRFD–AISC with teaching–learning based optimization publication-title: Struct Multidiscip Optim – reference: International Monetary Fund (IMF). World economic outlook database. Washington; 2009. <http://www.imf.org/external/pubs/ft/weo/2009/01/weodata/weorept.aspx?sy=1980&ey=2014&scsm=1&ssd=1&sort=country&ds=.&br=1&c=186&s=NGDPD&grp=0&a=&pr1.x=37&pr1.y=11> [accessed 05.06.2013]. – volume: 87 start-page: 211 year: 2010 end-page: 219 ident: bib7 article-title: Natural gas demand in Turkey publication-title: Appl Energy – volume: 6 start-page: 294 year: 2011 end-page: 303 ident: bib13 article-title: Total energy demand estimation in Iran using bees algorithm publication-title: Energy Sources B Econ Plan Policy – volume: 36 start-page: 175 year: 2004 end-page: 183 ident: bib22 article-title: Residential–commercial energy input estimation based on genetic algorithm approaches: an application of Turkey publication-title: Energy Build – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.energy.2014.07.078_bib57 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 36 start-page: 93 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib27 article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2012.06.009 – volume: 34 start-page: 3870 year: 2006 ident: 10.1016/j.energy.2014.07.078_bib31 article-title: Energy consumption and CO2 emissions in Turkey: empirical analysis and future projection based on an economic growth publication-title: Energy Policy doi: 10.1016/j.enpol.2005.08.024 – volume: 35 start-page: 3984 year: 2007 ident: 10.1016/j.energy.2014.07.078_bib26 article-title: Ant colony optimization approach to estimate energy demand of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2007.01.028 – volume: 33 start-page: 426 year: 2011 ident: 10.1016/j.energy.2014.07.078_bib14 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ doi: 10.1016/j.eneco.2010.10.001 – volume: 25 start-page: 503 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib3 article-title: Hydropower in Turkey: analysis in the view of vision 2023 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.05.025 – volume: 4 start-page: 289 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib17 article-title: Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study publication-title: Energy Syst doi: 10.1007/s12667-013-0079-z – volume: 1 start-page: 147 year: 2006 ident: 10.1016/j.energy.2014.07.078_bib20 article-title: Forecasting net energy consumption using artificial neural network publication-title: Energy Sources B Econ Plan Policy doi: 10.1080/009083190881562 – volume: 71 start-page: 71 year: 2014 ident: 10.1016/j.energy.2014.07.078_bib61 article-title: An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network) publication-title: Energy doi: 10.1016/j.energy.2014.04.027 – volume: 87 start-page: 211 year: 2010 ident: 10.1016/j.energy.2014.07.078_bib7 article-title: Natural gas demand in Turkey publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.07.006 – start-page: 148 year: 2011 ident: 10.1016/j.energy.2014.07.078_bib41 article-title: Data clustering based on teaching–learning based optimization publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-642-27242-4_18 – volume: 34 start-page: 225 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib37 article-title: Design of planar steel frames using teaching–learning based optimization publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.08.035 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.energy.2014.07.078_bib54 article-title: Teaching–learning based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 35 start-page: 1724 year: 2010 ident: 10.1016/j.energy.2014.07.078_bib53 article-title: Development of future energy scenarios with intelligent algorithms: case of hydro in turkey publication-title: Energy doi: 10.1016/j.energy.2009.12.025 – ident: 10.1016/j.energy.2014.07.078_bib51 – volume: 6 start-page: 294 year: 2011 ident: 10.1016/j.energy.2014.07.078_bib13 article-title: Total energy demand estimation in Iran using bees algorithm publication-title: Energy Sources B Econ Plan Policy doi: 10.1080/15567240903502594 – volume: 52 start-page: 333 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib59 article-title: Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2013.01.028 – volume: 226 start-page: 1018 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib43 article-title: Multi-objective multi-parameter optimization of the industrial LBW process using a new optimization algorithm publication-title: J Eng Manuf – ident: 10.1016/j.energy.2014.07.078_bib6 – volume: 53 start-page: 75 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib9 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.08.004 – volume: 183 start-page: 1 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib55 article-title: Teaching–learning-based optimization: a novel optimization method for continuous nonlinear large scale problems publication-title: Inf Sci doi: 10.1016/j.ins.2011.08.006 – volume: 37 start-page: 4049 year: 2009 ident: 10.1016/j.energy.2014.07.078_bib10 article-title: Energy demand estimation of South Korea using artificial neural network publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.049 – ident: 10.1016/j.energy.2014.07.078_bib63 – volume: 31 start-page: 34 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib8 article-title: Hydropower in Turkey: economical, social and environmental aspects and legal challenges publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2013.02.008 – ident: 10.1016/j.energy.2014.07.078_bib49 – volume: 11 start-page: 11795 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib56 article-title: Application of Teaching–learning-based optimization algorithm on cluster analysis publication-title: J Basic Appl Sci Res – volume: 23 start-page: 40 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib12 article-title: Comparing performance of MLP and RBF neural network models for predicting South Africa's energy consumption publication-title: J Energy S Afr doi: 10.17159/2413-3051/2012/v23i3a3171 – volume: 20 start-page: 967 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib34 article-title: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm publication-title: Sci Iran – volume: 26 start-page: 1313 year: 2004 ident: 10.1016/j.energy.2014.07.078_bib23 article-title: Energy demand estimation based on two-different genetic algorithm approaches publication-title: Energy Sources doi: 10.1080/00908310490441610 – volume: 1 start-page: 123 year: 2009 ident: 10.1016/j.energy.2014.07.078_bib30 article-title: Turkey's energy demand publication-title: Curr Res J Soc Sci – volume: 48 start-page: 955 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib39 article-title: Optimum design of grillage structures to LRFD–AISC with teaching–learning based optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0936-3 – volume: 99 start-page: 455 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib36 article-title: An efficient scenario based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.017 – volume: 47 start-page: 495 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib40 article-title: Structural optimization with teaching–learning-based optimization algorithm publication-title: Struct Eng Mech doi: 10.12989/sem.2013.47.4.495 – volume: 24 start-page: 789 year: 2002 ident: 10.1016/j.energy.2014.07.078_bib48 article-title: Up to year 2020 load forecasting using neural nets publication-title: Electr Power Energy Syst doi: 10.1016/S0142-0615(01)00086-2 – volume: 81 start-page: 209 year: 2005 ident: 10.1016/j.energy.2014.07.078_bib19 article-title: Turkey's net energy consumption publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.07.001 – volume: 27 start-page: 978 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib42 article-title: Parameter optimization of machining processes using a new optimization algorithm publication-title: Mater Manuf Process doi: 10.1080/10426914.2011.602792 – ident: 10.1016/j.energy.2014.07.078_bib62 – volume: 34 start-page: 1655 year: 2008 ident: 10.1016/j.energy.2014.07.078_bib58 article-title: Prediction of sand ripple geometry under waves using an artificial neural network publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.03.002 – volume: 35 start-page: 3773 year: 2010 ident: 10.1016/j.energy.2014.07.078_bib60 article-title: The effect of daylight saving time options on electricity consumption of Turkey publication-title: Energy doi: 10.1016/j.energy.2010.05.027 – volume: 37 start-page: 1181 year: 2009 ident: 10.1016/j.energy.2014.07.078_bib5 article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2008.11.017 – volume: 26 start-page: 430 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib46 article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.016 – year: 2011 ident: 10.1016/j.energy.2014.07.078_bib16 – volume: 45 start-page: 2525 year: 2004 ident: 10.1016/j.energy.2014.07.078_bib25 article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2003.11.010 – volume: 35 start-page: 2481 year: 2007 ident: 10.1016/j.energy.2014.07.078_bib47 article-title: Energy consumption, economic growth and prices: a reassessment using panel VECM for developed and developing countries publication-title: Energy Policy doi: 10.1016/j.enpol.2006.08.019 – volume: 36 start-page: 2562 year: 2008 ident: 10.1016/j.energy.2014.07.078_bib1 article-title: Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2008.03.010 – volume: 43 start-page: 473 year: 2002 ident: 10.1016/j.energy.2014.07.078_bib32 article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(01)00033-4 – volume: 26 start-page: 524 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib44 article-title: Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.06.007 – volume: 35 start-page: 4981 year: 2007 ident: 10.1016/j.energy.2014.07.078_bib18 article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2007.04.029 – volume: 3 start-page: 535 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib33 article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int J Ind Eng – volume: 1 start-page: 22 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib52 article-title: Integrated ANN model for earthfill dams seepage analysis: Sattarkhan dam in Iran publication-title: Artif Intell Res doi: 10.5430/air.v1n2p22 – volume: 13 start-page: 2188 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib28 article-title: A recombination – based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.12.007 – volume: 35 start-page: 1701 year: 2007 ident: 10.1016/j.energy.2014.07.078_bib29 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.05.009 – volume: 88 start-page: 1927 year: 2011 ident: 10.1016/j.energy.2014.07.078_bib21 article-title: Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.005 – volume: 47 start-page: 209 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib38 article-title: Design of pin jointed structures using teaching–learning based optimization publication-title: Struct Eng Mech doi: 10.12989/sem.2013.47.2.209 – volume: 27 start-page: 629 year: 2005 ident: 10.1016/j.energy.2014.07.078_bib24 article-title: Estimating energy and exergy production and consumption values using three different genetic algorithm approaches, part 2: application and scenarios publication-title: Energy Sources doi: 10.1080/00908310490448631 – volume: 38 start-page: 2438 year: 2010 ident: 10.1016/j.energy.2014.07.078_bib4 article-title: Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy doi: 10.1016/j.enpol.2009.12.037 – volume: 35 start-page: 512 year: 2010 ident: 10.1016/j.energy.2014.07.078_bib11 article-title: Greek long-term energy consumption prediction using artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2009.10.018 – start-page: 563 year: 2012 ident: 10.1016/j.energy.2014.07.078_bib35 article-title: Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants publication-title: Energy doi: 10.1016/j.energy.2012.02.023 – ident: 10.1016/j.energy.2014.07.078_bib50 – volume: 37 start-page: 1147 year: 2013 ident: 10.1016/j.energy.2014.07.078_bib45 article-title: Multi–objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm publication-title: Appl Math Model doi: 10.1016/j.apm.2012.03.043 – volume: 36 start-page: 175 year: 2004 ident: 10.1016/j.energy.2014.07.078_bib22 article-title: Residential–commercial energy input estimation based on genetic algorithm approaches: an application of Turkey publication-title: Energy Build doi: 10.1016/j.enbuild.2003.11.001 – year: 2008 ident: 10.1016/j.energy.2014.07.078_bib15 – volume: 36 start-page: 1937 year: 2008 ident: 10.1016/j.energy.2014.07.078_bib2 article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.018 |
| SSID | ssj0005899 |
| Score | 2.4490652 |
| Snippet | The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm... The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching-learning-based optimization) algorithm... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 295 |
| SubjectTerms | Algorithms Applied sciences data collection Energy Energy consumption Energy consumption/demand Estimates Exact sciences and technology exports gross domestic product imports Learning theory Mathematical models natural resources Neural networks oils Optimization Projection Teaching–learning-based optimization algorithm Turkey Turkey (country) |
| Title | Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2014.07.078 https://www.proquest.com/docview/1651391363 https://www.proquest.com/docview/2000538474 |
| Volume | 75 |
| WOSCitedRecordID | wos000343339900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbqGFQtvtLk0fiwq9BZfYsi35aLou3e4Sckgg9GJkWQm7JE7IY5v-k_7cjh5WkqYh9FAIxhg9jOfTzEj5ZgahjyRhUjIJ2o8J4oVhJL2CcOolUhH_ShmAXtbFJminwwaDpNto_KpjYR7GtKrYep3M_quo4RkIW4XO_oO43aDwAO5B6HAFscN1X_B_tT-ZiedTiUTXhruebCMjg1U9US6mchSlaSt0JOasZj72VnNY3K2VPkhQKS9BkJUhjNtwOOWvLi0T07OlJ0aesollawrjTGx8Z4uPR9M59JjUou1_v-0bDTxabSgAaecmvdWnszCZo-KkN93rTqq5Gmkp3RBX2ZUmcfb4z6Edwx5c-KGjwNnTNGv6txQeidteFIY72plG2-rVFOS0lpro7Aj7RsCcR9x_Ml9Q0fdCnaDV1Arazbn9hy10DMWAMdhIhtEjdBqQmIHuPE2vs8G3DX2I6dqk7p3rsEzNHdyf-ZDb82zGF7AYh6aKyp5DoL2c3gt0von_xF2HrJeoIasz9NxuWLA1B4sz9KQOa4f7i2wTMsnHrtEr9MPhDU-H2Lwz3sIbvquwwRvWeMMGb7jGG1Z4w4A3fABveBtv2OHtHPW_ZL3PXz1b7sMTIQ2WXkIDOSxEzKRKgigp5zEdyiCOZFCoLJNUhDzi0heyjGOhztj9qGhDC0EEZ-2CXKCTalrJ1wi3S9hWJ6T0OSnCgnEuqKQqJbeUCSGUNBGppZELmwtflWQZ5zXp8T433yNXMszbFH6siTzXa2ZywRxpT2tB59afNX5qDkg90vNyBxduuhqWTfShBkoO9kD9yccrOV0tcj-OYFPnk5gcbhPoEHzwS8M3xyZ6i56atatSm75DJ8v5Sr5Hj8XD8m4xv7SL4jefkuhp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Energy+%28Oxford%29&rft.atitle=Estimates+of+energy+consumption+in+Turkey+using+neural+networks+with+the+teaching-learning-based+optimization+algorithm&rft.au=UZLU%2C+Ergun&rft.au=KANKAL%2C+Murat&rft.au=AKPINAR%2C+Adem&rft.au=DEDE%2C+Tayfun&rft.date=2014-10-01&rft.pub=Elsevier&rft.issn=0360-5442&rft.volume=75&rft.spage=295&rft.epage=303&rft_id=info:doi/10.1016%2Fj.energy.2014.07.078&rft.externalDBID=n%2Fa&rft.externalDocID=28816445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |