A reliable mixed-integer linear programming formulation for data-driven model predictive control in buildings

Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:MethodsX Ročník 15; s. 103470
Hlavní autori: Klanatsky, Peter, Veynandt, François, Heschl, Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2025
Elsevier
Predmet:
ISSN:2215-0161, 2215-0161
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. [Display omitted]
AbstractList Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function.
Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function.Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function.
Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. [Display omitted]
Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. Image, graphical abstract
ArticleNumber 103470
Author Veynandt, François
Klanatsky, Peter
Heschl, Christian
Author_xml – sequence: 1
  givenname: Peter
  surname: Klanatsky
  fullname: Klanatsky, Peter
– sequence: 2
  givenname: François
  orcidid: 0000-0002-8259-5743
  surname: Veynandt
  fullname: Veynandt, François
  email: Francois.Veynandt@hochschule-burgenland.at
– sequence: 3
  givenname: Christian
  surname: Heschl
  fullname: Heschl, Christian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40808755$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQjlARLaU_gAvKkUu2fiXxigOqKh6VKnGBszW2J8ErPxYnWbX_Hi8pVXvpyeOZb755fW-rk5giVtV7SjaU0O5ytwl4t2GEteXPRU9eVWeM0bYpQXryxD6tLqZpRwihXHAq2JvqVBBJZN-2Z1W4qjN6B9pjHdwd2sbFGUfMtXcRIdf7nMYMIbg41kPKYfEwuxSPdm1hhsZmd8BYh2TRFzRaZ-biqU2Kc06-drHWi_O2EEzvqtcD-AkvHt7z6tfXLz-vvze3P77dXF_dNkb0bG4kb7mW3dbSzlrZDiAGbAVa01Ftuk7iIBlpORPAgGxRUoJEGkvb4tMDG_h5dbPy2gQ7tc8uQL5XCZz650h5VJBnZzwqSkFuOwODlkJw0NowgqDBYNeXbrrC9Xnl2i86lB6wjAX-GenzSHS_1ZgOirKy73KXwvDxgSGnPwtOswpuMug9REzLpDjjW0HYtucF-uFpsccq_w9WAHQFmJymKePwCKFEHXWhdqroQh11oVZdlJxPaw6WlR8cZjUZh9GUU2U0c9mJeyH7L4T0wfs
Cites_doi 10.1016/j.enbuild.2015.06.012
10.1016/j.jprocont.2018.12.015
10.1016/j.adapen.2022.100099
10.1016/j.enbuild.2019.04.029
10.1016/j.buildenv.2016.07.007
10.1016/j.buildenv.2013.11.016
10.1016/j.jprocont.2020.02.007
10.1016/j.enbuild.2022.112709
10.1016/j.enbuild.2024.113895
10.1016/j.enbuild.2018.04.062
10.1016/j.enbuild.2014.05.053
10.1016/j.enbuild.2011.09.022
10.1016/j.arcontrol.2020.09.001
10.1061/9780784483961.047
10.1016/j.dib.2023.109891
10.1016/j.enbuild.2023.113624
10.1016/j.enbuild.2025.115590
10.1016/j.ifacol.2019.08.239
10.3390/s24134405
10.1016/j.buildenv.2021.107830
10.1016/j.rser.2016.11.167
10.1016/j.rser.2021.110969
10.1007/s00170-021-07682-3
10.3390/en11030631
10.1109/TCST.2015.2415411
ContentType Journal Article
Copyright 2025 The Author(s)
2025 The Author(s).
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: 2025 The Author(s).
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.mex.2025.103470
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2215-0161
ExternalDocumentID oai_doaj_org_article_11a896cafb8443abbc20eabace67c476
PMC12343470
40808755
10_1016_j_mex_2025_103470
S2215016125003152
Genre Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M48
M~E
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c472t-8353b869d16dd85fa4fe54edc61bc668ef8205324a2a09e810e08cd15532bf2f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001532841300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2215-0161
IngestDate Fri Oct 03 12:43:42 EDT 2025
Tue Sep 30 17:01:19 EDT 2025
Thu Aug 14 17:32:54 EDT 2025
Sun Aug 17 02:22:51 EDT 2025
Thu Nov 27 01:04:33 EST 2025
Sat Aug 09 17:30:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Smart shading control
Optimization problem formulation with Mixed-Integer Linear Programming for Data-driven Model Predictive Control of buildings with Thermally Activated Building Structures and shading system
Model predictive control
Optimization algorithm
Thermally activated building structure
Building energy management
Data-driven predictive control
Data-driven building modelling
Language English
License This is an open access article under the CC BY license.
2025 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-8353b869d16dd85fa4fe54edc61bc668ef8205324a2a09e810e08cd15532bf2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8259-5743
OpenAccessLink https://doaj.org/article/11a896cafb8443abbc20eabace67c476
PMID 40808755
PQID 3239402973
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_11a896cafb8443abbc20eabace67c476
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12343470
proquest_miscellaneous_3239402973
pubmed_primary_40808755
crossref_primary_10_1016_j_mex_2025_103470
elsevier_sciencedirect_doi_10_1016_j_mex_2025_103470
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle MethodsX
PublicationTitleAlternate MethodsX
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Halhoul Merabet, Essaaidi, Ben Haddou, Qolomany, Qadir, Anan, Al-Fuqaha, Abid, Benhaddou (bib0005) 2021; 144
Mork, Redder, Xhonneux, Müller (bib0026) 2023; 78
The Leader in Decision Intelligence Technology, Gurobi optimization (n.d.).
(accessed November 29, 2022).
Viot, Sempey, Mora, Batsale, Malvestio (bib0021) 2018; 172
Sturzenegger, Gyalistras, Morari, Smith (bib0025) 2016; 24
Klanatsky, Veynandt, Heschl (bib0029) 2024
Zeng, Liu, Yu (bib0009) 2019; 194
Klanatsky, Veynandt, Stelzer, Heschl (bib0034) 2024; 52
id=Y9NYEAAAQBAJ.
Stoffel, Berktold, Müller (bib0015) 2024; 305
Afram, Janabi-Sharifi (bib0011) 2014; 72
W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022.
Drgoňa, Arroyo, Figueroa, Blum, Arendt, Kim, Ollé, Oravec, Wetter, Vrabie, Helsen (bib0018) 2020; 50
Klanatsky, Veynandt, Heschl, Stelzer, Zogas, Siokas, Balomenos (bib0030) 2025; 338
W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. ISBN: 978-0-357-90781-8.
Paterakis, Erdinç, Catalão (bib0003) 2017; 69
Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch, Lehmann, Morari (bib0007) 2012; 45
S. Vanage, H. Dong, K. Cetin, Energy and demand saving potential due to integrated HVAC, lighting, and shading controls in small office building, (2022) 443–452.
Veynandt, Heschl (bib0033) 2020
Drgoňa, Picard, Helsen (bib0017) 2020; 88
Klanatsky, Veynandt, Heschl (bib0027) 2023; 300
Arteconi, Costola, Hoes, Hensen (bib0020) 2014; 80
Nicoletti, Carpino, Arcuri (bib0024) 2023
Zhang, Prakash, Paul, Blum, Alstone, Zoellick, Brown, Pritoni (bib0010) 2022; 7
Klanatsky (bib0002) 2023
Luchini, Schirrer, Jakubek, Kozek (bib0035) 2019; 76
Killian, Kozek (bib0008) 2019; 52
Serale, Fiorentini, Capozzoli, Bernardini, Bemporad (bib0012) 2018; 11
Kim, Cai, Ariyur, Braun (bib0019) 2016; 107
Veynandt, Heschl, Klanatsky, Plank (bib0028) 2020
Standards (bib0036) 2012
.
Schmelas, Feldmann, Bollin (bib0022) 2015; 103
Freund, Schmitz (bib0016) 2021; 197
Schwenzer, Ay, Bergs, Abel (bib0013) 2021; 117
Taboada-Orozco, Yetongnon, Nicolle (bib0004) 2024; 24
Mariano-Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-Pérez, García (bib0006) 2021; 33
Stoffel, Maier, Kümpel, Schreiber, Müller (bib0014) 2023; 280
Klanatsky (10.1016/j.mex.2025.103470_bib0027) 2023; 300
Halhoul Merabet (10.1016/j.mex.2025.103470_bib0005) 2021; 144
Schmelas (10.1016/j.mex.2025.103470_bib0022) 2015; 103
Stoffel (10.1016/j.mex.2025.103470_bib0015) 2024; 305
Freund (10.1016/j.mex.2025.103470_bib0016) 2021; 197
Klanatsky (10.1016/j.mex.2025.103470_bib0030) 2025; 338
Sturzenegger (10.1016/j.mex.2025.103470_bib0025) 2016; 24
Paterakis (10.1016/j.mex.2025.103470_bib0003) 2017; 69
Luchini (10.1016/j.mex.2025.103470_bib0035) 2019; 76
Mariano-Hernández (10.1016/j.mex.2025.103470_bib0006) 2021; 33
Mork (10.1016/j.mex.2025.103470_bib0026) 2023; 78
10.1016/j.mex.2025.103470_bib0001
10.1016/j.mex.2025.103470_bib0023
Veynandt (10.1016/j.mex.2025.103470_bib0028)
Zeng (10.1016/j.mex.2025.103470_bib0009) 2019; 194
Stoffel (10.1016/j.mex.2025.103470_bib0014) 2023; 280
Schwenzer (10.1016/j.mex.2025.103470_bib0013) 2021; 117
Klanatsky (10.1016/j.mex.2025.103470_bib0002) 2023
Oldewurtel (10.1016/j.mex.2025.103470_bib0007) 2012; 45
Arteconi (10.1016/j.mex.2025.103470_bib0020) 2014; 80
Klanatsky (10.1016/j.mex.2025.103470_bib0034) 2024; 52
Nicoletti (10.1016/j.mex.2025.103470_bib0024) 2023
Klanatsky (10.1016/j.mex.2025.103470_bib0029) 2024
Drgoňa (10.1016/j.mex.2025.103470_bib0017) 2020; 88
Kim (10.1016/j.mex.2025.103470_bib0019) 2016; 107
Viot (10.1016/j.mex.2025.103470_bib0021) 2018; 172
Standards (10.1016/j.mex.2025.103470_bib0036)
Killian (10.1016/j.mex.2025.103470_bib0008) 2019; 52
Taboada-Orozco (10.1016/j.mex.2025.103470_bib0004) 2024; 24
Afram (10.1016/j.mex.2025.103470_bib0011) 2014; 72
Serale (10.1016/j.mex.2025.103470_bib0012) 2018; 11
Drgoňa (10.1016/j.mex.2025.103470_bib0018) 2020; 50
Veynandt (10.1016/j.mex.2025.103470_bib0033) 2020
10.1016/j.mex.2025.103470_bib0032
10.1016/j.mex.2025.103470_bib0031
Zhang (10.1016/j.mex.2025.103470_bib0010) 2022; 7
References_xml – volume: 103
  start-page: 14
  year: 2015
  end-page: 28
  ident: bib0022
  article-title: Adaptive predictive control of thermo-active building systems (TABS) based on a multiple regression algorithm
  publication-title: Energy Build.
– year: 2020
  ident: bib0028
  article-title: Complex glass facade modelling for Model Predictive Control of thermal loads: impact of the solar load identification on the state-space model accuracy, Leykam
– volume: 52
  year: 2024
  ident: bib0034
  article-title: Monitoring data from an office room in a real operating building, suitable for state-space energy modelling
  publication-title: Data Brief
– volume: 76
  start-page: 112
  year: 2019
  end-page: 121
  ident: bib0035
  article-title: Model predictive multirate control for mixed-integer optimisation of redundant refrigeration circuits
  publication-title: J. Process Control
– volume: 197
  year: 2021
  ident: bib0016
  article-title: Implementation of model predictive control in a large-sized, low-energy office building
  publication-title: Build. Environ.
– volume: 78
  year: 2023
  ident: bib0026
  article-title: Real-world implementation and evaluation of a Model Predictive Control framework in an office space
  publication-title: J. Build. Eng.
– reference: The Leader in Decision Intelligence Technology, Gurobi optimization (n.d.).
– volume: 24
  start-page: 4405
  year: 2024
  ident: bib0004
  article-title: Smart Buildings: A comprehensive systematic literature review on data-driven building Management systems
  publication-title: Sensors
– volume: 117
  start-page: 1327
  year: 2021
  end-page: 1349
  ident: bib0013
  article-title: Review on model predictive control: an engineering perspective
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 305
  year: 2024
  ident: bib0015
  article-title: Real-life data-driven model predictive control for building energy systems comparing different machine learning models
  publication-title: Energy Build.
– reference: S. Vanage, H. Dong, K. Cetin, Energy and demand saving potential due to integrated HVAC, lighting, and shading controls in small office building, (2022) 443–452.
– reference: ?id=Y9NYEAAAQBAJ.
– year: 2023
  ident: bib0002
  article-title: Grey-Box Model for Model Predictive Control of Buildings
– volume: 194
  start-page: 289
  year: 2019
  end-page: 300
  ident: bib0009
  article-title: Comparative study of data driven methods in building electricity use prediction
  publication-title: Energy Build.
– volume: 80
  start-page: 384
  year: 2014
  end-page: 393
  ident: bib0020
  article-title: Analysis of control strategies for thermally activated building systems under demand side management mechanisms
  publication-title: Energy Build.
– volume: 33
  year: 2021
  ident: bib0006
  article-title: A review of strategies for building energy management system: model predictive control, demand side management, optimization, and fault detect & diagnosis
  publication-title: J. Build. Eng.
– volume: 280
  year: 2023
  ident: bib0014
  article-title: Evaluation of advanced control strategies for building energy systems
  publication-title: Energy Build.
– volume: 24
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0025
  article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost–Benefit analysis
  publication-title: IEEE Transact. Control Syst. Technol.
– volume: 172
  start-page: 385
  year: 2018
  end-page: 396
  ident: bib0021
  article-title: Model predictive control of a thermally activated building system to improve energy management of an experimental building: part II - potential of predictive strategy
  publication-title: Energy Build.
– year: 2012
  ident: bib0036
  article-title: ÖNORM H 6040:2012 11 01: berechnung der sensiblen und latenten kühllast sowie der sommerlichen Temperaturgänge von Räumen und Gebäuden - (Nationale Ergänzungen zu ÖNORM EN 15255 und ÖNORM EN ISO 13791)
– reference: (accessed November 29, 2022).
– volume: 338
  year: 2025
  ident: bib0030
  article-title: Real long-term performance evaluation of an improved office building operation involving a data-driven model predictive control
  publication-title: Energy Build.
– volume: 45
  start-page: 15
  year: 2012
  end-page: 27
  ident: bib0007
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build.
– volume: 107
  start-page: 169
  year: 2016
  end-page: 180
  ident: bib0019
  article-title: System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: lumped disturbance modeling approach
  publication-title: Build. Environ.
– volume: 7
  year: 2022
  ident: bib0010
  article-title: Model predictive control for demand flexibility: real-world operation of a commercial building with photovoltaic and battery systems
  publication-title: Adv. Appl. Energy
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib0011
  article-title: Theory and applications of HVAC control systems – A review of model predictive control (MPC)
  publication-title: Build. Environ.
– volume: 11
  start-page: 631
  year: 2018
  ident: bib0012
  article-title: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities
  publication-title: Energies
– reference: W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022.
– start-page: 36
  year: 2020
  end-page: 43
  ident: bib0033
  article-title: Modeling of solar radiation transmission through triple glazing based only on on-site measurements
  publication-title: Proceedings of BauSim Conference 2020: 8th Conference of IBPSA-Germany and Austria
– reference: .
– volume: 88
  start-page: 63
  year: 2020
  end-page: 77
  ident: bib0017
  article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration
  publication-title: J. Process Control
– reference: W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. ISBN: 978-0-357-90781-8.
– year: 2024
  ident: bib0029
  article-title: Data-driven model predictive control for buildings with glass façade and thermally activated building structure
  publication-title: Energy Build.
– volume: 52
  start-page: 377
  year: 2019
  end-page: 382
  ident: bib0008
  article-title: Short-term occupancy prediction and occupancy based constraints for MPC of smart homes
  publication-title: IFAC-PapersOnLine
– volume: 50
  start-page: 190
  year: 2020
  end-page: 232
  ident: bib0018
  article-title: All you need to know about model predictive control for buildings
  publication-title: Annu. Rev. Control
– volume: 144
  year: 2021
  ident: bib0005
  article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 173
  year: 2023
  end-page: 195
  ident: bib0024
  article-title: IoT control-based solar shadings: advanced operating strategy to optimize energy savings and visual comfort
  publication-title: IoT Edge Solutions for Cognitive Buildings
– volume: 300
  year: 2023
  ident: bib0027
  article-title: Grey-box model for model predictive control of buildings
  publication-title: Energy Build.
– volume: 69
  start-page: 871
  year: 2017
  end-page: 891
  ident: bib0003
  article-title: An overview of demand response: key-elements and international experience
  publication-title: Renew. Sustain. Energy Rev.
– volume: 103
  start-page: 14
  year: 2015
  ident: 10.1016/j.mex.2025.103470_bib0022
  article-title: Adaptive predictive control of thermo-active building systems (TABS) based on a multiple regression algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.012
– volume: 76
  start-page: 112
  year: 2019
  ident: 10.1016/j.mex.2025.103470_bib0035
  article-title: Model predictive multirate control for mixed-integer optimisation of redundant refrigeration circuits
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.015
– volume: 7
  year: 2022
  ident: 10.1016/j.mex.2025.103470_bib0010
  article-title: Model predictive control for demand flexibility: real-world operation of a commercial building with photovoltaic and battery systems
  publication-title: Adv. Appl. Energy
  doi: 10.1016/j.adapen.2022.100099
– volume: 78
  year: 2023
  ident: 10.1016/j.mex.2025.103470_bib0026
  article-title: Real-world implementation and evaluation of a Model Predictive Control framework in an office space
  publication-title: J. Build. Eng.
– volume: 194
  start-page: 289
  year: 2019
  ident: 10.1016/j.mex.2025.103470_bib0009
  article-title: Comparative study of data driven methods in building electricity use prediction
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.029
– volume: 107
  start-page: 169
  year: 2016
  ident: 10.1016/j.mex.2025.103470_bib0019
  article-title: System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: lumped disturbance modeling approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.07.007
– ident: 10.1016/j.mex.2025.103470_bib0031
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.mex.2025.103470_bib0011
  article-title: Theory and applications of HVAC control systems – A review of model predictive control (MPC)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.016
– ident: 10.1016/j.mex.2025.103470_bib0028
– volume: 88
  start-page: 63
  year: 2020
  ident: 10.1016/j.mex.2025.103470_bib0017
  article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.02.007
– start-page: 36
  year: 2020
  ident: 10.1016/j.mex.2025.103470_bib0033
  article-title: Modeling of solar radiation transmission through triple glazing based only on on-site measurements
– volume: 280
  year: 2023
  ident: 10.1016/j.mex.2025.103470_bib0014
  article-title: Evaluation of advanced control strategies for building energy systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112709
– volume: 305
  year: 2024
  ident: 10.1016/j.mex.2025.103470_bib0015
  article-title: Real-life data-driven model predictive control for building energy systems comparing different machine learning models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.113895
– volume: 172
  start-page: 385
  year: 2018
  ident: 10.1016/j.mex.2025.103470_bib0021
  article-title: Model predictive control of a thermally activated building system to improve energy management of an experimental building: part II - potential of predictive strategy
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.04.062
– volume: 80
  start-page: 384
  year: 2014
  ident: 10.1016/j.mex.2025.103470_bib0020
  article-title: Analysis of control strategies for thermally activated building systems under demand side management mechanisms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.05.053
– volume: 45
  start-page: 15
  year: 2012
  ident: 10.1016/j.mex.2025.103470_bib0007
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.09.022
– ident: 10.1016/j.mex.2025.103470_bib0036
– ident: 10.1016/j.mex.2025.103470_bib0001
– volume: 50
  start-page: 190
  year: 2020
  ident: 10.1016/j.mex.2025.103470_bib0018
  article-title: All you need to know about model predictive control for buildings
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2020.09.001
– ident: 10.1016/j.mex.2025.103470_bib0023
  doi: 10.1061/9780784483961.047
– volume: 52
  year: 2024
  ident: 10.1016/j.mex.2025.103470_bib0034
  article-title: Monitoring data from an office room in a real operating building, suitable for state-space energy modelling
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109891
– volume: 300
  year: 2023
  ident: 10.1016/j.mex.2025.103470_bib0027
  article-title: Grey-box model for model predictive control of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113624
– volume: 338
  year: 2025
  ident: 10.1016/j.mex.2025.103470_bib0030
  article-title: Real long-term performance evaluation of an improved office building operation involving a data-driven model predictive control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2025.115590
– ident: 10.1016/j.mex.2025.103470_bib0032
– volume: 52
  start-page: 377
  year: 2019
  ident: 10.1016/j.mex.2025.103470_bib0008
  article-title: Short-term occupancy prediction and occupancy based constraints for MPC of smart homes
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.08.239
– volume: 24
  start-page: 4405
  year: 2024
  ident: 10.1016/j.mex.2025.103470_bib0004
  article-title: Smart Buildings: A comprehensive systematic literature review on data-driven building Management systems
  publication-title: Sensors
  doi: 10.3390/s24134405
– volume: 197
  year: 2021
  ident: 10.1016/j.mex.2025.103470_bib0016
  article-title: Implementation of model predictive control in a large-sized, low-energy office building
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107830
– volume: 69
  start-page: 871
  year: 2017
  ident: 10.1016/j.mex.2025.103470_bib0003
  article-title: An overview of demand response: key-elements and international experience
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.167
– volume: 144
  year: 2021
  ident: 10.1016/j.mex.2025.103470_bib0005
  article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110969
– volume: 117
  start-page: 1327
  year: 2021
  ident: 10.1016/j.mex.2025.103470_bib0013
  article-title: Review on model predictive control: an engineering perspective
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07682-3
– year: 2024
  ident: 10.1016/j.mex.2025.103470_bib0029
  article-title: Data-driven model predictive control for buildings with glass façade and thermally activated building structure
  publication-title: Energy Build.
– start-page: 173
  year: 2023
  ident: 10.1016/j.mex.2025.103470_bib0024
  article-title: IoT control-based solar shadings: advanced operating strategy to optimize energy savings and visual comfort
– year: 2023
  ident: 10.1016/j.mex.2025.103470_bib0002
– volume: 33
  year: 2021
  ident: 10.1016/j.mex.2025.103470_bib0006
  article-title: A review of strategies for building energy management system: model predictive control, demand side management, optimization, and fault detect & diagnosis
  publication-title: J. Build. Eng.
– volume: 11
  start-page: 631
  year: 2018
  ident: 10.1016/j.mex.2025.103470_bib0012
  article-title: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities
  publication-title: Energies
  doi: 10.3390/en11030631
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.mex.2025.103470_bib0025
  article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost–Benefit analysis
  publication-title: IEEE Transact. Control Syst. Technol.
  doi: 10.1109/TCST.2015.2415411
SSID ssj0001343142
Score 2.3263133
Snippet Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103470
SubjectTerms Building energy management
Data-driven building modelling
Data-driven predictive control
Energy
Model predictive control
Optimization algorithm
Optimization problem formulation with Mixed-Integer Linear Programming for Data-driven Model Predictive Control of buildings with Thermally Activated Building Structures and shading system
Smart shading control
Thermally activated building structure
Title A reliable mixed-integer linear programming formulation for data-driven model predictive control in buildings
URI https://dx.doi.org/10.1016/j.mex.2025.103470
https://www.ncbi.nlm.nih.gov/pubmed/40808755
https://www.proquest.com/docview/3239402973
https://pubmed.ncbi.nlm.nih.gov/PMC12343470
https://doaj.org/article/11a896cafb8443abbc20eabace67c476
Volume 15
WOSCitedRecordID wos001532841300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB90EfEifls_lgiehGI_0jY9rrKLl108KLxbmHxhxdeVvreyp_3bdyZNl_cU9OKllDYkmUyS-SWZzA_gbUCPpepVjkWBvHVDY85ZzAkaFE0oZVe3JpJNdGdnarXqP-9QfbFP2BweeG6492WJqm8tBqOkrNEYWxUeDVrfdlZ2Mdh20fU7i6m4u1KTYZTVcowZHbrW_pLWg1XD98wlkxPvGKIYr3_PHv2JN393m9yxQycP4H4CkOJorvhDuOXHR3D3NB2RP4b1kZj8j4FvRIn1cOldHiNC-EkwoMRJJI-sNdkswYg18Xfxu2B_0dxNPAOKyJFDqTlnnhNF8moXwyhMItPePIGvJ8dfPn7KE6dCTo1VbXMCXLVRbe_K1jnVBJTBN5Jkaktj21b5QJCgIZSFFRa9V2XhC2UdswtVJlShfgoH4_non4NoZGe99Z3tLbV2gygllkaGsnKkLOUyeLc0sP45h87Qi0_Zd03a0KwNPWsjgw-sgpuEHPU6fqC-oFNf0P_qCxnIRYE6AYgZGFBWw9_KfrMoW9Pg4hMTHP35xUbXkTie6b0yeDYr_6aGkrA2LfaaDNRet9gTYf_POHyLAbwJLUgu-MX_EPol3GNZZhebV3CwnS78a7hjf22HzXQIt7uVOoyDg56nV8fXW0kY8w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reliable+mixed-integer+linear+programming+formulation+for+data-driven+model+predictive+control+in+buildings&rft.jtitle=MethodsX&rft.au=Klanatsky%2C+Peter&rft.au=Veynandt%2C+Fran%C3%A7ois&rft.au=Heschl%2C+Christian&rft.date=2025-12-01&rft.issn=2215-0161&rft.eissn=2215-0161&rft.volume=15&rft.spage=103470&rft_id=info:doi/10.1016%2Fj.mex.2025.103470&rft_id=info%3Apmid%2F40808755&rft.externalDocID=40808755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon