Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios

COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic indivi...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) Vol. 8; p. e9482
Main Authors: Avila, Eduardo, Kahmann, Alessandro, Alho, Clarice, Dorn, Marcio
Format: Journal Article
Language:English
Published: United States PeerJ, Inc 29.06.2020
PeerJ Inc
Subjects:
ISSN:2167-8359, 2167-8359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity. This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results. Hemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed probabilities allow fine-tuning of the model, according to actual prediction context. Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a of 0.9999; 76.7% for both sensitivity and specificity with a of 0.2933; and 0% sensitivity and 100% specificity with a of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice. Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.
AbstractList COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity. This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results. Hemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed probabilities allow fine-tuning of the model, according to actual prediction context. Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a of 0.9999; 76.7% for both sensitivity and specificity with a of 0.2933; and 0% sensitivity and 100% specificity with a of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice. Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.
Background COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity. Purpose This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results. Methods Hemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed prior probabilities allow fine-tuning of the model, according to actual prediction context. Results Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a prior of 0.9999; 76.7% for both sensitivity and specificity with a prior of 0.2933; and 0% sensitivity and 100% specificity with a prior of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice. Conclusions Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity.BACKGROUNDCOVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity.This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results.PURPOSEThis work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results.Hemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed prior probabilities allow fine-tuning of the model, according to actual prediction context.METHODSHemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed prior probabilities allow fine-tuning of the model, according to actual prediction context.Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a prior of 0.9999; 76.7% for both sensitivity and specificity with a prior of 0.2933; and 0% sensitivity and 100% specificity with a prior of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice.RESULTSProposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a prior of 0.9999; 76.7% for both sensitivity and specificity with a prior of 0.2933; and 0% sensitivity and 100% specificity with a prior of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice.Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.CONCLUSIONSMachine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.
ArticleNumber e9482
Author Alho, Clarice
Dorn, Marcio
Avila, Eduardo
Kahmann, Alessandro
Author_xml – sequence: 1
  givenname: Eduardo
  surname: Avila
  fullname: Avila, Eduardo
  organization: Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil, Technical Scientific Section, Federal Police Department in Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, National Institute of Science and Technology - Forensic Science, Porto Alegre, Rio Grande do Sul, Brazil
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-7556-7904
  surname: Kahmann
  fullname: Kahmann, Alessandro
  organization: National Institute of Science and Technology - Forensic Science, Porto Alegre, Rio Grande do Sul, Brazil, Institute of Mathematics, Statistics and Physics, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
– sequence: 3
  givenname: Clarice
  surname: Alho
  fullname: Alho, Clarice
  organization: Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil, National Institute of Science and Technology - Forensic Science, Porto Alegre, Rio Grande do Sul, Brazil
– sequence: 4
  givenname: Marcio
  orcidid: 0000-0001-8534-3480
  surname: Dorn
  fullname: Dorn, Marcio
  organization: National Institute of Science and Technology - Forensic Science, Porto Alegre, Rio Grande do Sul, Brazil, Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32656001$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQxxep2Fr74h8gAV9E2Jpfu0l8EOT80UKhL-prmMtOzpy7yZnsCf3vzd3V0hbzkiH5zJeZ-c7z5iimiE3zktFzpZh6t0HM63MjNX_SnHDWq1aLzhzdi4-bs1LWtB7Ne6rFs-ZY8L7rKWUnTbrAKa0yTGSAGQgUAmROaSQ-ZTKgCyWk2E7wK8QVCZEsrn9cfmqZIRNEWOGEcX5PYLMZg4O5oqVmk4wlbbNDUhxkF-abGmCEHFJ50Tz1MBY8u71Pm-9fPn9bXLRX118vFx-vWicVn1uNvvfg0VNUPZfSOcV7ztEsVSfAKLU0rlN-cIaBNEtNUQjQUjNBVY-mF6fN5UF3SLC2mxwmyDc2QbD7h5RXFvIc3IgWmKfgqdNCopRyMEyDZh2wTsPSe1G1Phy0NtvlhENtZc4wPhB9-BPDT7tKf6wSgvV8J_DmViCn31sss51Cncg4QsS0LZZLLjrGTbdDXz9C13WUsY6qUkzLjnLOKvXqfkV3pfzztQJvD4DLqZSM_g5h1O72xu73xu72psL0EVw927tZuwnj_1L-AmG6xnE
CitedBy_id crossref_primary_10_1515_cclm_2020_1294
crossref_primary_10_3390_diagnostics13101749
crossref_primary_10_1016_j_neucom_2025_130561
crossref_primary_10_3233_IDT_230320
crossref_primary_10_1016_j_ins_2021_01_052
crossref_primary_10_7717_peerj_cs_670
crossref_primary_10_1136_bmjopen_2022_069493
crossref_primary_10_1145_3767735
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_1007_s00521_021_06189_y
crossref_primary_10_1371_journal_pone_0316467
crossref_primary_10_1515_cclm_2022_0182
crossref_primary_10_1038_s43856_022_00129_0
crossref_primary_10_36306_konjes_877805
crossref_primary_10_1007_s12539_021_00499_4
crossref_primary_10_1016_j_imed_2021_09_001
crossref_primary_10_1016_j_compbiomed_2022_105284
crossref_primary_10_1007_s10916_022_01807_1
crossref_primary_10_1007_s00521_023_09312_3
crossref_primary_10_1186_s12879_023_08291_z
crossref_primary_10_1038_s41598_024_77386_7
crossref_primary_10_1016_j_eswa_2024_123667
crossref_primary_10_7759_cureus_38373
crossref_primary_10_1016_j_meegid_2022_105228
crossref_primary_10_1016_j_ijmedinf_2022_104791
crossref_primary_10_1038_s41598_023_46126_8
crossref_primary_10_3390_app122312180
crossref_primary_10_1177_23814683221089844
Cites_doi 10.1016/j.clim.2020.108409
10.1002/ajh.25829
10.1016/S0140-6736(20)30553-5
10.1016/S0140-6736(20)30183-5
10.1186/s40249-020-00646-x
10.1016/0010-4809(68)90016-5
10.1056/NEJMp2002125
10.1001/jama.2020.8259
10.1515/cclm-2020-0411
10.1016/j.jinf.2013.01.001
10.1016/S0140-6736(03)14023-8
10.3386/w27200
10.1002/ajh.25823
10.1016/S1473-3099(05)70115-8
10.1056/NEJMoa2002032
10.1016/j.clinbiochem.2020.05.012
10.1016/S0140-6736(20)30567-5
10.1007/978-0-387-84858-7
10.1097/00000441-196011000-00004
10.1080/14737159.2020.1757437
10.1007/s13748-016-0094-0
10.1056/NEJMsb2005114
10.1016/S0140-6736(20)30917-X
10.1016/j.jinf.2020.04.011
10.1515/cclm-2020-0240
10.1016/j.ijsu.2020.04.018
ContentType Journal Article
Copyright 2020 Avila et al.
2020 Avila et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Avila et al. 2020 Avila et al.
Copyright_xml – notice: 2020 Avila et al.
– notice: 2020 Avila et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Avila et al. 2020 Avila et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.9482
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_a1f0af0c834e444d918a815a158abff3
PMC7331623
32656001
10_7717_peerj_9482
Genre Journal Article
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
W2D
YAO
3V.
NPM
7XB
8FK
COVID
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-8ef6fafef0e76244cc72622e9b753a977b9c57fdc91a49b80e33a84813076e963
IEDL.DBID M2P
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543939600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2167-8359
IngestDate Tue Oct 14 19:06:31 EDT 2025
Tue Nov 04 02:00:34 EST 2025
Thu Sep 04 15:27:56 EDT 2025
Fri Jul 25 11:42:10 EDT 2025
Thu Jan 02 22:54:44 EST 2025
Sat Nov 29 05:37:56 EST 2025
Tue Nov 18 21:25:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Hemogram
Scarcity
Naïve-Bayes
Machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
2020 Avila et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-8ef6fafef0e76244cc72622e9b753a977b9c57fdc91a49b80e33a84813076e963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8534-3480
0000-0002-7556-7904
OpenAccessLink https://www.proquest.com/docview/2418450221?pq-origsite=%requestingapplication%
PMID 32656001
PQID 2418450221
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_a1f0af0c834e444d918a815a158abff3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331623
proquest_miscellaneous_2423512953
proquest_journals_2418450221
pubmed_primary_32656001
crossref_primary_10_7717_peerj_9482
crossref_citationtrail_10_7717_peerj_9482
PublicationCentury 2000
PublicationDate 2020-06-29
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2020
Publisher PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ, Inc
– name: PeerJ Inc
References Tahamtan (10.7717/peerj.9482/ref-28) 2020; 2020
Mitchell (10.7717/peerj.9482/ref-21) 1997
Adhikari (10.7717/peerj.9482/ref-1) 2020; 9
Ding (10.7717/peerj.9482/ref-6) 2020
Lipsitch (10.7717/peerj.9482/ref-19) 2020; 382
Emanuel (10.7717/peerj.9482/ref-7) 2020; 382
Martin (10.7717/peerj.9482/ref-20) 1960; 240
Tanne (10.7717/peerj.9482/ref-29) 2020; 368
Huang (10.7717/peerj.9482/ref-15) 2020; 395
Krawczyk (10.7717/peerj.9482/ref-17) 2016; 5
Geron (10.7717/peerj.9482/ref-11) 2017
Brown (10.7717/peerj.9482/ref-4) 2020
Hastie (10.7717/peerj.9482/ref-13) 2009
Gasmi (10.7717/peerj.9482/ref-9) 2020; 215
Chang (10.7717/peerj.9482/ref-5) 2003; 362
Schurink (10.7717/peerj.9482/ref-25) 2005; 5
Sethuraman (10.7717/peerj.9482/ref-26) 2020; 323
Black (10.7717/peerj.9482/ref-3) 2020; 395
Pedregosa (10.7717/peerj.9482/ref-23) 2011; 12
Ranney (10.7717/peerj.9482/ref-24) 2020; Perspective
Terpos (10.7717/peerj.9482/ref-30) 2020; 95
Lippi (10.7717/peerj.9482/ref-18) 2020; 58
Henry (10.7717/peerj.9482/ref-14) 2020; 81
Guan (10.7717/peerj.9482/ref-12) 2020; 382
Wynants (10.7717/peerj.9482/ref-32) 2020; 369
Fan (10.7717/peerj.9482/ref-8) 2020; 95
Anderson (10.7717/peerj.9482/ref-2) 2020; 395
Gorry (10.7717/peerj.9482/ref-10) 1968; 1
Tu (10.7717/peerj.9482/ref-31) 2020; 81
Shimoni (10.7717/peerj.9482/ref-27) 2013; 66
Kandel (10.7717/peerj.9482/ref-16) 2020; 395
Nicola (10.7717/peerj.9482/ref-22) 2020; 78
References_xml – volume: 215
  start-page: 108409
  year: 2020
  ident: 10.7717/peerj.9482/ref-9
  article-title: Individual risk management strategy and potential therapeutic options for the covid-19 pandemic
  publication-title: Clinical Immunology
  doi: 10.1016/j.clim.2020.108409
– volume: 95
  start-page: 834
  issue: 7
  year: 2020
  ident: 10.7717/peerj.9482/ref-30
  article-title: Hematological findings and complications of covid-19
  publication-title: American Journal of Hematology
  doi: 10.1002/ajh.25829
– volume: 395
  start-page: 1047
  issue: 10229
  year: 2020
  ident: 10.7717/peerj.9482/ref-16
  article-title: Health security capacities in the context of covid-19 outbreak: an analysis of international health regulations annual report data from 182 countries
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30553-5
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 10.7717/peerj.9482/ref-15
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 9
  start-page: 29
  issue: 1–12
  year: 2020
  ident: 10.7717/peerj.9482/ref-1
  article-title: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (covid-19) during the early outbreak period: a scoping review
  publication-title: Infectious Diseases of Poverty
  doi: 10.1186/s40249-020-00646-x
– volume: 1
  start-page: 490
  issue: 5
  year: 1968
  ident: 10.7717/peerj.9482/ref-10
  article-title: Experience with a model of sequential diagnosis
  publication-title: Computers and Biomedical Research
  doi: 10.1016/0010-4809(68)90016-5
– volume: 382
  start-page: 1194
  issue: 13
  year: 2020
  ident: 10.7717/peerj.9482/ref-19
  article-title: Defining the epidemiology of covid-19: studies needed
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMp2002125
– volume: 323
  start-page: 2249
  issue: 22
  year: 2020
  ident: 10.7717/peerj.9482/ref-26
  article-title: Interpreting diagnostic tests for SARS-CoV-2
  publication-title: JAMA
  doi: 10.1001/jama.2020.8259
– year: 2020
  ident: 10.7717/peerj.9482/ref-6
  article-title: Dynamic profile and clinical implications of hematological parameters in hospitalized patients with coronavirus disease 2019
  publication-title: Clinical Chemistry and Laboratory Medicine
  doi: 10.1515/cclm-2020-0411
– volume-title: Machine learning
  year: 1997
  ident: 10.7717/peerj.9482/ref-21
– volume: 66
  start-page: 545
  issue: 6
  year: 2013
  ident: 10.7717/peerj.9482/ref-27
  article-title: Clinical utility for the full blood count in identifying patients with pandemic influenza a (h1n1)
  publication-title: Journal of Infection
  doi: 10.1016/j.jinf.2013.01.001
– volume: 362
  start-page: 362
  issue: 9381
  year: 2003
  ident: 10.7717/peerj.9482/ref-5
  article-title: Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14023-8
– volume: Perspective
  start-page: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-24
  article-title: Critical supply shortages—the need for ventilators and personal protective equipment during the covid-19 pandemic
  publication-title: New England Journal of Medicine
– volume-title: Can the world™ poor protect themselves from the new coronavirus? Working Paper 27200
  year: 2020
  ident: 10.7717/peerj.9482/ref-4
  doi: 10.3386/w27200
– volume: 95
  start-page: E158
  issue: 7
  year: 2020
  ident: 10.7717/peerj.9482/ref-8
  article-title: Blood and blood product use during covid-19 infection
  publication-title: American Journal of Hematology
  doi: 10.1002/ajh.25823
– volume: 368
  start-page: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-29
  article-title: Covid-19: how doctors and healthcare systems are tackling coronavirus worldwide
  publication-title: BMJ
– volume: 369
  start-page: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-32
  article-title: Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal
  publication-title: BMJ
– volume: 5
  start-page: 305
  issue: 5
  year: 2005
  ident: 10.7717/peerj.9482/ref-25
  article-title: Computer-assisted decision support for the diagnosis and treatment of infectious diseases in intensive care units
  publication-title: Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(05)70115-8
– volume: 382
  start-page: 1708
  year: 2020
  ident: 10.7717/peerj.9482/ref-12
  article-title: Clinical characteristics of coronavirus disease 2019 in china
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa2002032
– volume: 81
  start-page: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-14
  article-title: Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (covid-19): a pooled analysis and review
  publication-title: Clinical Biochemistry
  doi: 10.1016/j.clinbiochem.2020.05.012
– volume: 395
  start-page: 931
  issue: 10228
  year: 2020
  ident: 10.7717/peerj.9482/ref-2
  article-title: How will country-based mitigation measures influence the course of the covid-19 epidemic?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30567-5
– volume-title: The elements of statistical learning: data mining, inference and prediction
  year: 2009
  ident: 10.7717/peerj.9482/ref-13
  doi: 10.1007/978-0-387-84858-7
– volume: 240
  start-page: 571
  issue: 5
  year: 1960
  ident: 10.7717/peerj.9482/ref-20
  article-title: Clinical versus acturial prediction in the differential diagnosis of jaundice. a study of the relative accuracy of predictions made by physicians and by a statistically derived formula in differentiating parenchymal and obstructive jaundice
  publication-title: American Journal of the Medical Sciences
  doi: 10.1097/00000441-196011000-00004
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-28
  article-title: Real-time rt-pcr in covid-19 detection: issues affecting the results
  publication-title: Expert Review of Molecular Diagnostics
  doi: 10.1080/14737159.2020.1757437
– volume: 5
  start-page: 221
  issue: 4
  year: 2016
  ident: 10.7717/peerj.9482/ref-17
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-016-0094-0
– volume: 382
  start-page: 2049
  year: 2020
  ident: 10.7717/peerj.9482/ref-7
  article-title: Fair allocation of scarce medical resources in the time of covid-19
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMsb2005114
– volume: 395
  start-page: 1418
  issue: 10234
  year: 2020
  ident: 10.7717/peerj.9482/ref-3
  article-title: Covid-19: the case for health-care worker screening to prevent hospital transmission
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30917-X
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.7717/peerj.9482/ref-23
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 81
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.7717/peerj.9482/ref-31
  article-title: The epidemiological and clinical features of covid-19 and lessons from this global infectious public health event
  publication-title: Journal of Infection
  doi: 10.1016/j.jinf.2020.04.011
– volume-title: Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems
  year: 2017
  ident: 10.7717/peerj.9482/ref-11
– volume: 58
  start-page: 1063
  issue: 7
  year: 2020
  ident: 10.7717/peerj.9482/ref-18
  article-title: The critical role of laboratory medicine during coronavirus disease 2019 (covid-19) and other viral outbreaks
  publication-title: Clinical Chemistry and Laboratory Medicine
  doi: 10.1515/cclm-2020-0240
– volume: 78
  start-page: 185
  year: 2020
  ident: 10.7717/peerj.9482/ref-22
  article-title: The socio-economic implications of the coronavirus and covid-19 pandemic: a review
  publication-title: International Journal of Surgery
  doi: 10.1016/j.ijsu.2020.04.018
SSID ssj0000826083
Score 2.3534205
Snippet COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care...
Background COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e9482
SubjectTerms Algorithms
Automation
Bayesian analysis
Choice learning
Classification
Coronaviruses
COVID-19
Data Mining and Machine Learning
Datasets
Decision making
Diagnosis
Disease
Health care
Hematology
Hemoglobin
Hemogram
Infectious Diseases
Learning algorithms
Machine learning
Medical personnel
Medical supplies
Methods
Naïve-Bayes
Pandemics
Patients
Public Health
Scarcity
Statistics
Workforce
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQqlAvFS39CNDKqL304GI7dmxzoxQEEqU9tIhb5Di2uhWboE1A6r_v2AnRboXUC9d4HDmeGc-bePQGoQ-shnxLcgm5iVVEwAlINERJUlGnjabS0kRWfXmuLi701ZX5vtTqK9aEDfTAw8btWxaoDTAzF14IURumrWbSMqltFULi-aTKLCVT6QwG1AzgYuAjVZCy7N94v_j9yQjNVyJQIup_CF3-WyS5FHVONtGzES7iw2GZz9Gab16gja_jhfgWak_9PBVY4VjqiW2HLe7b9hoDFsX12D-HzFPLKTxr8NG3y7MvhBk8n8peDvDyJTbMxovxlz7uXOw01P_BkfIJkuq2e4l-nhz_ODolYw8F4oTiPdE-FMEGH6iHY08I5xQvOPemgjzFAvirjJMq1M4wK0ylqc9zGyn2wfcLD975Cq03bePfIExrpyrtagmIUgSbW15UddQ1YzUEQp2hj_f7WrqRYDz2ubguIdGIOiiTDsqogwy9n2RvBlqNB6U-R_VMEpEKOz0AAylHAyn_ZyAZ2r1Xbjn6Z1cCbtFCAn5hGdqbhsGz4nWJbXx7G2V4HuGQhFe8HmxhWgmA3gQVM6RWrGRlqasjzexXYu-OTTIBc24_xrftoKc85v-0INzsovV-cevfoifurp91i3fJJf4C7a0TLQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios
URI https://www.ncbi.nlm.nih.gov/pubmed/32656001
https://www.proquest.com/docview/2418450221
https://www.proquest.com/docview/2423512953
https://pubmed.ncbi.nlm.nih.gov/PMC7331623
https://doaj.org/article/a1f0af0c834e444d918a815a158abff3
Volume 8
WOSCitedRecordID wos000543939600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M7P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: PIMPY
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M2P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYitAufA8CozKCCwez2HFihwtiY9Mm0RIhmMopchyHFa1JSTIk_nueXTesaOLCJYfGqSy9r9_70O8h9JKWkG_FLIbcRAnCwQMSCVGSFKGWqQxjFTqy6rMPYjqVs1ma-YJb58cq1z7ROeqy0bZGvg-RRvIYIg59u_xB7NYo2131KzS20AiQDbUjXROWDTUWCG8JQIwVK6mAxGV_aUz7_XXKJduIQ46u_zqM-feo5JXYc3znf299F932qBO_W6nJPXTD1PfRrYnvqz9AzYlZuDktbCdGseqwwn3TXGCAtLj0a3jIwm2uwvMaH348O31PaIoXw_TMG3y1Fw5f49Z3BnCn7cKi_he2zFGQmzfdQ_Tl-Ojz4QnxqxiI5oL1RJoqqVRlqtCA9-Rca8ESxkxaQLqjAEMWqY5FVeqUKp4WMjRRpCxTP7iQxICR76LtuqnNY4TDUotC6jIGYMorFSmWFKVVGUpLiKcyQK_Wgsm15ym36zIucshXrBBzJ8TcCjFAL4azyxU7x7WnDqx8hxOWUdv90LTfcm-guaJVqCrQ0IgbznmZUqkkjRWNpSqqKgrQ3lrCuTfzLv8j3gA9H16Dgdqui6pNc2nPsMiiqhj-4tFKmYabAHZ2iDNAYkPNNq66-aaenzsScLtrE6Drk39f6ynaYbZAECaEpXtou28vzTN0U__s5107RltiJsdodHA0zT6NXTli7CzIPgU8R9npJPv6G7KZJss
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLaJc-C4EChgBBw6hieMkNhJC0FLtqrvLHkpVTsFxHFjUTZYkBfVP8RsZ54suqrj1wDVxIid5M_PGnswDeOYmmG_51MfcRIY2Qw9oc4ySduwoLrjjS6duVn04DqdTfnQkZmvwq_sXxpRVdj6xdtRJrswa-TZGGs58jDjum-V326hGmd3VTkKjgcW-Pv2JKVv5erSL3_c5pXvvD3aGdqsqYCsW0srmOg1SmerU0egIGFMqpAGlWsTI3CXSoVgoP0wTJVzJRMwd7XnSNJ1Hawg04hXvewnWGT6iM4D12Wgy-9Sv6mBADZDUNH1QQ0yVtpdaF99eCsbpSuSrBQLOY7V_F2eeiXZ71_-393QDrrW8mrxtDOEmrOnsFlyZtJUDtyEf6kVdiUZMTSyRJZGkyvNjgqSdJK3QkL2otbnIPCM7Hw5Hu7YryKKvD3pFzu7249WkaPc-SKmMJFN1SkxvLFnM8_IOfLyQx92EQZZn-h4QJ1FhzFXiI_VmqfQkDeLEGIXrJsgYuAUvOiBEqu3EbgRBjiPMyAxooho0kQGNBU_7scum_8i5o94ZPPUjTM_w-kBefIlaFxRJN3VkijboMc0YS4TLJXd96fpcxmnqWbDVISpqHVkZ_YGTBU_60-iCzL6SzHR-YsZQz_BGH29xtwFvPxPMDmpObUG4AuuVqa6eyeZf6zbnRk0Uyfn9f0_rMWwMDybjaDya7j-Aq9QshziBTcUWDKriRD-Ey-pHNS-LR62tEvh80bD_DSqLfq4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4EChgBBw5hE8dJHKSqot2uumpZVgiq3oLj2LComyxJCupf49cxzosuqrj1wDVxIif5ZuYbezIfwAs3xXzLpz7mJiK0GXpAm2OUtBNH8og7vnDqZtVHh-F0yo-Po9ka_Or-hTFllZ1PrB11mkuzRj7ESMOZjxHHHeq2LGI2Gm8vv9tGQcrstHZyGg1EDtTZT0zfyq3JCL_1S0rHex939-1WYcCWLKSVzZUOtNBKOwqdAmNShjSgVEUJsniB1CiJpB_qVEauYFHCHeV5wjSgR8sIFGIX73sF1kMPk54BrO_sTWcf-hUeDK4BEpymJ2qIadNwqVTx7XXEOF2JgrVYwEUM9-9CzXORb3zjf35nN-F6y7fJ28ZAbsGaym7Dxru2ouAO5PtqUVeoEVMrS0RJBKny_IQgmSdpK0BkL2rNLjLPyO77o8nIdiOy6OuG3pDzVQB4NSnaPRFSSiPVVJ0R0zNLFPO8vAufLuVx78EgyzP1AIiTyjDhMvWRkjMtPEGDJDXG4ropMgluwasOFLFsO7QboZCTGDM1A6C4BlBsAGTB837ssulLcuGoHYOtfoTpJV4fyIsvceuaYuFqR2i0TY8pxlgauVxw1xeuz0WitWfBZoeuuHVwZfwHWhY860-jazL7TSJT-akZQz3DJ328xf0GyP1MMGuoubYF4QrEV6a6eiabf63bnxuVUSTtD_89raewgViPDyfTg0dwjZpVEiewabQJg6o4VY_hqvxRzcviSWu2BD5fNup_AxdPh0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hemogram+data+as+a+tool+for+decision-making+in+COVID-19+management%3A+applications+to+resource+scarcity+scenarios&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Avila%2C+Eduardo&rft.au=Kahmann%2C+Alessandro&rft.au=Alho%2C+Clarice&rft.au=Dorn%2C+Marcio&rft.date=2020-06-29&rft.pub=PeerJ%2C+Inc&rft.eissn=2167-8359&rft_id=info:doi/10.7717%2Fpeerj.9482&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon