A reliable mixed-integer linear programming formulation for data-driven model predictive control in buildings
Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present...
Uložené v:
| Vydané v: | MethodsX Ročník 15; s. 103470 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.12.2025
Elsevier |
| Predmet: | |
| ISSN: | 2215-0161, 2215-0161 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function.
[Display omitted] |
|---|---|
| AbstractList | Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function.Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. [Display omitted] Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive Control (DMPC) has shown significant promise in this area. Buildings with Thermally Activated Building Structures (TABS) and glass façade present flexibility potential, but have a challenging thermal balance, due to high thermal inertia and significant solar gains. In such buildings, a DMPC jointly controlling TABS and the shading system is advantageous. However, the only known implementations enabling this combination rely on a white-box model, limiting the replicability of the approach due to the required modelling effort. To facilitate the implementation of a DMPC for such a combined control task, this paper presents in details a suitable optimisation algorithm:•specifically designed for buildings with TABS and shading systems,•based on a grey-box model of thermal zones (a reduced order state-space model),•using a reliable and efficient Mixed-Integer Linear Programming (MILP) formulation,•handling thermal comfort as constraints, avoiding weighting factors in the objective function. Image, graphical abstract |
| ArticleNumber | 103470 |
| Author | Veynandt, François Klanatsky, Peter Heschl, Christian |
| Author_xml | – sequence: 1 givenname: Peter surname: Klanatsky fullname: Klanatsky, Peter – sequence: 2 givenname: François orcidid: 0000-0002-8259-5743 surname: Veynandt fullname: Veynandt, François email: Francois.Veynandt@hochschule-burgenland.at – sequence: 3 givenname: Christian surname: Heschl fullname: Heschl, Christian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40808755$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uktv1DAQjlARLaU_gAvKkUu2fiXxigOqKh6VKnGBszW2J8ErPxYnWbX_Hi8pVXvpyeOZb755fW-rk5giVtV7SjaU0O5ytwl4t2GEteXPRU9eVWeM0bYpQXryxD6tLqZpRwihXHAq2JvqVBBJZN-2Z1W4qjN6B9pjHdwd2sbFGUfMtXcRIdf7nMYMIbg41kPKYfEwuxSPdm1hhsZmd8BYh2TRFzRaZ-biqU2Kc06-drHWi_O2EEzvqtcD-AkvHt7z6tfXLz-vvze3P77dXF_dNkb0bG4kb7mW3dbSzlrZDiAGbAVa01Ftuk7iIBlpORPAgGxRUoJEGkvb4tMDG_h5dbPy2gQ7tc8uQL5XCZz650h5VJBnZzwqSkFuOwODlkJw0NowgqDBYNeXbrrC9Xnl2i86lB6wjAX-GenzSHS_1ZgOirKy73KXwvDxgSGnPwtOswpuMug9REzLpDjjW0HYtucF-uFpsccq_w9WAHQFmJymKePwCKFEHXWhdqroQh11oVZdlJxPaw6WlR8cZjUZh9GUU2U0c9mJeyH7L4T0wfs |
| Cites_doi | 10.1016/j.enbuild.2015.06.012 10.1016/j.jprocont.2018.12.015 10.1016/j.adapen.2022.100099 10.1016/j.enbuild.2019.04.029 10.1016/j.buildenv.2016.07.007 10.1016/j.buildenv.2013.11.016 10.1016/j.jprocont.2020.02.007 10.1016/j.enbuild.2022.112709 10.1016/j.enbuild.2024.113895 10.1016/j.enbuild.2018.04.062 10.1016/j.enbuild.2014.05.053 10.1016/j.enbuild.2011.09.022 10.1016/j.arcontrol.2020.09.001 10.1061/9780784483961.047 10.1016/j.dib.2023.109891 10.1016/j.enbuild.2023.113624 10.1016/j.enbuild.2025.115590 10.1016/j.ifacol.2019.08.239 10.3390/s24134405 10.1016/j.buildenv.2021.107830 10.1016/j.rser.2016.11.167 10.1016/j.rser.2021.110969 10.1007/s00170-021-07682-3 10.3390/en11030631 10.1109/TCST.2015.2415411 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) 2025 The Author(s). 2025 The Author(s) 2025 |
| Copyright_xml | – notice: 2025 The Author(s) – notice: 2025 The Author(s). – notice: 2025 The Author(s) 2025 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.mex.2025.103470 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2215-0161 |
| ExternalDocumentID | oai_doaj_org_article_11a896cafb8443abbc20eabace67c476 PMC12343470 40808755 10_1016_j_mex_2025_103470 S2215016125003152 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE IPNFZ IXB KQ8 M48 M~E OK1 RIG ROL RPM SSZ AAYXX CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c472t-8353b869d16dd85fa4fe54edc61bc668ef8205324a2a09e810e08cd15532bf2f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001532841300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2215-0161 |
| IngestDate | Fri Oct 03 12:43:42 EDT 2025 Tue Sep 30 17:01:19 EDT 2025 Thu Aug 14 17:32:54 EDT 2025 Sun Aug 17 02:22:51 EDT 2025 Thu Nov 27 01:04:33 EST 2025 Sat Aug 09 17:30:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Smart shading control Optimization problem formulation with Mixed-Integer Linear Programming for Data-driven Model Predictive Control of buildings with Thermally Activated Building Structures and shading system Model predictive control Optimization algorithm Thermally activated building structure Building energy management Data-driven predictive control Data-driven building modelling |
| Language | English |
| License | This is an open access article under the CC BY license. 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-8353b869d16dd85fa4fe54edc61bc668ef8205324a2a09e810e08cd15532bf2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8259-5743 |
| OpenAccessLink | https://doaj.org/article/11a896cafb8443abbc20eabace67c476 |
| PMID | 40808755 |
| PQID | 3239402973 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_11a896cafb8443abbc20eabace67c476 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12343470 proquest_miscellaneous_3239402973 pubmed_primary_40808755 crossref_primary_10_1016_j_mex_2025_103470 elsevier_sciencedirect_doi_10_1016_j_mex_2025_103470 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | MethodsX |
| PublicationTitleAlternate | MethodsX |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Halhoul Merabet, Essaaidi, Ben Haddou, Qolomany, Qadir, Anan, Al-Fuqaha, Abid, Benhaddou (bib0005) 2021; 144 Mork, Redder, Xhonneux, Müller (bib0026) 2023; 78 The Leader in Decision Intelligence Technology, Gurobi optimization (n.d.). (accessed November 29, 2022). Viot, Sempey, Mora, Batsale, Malvestio (bib0021) 2018; 172 Sturzenegger, Gyalistras, Morari, Smith (bib0025) 2016; 24 Klanatsky, Veynandt, Heschl (bib0029) 2024 Zeng, Liu, Yu (bib0009) 2019; 194 Klanatsky, Veynandt, Stelzer, Heschl (bib0034) 2024; 52 id=Y9NYEAAAQBAJ. Stoffel, Berktold, Müller (bib0015) 2024; 305 Afram, Janabi-Sharifi (bib0011) 2014; 72 W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. Drgoňa, Arroyo, Figueroa, Blum, Arendt, Kim, Ollé, Oravec, Wetter, Vrabie, Helsen (bib0018) 2020; 50 Klanatsky, Veynandt, Heschl, Stelzer, Zogas, Siokas, Balomenos (bib0030) 2025; 338 W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. ISBN: 978-0-357-90781-8. Paterakis, Erdinç, Catalão (bib0003) 2017; 69 Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch, Lehmann, Morari (bib0007) 2012; 45 S. Vanage, H. Dong, K. Cetin, Energy and demand saving potential due to integrated HVAC, lighting, and shading controls in small office building, (2022) 443–452. Veynandt, Heschl (bib0033) 2020 Drgoňa, Picard, Helsen (bib0017) 2020; 88 Klanatsky, Veynandt, Heschl (bib0027) 2023; 300 Arteconi, Costola, Hoes, Hensen (bib0020) 2014; 80 Nicoletti, Carpino, Arcuri (bib0024) 2023 Zhang, Prakash, Paul, Blum, Alstone, Zoellick, Brown, Pritoni (bib0010) 2022; 7 Klanatsky (bib0002) 2023 Luchini, Schirrer, Jakubek, Kozek (bib0035) 2019; 76 Killian, Kozek (bib0008) 2019; 52 Serale, Fiorentini, Capozzoli, Bernardini, Bemporad (bib0012) 2018; 11 Kim, Cai, Ariyur, Braun (bib0019) 2016; 107 Veynandt, Heschl, Klanatsky, Plank (bib0028) 2020 Standards (bib0036) 2012 . Schmelas, Feldmann, Bollin (bib0022) 2015; 103 Freund, Schmitz (bib0016) 2021; 197 Schwenzer, Ay, Bergs, Abel (bib0013) 2021; 117 Taboada-Orozco, Yetongnon, Nicolle (bib0004) 2024; 24 Mariano-Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-Pérez, García (bib0006) 2021; 33 Stoffel, Maier, Kümpel, Schreiber, Müller (bib0014) 2023; 280 Klanatsky (10.1016/j.mex.2025.103470_bib0027) 2023; 300 Halhoul Merabet (10.1016/j.mex.2025.103470_bib0005) 2021; 144 Schmelas (10.1016/j.mex.2025.103470_bib0022) 2015; 103 Stoffel (10.1016/j.mex.2025.103470_bib0015) 2024; 305 Freund (10.1016/j.mex.2025.103470_bib0016) 2021; 197 Klanatsky (10.1016/j.mex.2025.103470_bib0030) 2025; 338 Sturzenegger (10.1016/j.mex.2025.103470_bib0025) 2016; 24 Paterakis (10.1016/j.mex.2025.103470_bib0003) 2017; 69 Luchini (10.1016/j.mex.2025.103470_bib0035) 2019; 76 Mariano-Hernández (10.1016/j.mex.2025.103470_bib0006) 2021; 33 Mork (10.1016/j.mex.2025.103470_bib0026) 2023; 78 10.1016/j.mex.2025.103470_bib0001 10.1016/j.mex.2025.103470_bib0023 Veynandt (10.1016/j.mex.2025.103470_bib0028) Zeng (10.1016/j.mex.2025.103470_bib0009) 2019; 194 Stoffel (10.1016/j.mex.2025.103470_bib0014) 2023; 280 Schwenzer (10.1016/j.mex.2025.103470_bib0013) 2021; 117 Klanatsky (10.1016/j.mex.2025.103470_bib0002) 2023 Oldewurtel (10.1016/j.mex.2025.103470_bib0007) 2012; 45 Arteconi (10.1016/j.mex.2025.103470_bib0020) 2014; 80 Klanatsky (10.1016/j.mex.2025.103470_bib0034) 2024; 52 Nicoletti (10.1016/j.mex.2025.103470_bib0024) 2023 Klanatsky (10.1016/j.mex.2025.103470_bib0029) 2024 Drgoňa (10.1016/j.mex.2025.103470_bib0017) 2020; 88 Kim (10.1016/j.mex.2025.103470_bib0019) 2016; 107 Viot (10.1016/j.mex.2025.103470_bib0021) 2018; 172 Standards (10.1016/j.mex.2025.103470_bib0036) Killian (10.1016/j.mex.2025.103470_bib0008) 2019; 52 Taboada-Orozco (10.1016/j.mex.2025.103470_bib0004) 2024; 24 Afram (10.1016/j.mex.2025.103470_bib0011) 2014; 72 Serale (10.1016/j.mex.2025.103470_bib0012) 2018; 11 Drgoňa (10.1016/j.mex.2025.103470_bib0018) 2020; 50 Veynandt (10.1016/j.mex.2025.103470_bib0033) 2020 10.1016/j.mex.2025.103470_bib0032 10.1016/j.mex.2025.103470_bib0031 Zhang (10.1016/j.mex.2025.103470_bib0010) 2022; 7 |
| References_xml | – volume: 103 start-page: 14 year: 2015 end-page: 28 ident: bib0022 article-title: Adaptive predictive control of thermo-active building systems (TABS) based on a multiple regression algorithm publication-title: Energy Build. – year: 2020 ident: bib0028 article-title: Complex glass facade modelling for Model Predictive Control of thermal loads: impact of the solar load identification on the state-space model accuracy, Leykam – volume: 52 year: 2024 ident: bib0034 article-title: Monitoring data from an office room in a real operating building, suitable for state-space energy modelling publication-title: Data Brief – volume: 76 start-page: 112 year: 2019 end-page: 121 ident: bib0035 article-title: Model predictive multirate control for mixed-integer optimisation of redundant refrigeration circuits publication-title: J. Process Control – volume: 197 year: 2021 ident: bib0016 article-title: Implementation of model predictive control in a large-sized, low-energy office building publication-title: Build. Environ. – volume: 78 year: 2023 ident: bib0026 article-title: Real-world implementation and evaluation of a Model Predictive Control framework in an office space publication-title: J. Build. Eng. – reference: The Leader in Decision Intelligence Technology, Gurobi optimization (n.d.). – volume: 24 start-page: 4405 year: 2024 ident: bib0004 article-title: Smart Buildings: A comprehensive systematic literature review on data-driven building Management systems publication-title: Sensors – volume: 117 start-page: 1327 year: 2021 end-page: 1349 ident: bib0013 article-title: Review on model predictive control: an engineering perspective publication-title: Int. J. Adv. Manuf. Technol. – volume: 305 year: 2024 ident: bib0015 article-title: Real-life data-driven model predictive control for building energy systems comparing different machine learning models publication-title: Energy Build. – reference: S. Vanage, H. Dong, K. Cetin, Energy and demand saving potential due to integrated HVAC, lighting, and shading controls in small office building, (2022) 443–452. – reference: ?id=Y9NYEAAAQBAJ. – year: 2023 ident: bib0002 article-title: Grey-Box Model for Model Predictive Control of Buildings – volume: 194 start-page: 289 year: 2019 end-page: 300 ident: bib0009 article-title: Comparative study of data driven methods in building electricity use prediction publication-title: Energy Build. – volume: 80 start-page: 384 year: 2014 end-page: 393 ident: bib0020 article-title: Analysis of control strategies for thermally activated building systems under demand side management mechanisms publication-title: Energy Build. – volume: 33 year: 2021 ident: bib0006 article-title: A review of strategies for building energy management system: model predictive control, demand side management, optimization, and fault detect & diagnosis publication-title: J. Build. Eng. – volume: 280 year: 2023 ident: bib0014 article-title: Evaluation of advanced control strategies for building energy systems publication-title: Energy Build. – volume: 24 start-page: 1 year: 2016 end-page: 12 ident: bib0025 article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost–Benefit analysis publication-title: IEEE Transact. Control Syst. Technol. – volume: 172 start-page: 385 year: 2018 end-page: 396 ident: bib0021 article-title: Model predictive control of a thermally activated building system to improve energy management of an experimental building: part II - potential of predictive strategy publication-title: Energy Build. – year: 2012 ident: bib0036 article-title: ÖNORM H 6040:2012 11 01: berechnung der sensiblen und latenten kühllast sowie der sommerlichen Temperaturgänge von Räumen und Gebäuden - (Nationale Ergänzungen zu ÖNORM EN 15255 und ÖNORM EN ISO 13791) – reference: (accessed November 29, 2022). – volume: 338 year: 2025 ident: bib0030 article-title: Real long-term performance evaluation of an improved office building operation involving a data-driven model predictive control publication-title: Energy Build. – volume: 45 start-page: 15 year: 2012 end-page: 27 ident: bib0007 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build. – volume: 107 start-page: 169 year: 2016 end-page: 180 ident: bib0019 article-title: System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: lumped disturbance modeling approach publication-title: Build. Environ. – volume: 7 year: 2022 ident: bib0010 article-title: Model predictive control for demand flexibility: real-world operation of a commercial building with photovoltaic and battery systems publication-title: Adv. Appl. Energy – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib0011 article-title: Theory and applications of HVAC control systems – A review of model predictive control (MPC) publication-title: Build. Environ. – volume: 11 start-page: 631 year: 2018 ident: bib0012 article-title: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities publication-title: Energies – reference: W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. – start-page: 36 year: 2020 end-page: 43 ident: bib0033 article-title: Modeling of solar radiation transmission through triple glazing based only on on-site measurements publication-title: Proceedings of BauSim Conference 2020: 8th Conference of IBPSA-Germany and Austria – reference: . – volume: 88 start-page: 63 year: 2020 end-page: 77 ident: bib0017 article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration publication-title: J. Process Control – reference: W.L. Winston, Operations research: applications and algorithms, cengage learning, 2022. ISBN: 978-0-357-90781-8. – year: 2024 ident: bib0029 article-title: Data-driven model predictive control for buildings with glass façade and thermally activated building structure publication-title: Energy Build. – volume: 52 start-page: 377 year: 2019 end-page: 382 ident: bib0008 article-title: Short-term occupancy prediction and occupancy based constraints for MPC of smart homes publication-title: IFAC-PapersOnLine – volume: 50 start-page: 190 year: 2020 end-page: 232 ident: bib0018 article-title: All you need to know about model predictive control for buildings publication-title: Annu. Rev. Control – volume: 144 year: 2021 ident: bib0005 article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques publication-title: Renew. Sustain. Energy Rev. – start-page: 173 year: 2023 end-page: 195 ident: bib0024 article-title: IoT control-based solar shadings: advanced operating strategy to optimize energy savings and visual comfort publication-title: IoT Edge Solutions for Cognitive Buildings – volume: 300 year: 2023 ident: bib0027 article-title: Grey-box model for model predictive control of buildings publication-title: Energy Build. – volume: 69 start-page: 871 year: 2017 end-page: 891 ident: bib0003 article-title: An overview of demand response: key-elements and international experience publication-title: Renew. Sustain. Energy Rev. – volume: 103 start-page: 14 year: 2015 ident: 10.1016/j.mex.2025.103470_bib0022 article-title: Adaptive predictive control of thermo-active building systems (TABS) based on a multiple regression algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.012 – volume: 76 start-page: 112 year: 2019 ident: 10.1016/j.mex.2025.103470_bib0035 article-title: Model predictive multirate control for mixed-integer optimisation of redundant refrigeration circuits publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.12.015 – volume: 7 year: 2022 ident: 10.1016/j.mex.2025.103470_bib0010 article-title: Model predictive control for demand flexibility: real-world operation of a commercial building with photovoltaic and battery systems publication-title: Adv. Appl. Energy doi: 10.1016/j.adapen.2022.100099 – volume: 78 year: 2023 ident: 10.1016/j.mex.2025.103470_bib0026 article-title: Real-world implementation and evaluation of a Model Predictive Control framework in an office space publication-title: J. Build. Eng. – volume: 194 start-page: 289 year: 2019 ident: 10.1016/j.mex.2025.103470_bib0009 article-title: Comparative study of data driven methods in building electricity use prediction publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.04.029 – volume: 107 start-page: 169 year: 2016 ident: 10.1016/j.mex.2025.103470_bib0019 article-title: System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: lumped disturbance modeling approach publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.07.007 – ident: 10.1016/j.mex.2025.103470_bib0031 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.mex.2025.103470_bib0011 article-title: Theory and applications of HVAC control systems – A review of model predictive control (MPC) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.016 – ident: 10.1016/j.mex.2025.103470_bib0028 – volume: 88 start-page: 63 year: 2020 ident: 10.1016/j.mex.2025.103470_bib0017 article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.02.007 – start-page: 36 year: 2020 ident: 10.1016/j.mex.2025.103470_bib0033 article-title: Modeling of solar radiation transmission through triple glazing based only on on-site measurements – volume: 280 year: 2023 ident: 10.1016/j.mex.2025.103470_bib0014 article-title: Evaluation of advanced control strategies for building energy systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112709 – volume: 305 year: 2024 ident: 10.1016/j.mex.2025.103470_bib0015 article-title: Real-life data-driven model predictive control for building energy systems comparing different machine learning models publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.113895 – volume: 172 start-page: 385 year: 2018 ident: 10.1016/j.mex.2025.103470_bib0021 article-title: Model predictive control of a thermally activated building system to improve energy management of an experimental building: part II - potential of predictive strategy publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.04.062 – volume: 80 start-page: 384 year: 2014 ident: 10.1016/j.mex.2025.103470_bib0020 article-title: Analysis of control strategies for thermally activated building systems under demand side management mechanisms publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.05.053 – volume: 45 start-page: 15 year: 2012 ident: 10.1016/j.mex.2025.103470_bib0007 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.09.022 – ident: 10.1016/j.mex.2025.103470_bib0036 – ident: 10.1016/j.mex.2025.103470_bib0001 – volume: 50 start-page: 190 year: 2020 ident: 10.1016/j.mex.2025.103470_bib0018 article-title: All you need to know about model predictive control for buildings publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.09.001 – ident: 10.1016/j.mex.2025.103470_bib0023 doi: 10.1061/9780784483961.047 – volume: 52 year: 2024 ident: 10.1016/j.mex.2025.103470_bib0034 article-title: Monitoring data from an office room in a real operating building, suitable for state-space energy modelling publication-title: Data Brief doi: 10.1016/j.dib.2023.109891 – volume: 300 year: 2023 ident: 10.1016/j.mex.2025.103470_bib0027 article-title: Grey-box model for model predictive control of buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113624 – volume: 338 year: 2025 ident: 10.1016/j.mex.2025.103470_bib0030 article-title: Real long-term performance evaluation of an improved office building operation involving a data-driven model predictive control publication-title: Energy Build. doi: 10.1016/j.enbuild.2025.115590 – ident: 10.1016/j.mex.2025.103470_bib0032 – volume: 52 start-page: 377 year: 2019 ident: 10.1016/j.mex.2025.103470_bib0008 article-title: Short-term occupancy prediction and occupancy based constraints for MPC of smart homes publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.08.239 – volume: 24 start-page: 4405 year: 2024 ident: 10.1016/j.mex.2025.103470_bib0004 article-title: Smart Buildings: A comprehensive systematic literature review on data-driven building Management systems publication-title: Sensors doi: 10.3390/s24134405 – volume: 197 year: 2021 ident: 10.1016/j.mex.2025.103470_bib0016 article-title: Implementation of model predictive control in a large-sized, low-energy office building publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107830 – volume: 69 start-page: 871 year: 2017 ident: 10.1016/j.mex.2025.103470_bib0003 article-title: An overview of demand response: key-elements and international experience publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.167 – volume: 144 year: 2021 ident: 10.1016/j.mex.2025.103470_bib0005 article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110969 – volume: 117 start-page: 1327 year: 2021 ident: 10.1016/j.mex.2025.103470_bib0013 article-title: Review on model predictive control: an engineering perspective publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07682-3 – year: 2024 ident: 10.1016/j.mex.2025.103470_bib0029 article-title: Data-driven model predictive control for buildings with glass façade and thermally activated building structure publication-title: Energy Build. – start-page: 173 year: 2023 ident: 10.1016/j.mex.2025.103470_bib0024 article-title: IoT control-based solar shadings: advanced operating strategy to optimize energy savings and visual comfort – year: 2023 ident: 10.1016/j.mex.2025.103470_bib0002 – volume: 33 year: 2021 ident: 10.1016/j.mex.2025.103470_bib0006 article-title: A review of strategies for building energy management system: model predictive control, demand side management, optimization, and fault detect & diagnosis publication-title: J. Build. Eng. – volume: 11 start-page: 631 year: 2018 ident: 10.1016/j.mex.2025.103470_bib0012 article-title: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities publication-title: Energies doi: 10.3390/en11030631 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.mex.2025.103470_bib0025 article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost–Benefit analysis publication-title: IEEE Transact. Control Syst. Technol. doi: 10.1109/TCST.2015.2415411 |
| SSID | ssj0001343142 |
| Score | 2.3263133 |
| Snippet | Integrating renewable energy sources into buildings requires advanced control strategies to enhance demand-side flexibility. Data-driven Model Predictive... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 103470 |
| SubjectTerms | Building energy management Data-driven building modelling Data-driven predictive control Energy Model predictive control Optimization algorithm Optimization problem formulation with Mixed-Integer Linear Programming for Data-driven Model Predictive Control of buildings with Thermally Activated Building Structures and shading system Smart shading control Thermally activated building structure |
| Title | A reliable mixed-integer linear programming formulation for data-driven model predictive control in buildings |
| URI | https://dx.doi.org/10.1016/j.mex.2025.103470 https://www.ncbi.nlm.nih.gov/pubmed/40808755 https://www.proquest.com/docview/3239402973 https://pubmed.ncbi.nlm.nih.gov/PMC12343470 https://doaj.org/article/11a896cafb8443abbc20eabace67c476 |
| Volume | 15 |
| WOSCitedRecordID | wos001532841300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2215-0161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001343142 issn: 2215-0161 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2215-0161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001343142 issn: 2215-0161 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB90EfEifls_lgiehGI_0jY9rrKLl108KLxbmHxhxdeVvreyp_3bdyZNl_cU9OKllDYkmUyS-SWZzA_gbUCPpepVjkWBvHVDY85ZzAkaFE0oZVe3JpJNdGdnarXqP-9QfbFP2BweeG6492WJqm8tBqOkrNEYWxUeDVrfdlZ2Mdh20fU7i6m4u1KTYZTVcowZHbrW_pLWg1XD98wlkxPvGKIYr3_PHv2JN393m9yxQycP4H4CkOJorvhDuOXHR3D3NB2RP4b1kZj8j4FvRIn1cOldHiNC-EkwoMRJJI-sNdkswYg18Xfxu2B_0dxNPAOKyJFDqTlnnhNF8moXwyhMItPePIGvJ8dfPn7KE6dCTo1VbXMCXLVRbe_K1jnVBJTBN5Jkaktj21b5QJCgIZSFFRa9V2XhC2UdswtVJlShfgoH4_non4NoZGe99Z3tLbV2gygllkaGsnKkLOUyeLc0sP45h87Qi0_Zd03a0KwNPWsjgw-sgpuEHPU6fqC-oFNf0P_qCxnIRYE6AYgZGFBWw9_KfrMoW9Pg4hMTHP35xUbXkTie6b0yeDYr_6aGkrA2LfaaDNRet9gTYf_POHyLAbwJLUgu-MX_EPol3GNZZhebV3CwnS78a7hjf22HzXQIt7uVOoyDg56nV8fXW0kY8w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reliable+mixed-integer+linear+programming+formulation+for+data-driven+model+predictive+control+in+buildings&rft.jtitle=MethodsX&rft.au=Klanatsky%2C+Peter&rft.au=Veynandt%2C+Fran%C3%A7ois&rft.au=Heschl%2C+Christian&rft.date=2025-12-01&rft.issn=2215-0161&rft.eissn=2215-0161&rft.volume=15&rft.spage=103470&rft_id=info:doi/10.1016%2Fj.mex.2025.103470&rft_id=info%3Apmid%2F40808755&rft.externalDocID=40808755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon |