Faceted polymersomes: a sphere-to-polyhedron shape transformation
The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess...
Saved in:
| Published in: | Chemical science (Cambridge) Vol. 10; no. 9; pp. 2725 - 2731 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Royal Society of Chemistry
07.03.2019
|
| Subjects: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes
via
block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. |
|---|---|
| AbstractList | The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly.The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly. |
| Author | Parton, Robert G. Martin, Adam D. Wong, Chin Ken Floetenmeyer, Matthias Stenzel, Martina H. Thordarson, Pall |
| AuthorAffiliation | e Institute of Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia c Centre for Advanced Macromolecular Design (CAMD) , School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia d Centre for Microscopy and Microanalysis , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Australia a School of Chemistry , University of New South Wales , NSW 2052 , Australia . Email: m.stenzel@unsw.edu.au ; Email: p.thordarson@unsw.edu.au |
| AuthorAffiliation_xml | – name: a School of Chemistry , University of New South Wales , NSW 2052 , Australia . Email: m.stenzel@unsw.edu.au ; Email: p.thordarson@unsw.edu.au – name: c Centre for Advanced Macromolecular Design (CAMD) , School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia – name: d Centre for Microscopy and Microanalysis , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia – name: e Institute of Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia – name: b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Australia |
| Author_xml | – sequence: 1 givenname: Chin Ken orcidid: 0000-0003-3040-4412 surname: Wong fullname: Wong, Chin Ken organization: School of Chemistry, University of New South Wales, Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia – sequence: 2 givenname: Adam D. orcidid: 0000-0002-5445-0299 surname: Martin fullname: Martin, Adam D. organization: School of Chemistry, University of New South Wales, Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia – sequence: 3 givenname: Matthias surname: Floetenmeyer fullname: Floetenmeyer, Matthias organization: Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia – sequence: 4 givenname: Robert G. orcidid: 0000-0002-7494-5248 surname: Parton fullname: Parton, Robert G. organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia, Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane – sequence: 5 givenname: Martina H. orcidid: 0000-0002-6433-4419 surname: Stenzel fullname: Stenzel, Martina H. organization: School of Chemistry, University of New South Wales, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Chemistry – sequence: 6 givenname: Pall orcidid: 0000-0002-1200-8814 surname: Thordarson fullname: Thordarson, Pall organization: School of Chemistry, University of New South Wales, Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30996990$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkdtKxDAQhoMoHvfGB5CCNyJUc2qaeCFI8QSCF-p1yKZTt9ImNekKvr1ZD-sBh4EJzJeff2a20KrzDhDaJfiIYKaOK3lXYU6xqFbQJsWc5KJganX5pngDTWJ8wikYIwUt19EGw0oJpfAmOrswFkaos8F3rz2E6HuIJ5nJ4jCDAPno80VnBnXwLoszM0A2BuNi40Nvxta7HbTWmC7C5LNuo4eL8_vqKr-5vbyuzm5yy0s65pJySpRoZG2VobUVtiAcZKEoEyAktbImwImFhpKUXACTSkyJKcuyETVh2-j0Q3eYT3uoLbjko9NDaHsTXrU3rf7dce1MP_oXLThRii0EDj4Fgn-eQxx130YLXWcc-HnUlBLCaCEoT-j-H_TJz4NL42lKpGAqpUzU3k9HSytf203A4Qdgg48xQLNECNaL6-nv6yUY_4FtO75vOE3Tdv99eQMU85rt |
| CitedBy_id | crossref_primary_10_1002_pi_6203 crossref_primary_10_1016_j_chempr_2019_12_028 crossref_primary_10_3390_ma14247690 crossref_primary_10_1007_s41664_024_00336_9 crossref_primary_10_1039_D4SC08283D crossref_primary_10_1039_D3SC01707A crossref_primary_10_1002_anie_202413627 crossref_primary_10_1016_j_polymer_2024_127940 crossref_primary_10_1002_smll_202501838 crossref_primary_10_1002_ange_202413627 crossref_primary_10_1002_anie_202109637 crossref_primary_10_1002_ange_202109637 crossref_primary_10_1002_mabi_202400540 crossref_primary_10_1021_jacs_9b12925 crossref_primary_10_1002_adhm_202000261 crossref_primary_10_1016_j_jcis_2023_01_097 crossref_primary_10_1039_D2NR03874A crossref_primary_10_1038_s41467_023_39305_8 crossref_primary_10_1038_s41467_024_47312_6 crossref_primary_10_1016_j_polymer_2020_122914 |
| Cites_doi | 10.1039/C8NR00923F 10.1073/pnas.1115684109 10.1021/nl3032795 10.1021/ma961376t 10.1002/anie.200454244 10.1002/anie.201301875 10.1002/anie.201703276 10.1021/acs.accounts.7b00107 10.1073/pnas.1012872108 10.1021/jp508352a 10.1039/C5NR07681A 10.1021/jp036815m 10.1021/ja104154t 10.1021/acsmacrolett.8b00409 10.1021/ja1117528 10.1021/acsmacrolett.8b00082 10.1038/nchem.1281 10.1038/ncomms12097 10.1021/ja062892u 10.1038/35079541 10.1002/anie.200601277 10.1021/acs.nanolett.8b00187 10.1039/C7PY01131H 10.1039/C1SM06325A 10.1021/acs.chemrev.5b00188 10.1021/acs.chemrev.6b00374 10.1021/acs.nanolett.5b00414 10.1002/adfm.201102664 10.1073/pnas.0801763105 10.1021/acsnano.5b07689 10.1038/nmat2512 10.1021/ja412172f 10.1039/b902003a 10.1039/c0py00172d 10.1002/anie.201102167 10.1021/acs.chemrev.7b00194 10.1038/s41467-017-01372-z 10.1021/nn400484y 10.1038/nmeth.2089 10.1021/ar300209w 10.1038/nmat2959 10.1021/acsnano.5b06991 10.1021/nn5004088 10.1126/sciadv.1700362 10.1021/ja505716v 10.1002/anie.201400183 10.1016/0163-7827(88)90010-0 10.1038/ncomms15856 10.1021/acsnano.6b08079 10.1021/ja408754z 10.1039/c3sm51729b 10.1021/acscentsci.6b00254 10.1002/smll.201700642 10.1039/c2cs35115c 10.1038/34885 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/C8SC04206C |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 2731 |
| ExternalDocumentID | PMC6419931 30996990 10_1039_C8SC04206C |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGMRB AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AAEMU AGEGJ AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c472t-8242196f8dc9a2dc6c514e859236e682c8d1e41cef21f2146e3896b1a777f6d13 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459929800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:58:21 EST 2025 Fri Sep 05 07:35:10 EDT 2025 Sun Nov 09 07:36:42 EST 2025 Thu Jan 02 22:59:52 EST 2025 Sat Nov 29 05:54:01 EST 2025 Tue Nov 18 21:48:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-8242196f8dc9a2dc6c514e859236e682c8d1e41cef21f2146e3896b1a777f6d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3040-4412 0000-0002-1200-8814 0000-0002-7494-5248 0000-0002-6433-4419 0000-0002-5445-0299 |
| OpenAccessLink | http://dx.doi.org/10.1039/c8sc04206c |
| PMID | 30996990 |
| PQID | 2186396398 |
| PQPubID | 2047492 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6419931 proquest_miscellaneous_2211325624 proquest_journals_2186396398 pubmed_primary_30996990 crossref_primary_10_1039_C8SC04206C crossref_citationtrail_10_1039_C8SC04206C |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-07 |
| PublicationDateYYYYMMDD | 2019-03-07 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2019 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Su (C8SC04206C-(cit27)/*[position()=1]) 2016; 10 Zhang (C8SC04206C-(cit7)/*[position()=1]) 2013; 46 Kinnear (C8SC04206C-(cit39)/*[position()=1]) 2017; 117 Abdelmohsen (C8SC04206C-(cit31)/*[position()=1]) 2016; 10 Wong (C8SC04206C-(cit19)/*[position()=1]) 2017; 8 Tao (C8SC04206C-(cit3)/*[position()=1]) 2006; 45 Dubois (C8SC04206C-(cit45)/*[position()=1]) 2001; 411 Lai (C8SC04206C-(cit34)/*[position()=1]) 2012; 22 Men (C8SC04206C-(cit14)/*[position()=1]) 2018; 18 Yang (C8SC04206C-(cit54)/*[position()=1]) 2017; 8 Guan (C8SC04206C-(cit22)/*[position()=1]) 2018 Marsden (C8SC04206C-(cit41)/*[position()=1]) 2010; 1 Adawy (C8SC04206C-(cit37)/*[position()=1]) 2017; 13 Bowick (C8SC04206C-(cit26)/*[position()=1]) 2013; 9 Prieto (C8SC04206C-(cit53)/*[position()=1]) 2016; 116 Seo (C8SC04206C-(cit2)/*[position()=1]) 2006; 128 Deng (C8SC04206C-(cit11)/*[position()=1]) 2018; 10 Wang (C8SC04206C-(cit56)/*[position()=1]) 2017; 3 Gratton (C8SC04206C-(cit38)/*[position()=1]) 2008; 105 Huang (C8SC04206C-(cit4)/*[position()=1]) 2011; 133 Tu (C8SC04206C-(cit36)/*[position()=1]) 2017; 56 Zhang (C8SC04206C-(cit49)/*[position()=1]) 1996; 29 Würthner (C8SC04206C-(cit52)/*[position()=1]) 2016; 116 Robertson (C8SC04206C-(cit18)/*[position()=1]) 2014; 8 Kim (C8SC04206C-(cit12)/*[position()=1]) 2010; 132 Christian (C8SC04206C-(cit15)/*[position()=1]) 2009; 8 Wu (C8SC04206C-(cit9)/*[position()=1]) 2016; 8 Wilson (C8SC04206C-(cit30)/*[position()=1]) 2012; 4 Patterson (C8SC04206C-(cit47)/*[position()=1]) 2017; 50 Wu (C8SC04206C-(cit46)/*[position()=1]) 2015; 15 Xia (C8SC04206C-(cit8)/*[position()=1]) 2014; 136 Liu (C8SC04206C-(cit16)/*[position()=1]) 2014; 136 Slater (C8SC04206C-(cit43)/*[position()=1]) 1988; 27 Xu (C8SC04206C-(cit28)/*[position()=1]) 2009; 143 Shahar (C8SC04206C-(cit48)/*[position()=1]) 2013; 7 Zhou (C8SC04206C-(cit21)/*[position()=1]) 2017; 8 Cui (C8SC04206C-(cit5)/*[position()=1]) 2012; 12 Palanisamy (C8SC04206C-(cit51)/*[position()=1]) 2014; 118 van Oers (C8SC04206C-(cit17)/*[position()=1]) 2013; 135 Huo (C8SC04206C-(cit23)/*[position()=1]) 2018 Sknepnek (C8SC04206C-(cit25)/*[position()=1]) 2012; 8 Tu (C8SC04206C-(cit35)/*[position()=1]) 2017; 11 Xing (C8SC04206C-(cit29)/*[position()=1]) 2012; 109 Wang (C8SC04206C-(cit1)/*[position()=1]) 2003; 107 Meeuwissen (C8SC04206C-(cit13)/*[position()=1]) 2011; 50 Vernizzi (C8SC04206C-(cit24)/*[position()=1]) 2011; 108 Joseph (C8SC04206C-(cit33)/*[position()=1]) 2017; 3 Du (C8SC04206C-(cit50)/*[position()=1]) 2004; 43 Agarwal (C8SC04206C-(cit55)/*[position()=1]) 2011; 10 Langille (C8SC04206C-(cit6)/*[position()=1]) 2013; 52 Nijemeisland (C8SC04206C-(cit32)/*[position()=1]) 2016; 2 Löbling (C8SC04206C-(cit20)/*[position()=1]) 2016; 7 Hubert (C8SC04206C-(cit44)/*[position()=1]) 1998; 391 Klinger (C8SC04206C-(cit10)/*[position()=1]) 2014; 53 Mai (C8SC04206C-(cit40)/*[position()=1]) 2012; 41 Schneider (C8SC04206C-(cit42)/*[position()=1]) 2012; 9 |
| References_xml | – volume: 10 start-page: 6781 year: 2018 ident: C8SC04206C-(cit11)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR00923F – volume: 109 start-page: 5202 year: 2012 ident: C8SC04206C-(cit29)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1115684109 – volume: 12 start-page: 5885 year: 2012 ident: C8SC04206C-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3032795 – volume: 29 start-page: 8805 year: 1996 ident: C8SC04206C-(cit49)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma961376t – volume: 43 start-page: 5084 year: 2004 ident: C8SC04206C-(cit50)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200454244 – volume: 52 start-page: 13910 year: 2013 ident: C8SC04206C-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301875 – volume: 56 start-page: 7620 year: 2017 ident: C8SC04206C-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703276 – volume: 50 start-page: 1495 year: 2017 ident: C8SC04206C-(cit47)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00107 – volume: 108 start-page: 4292 year: 2011 ident: C8SC04206C-(cit24)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1012872108 – volume: 118 start-page: 12796 year: 2014 ident: C8SC04206C-(cit51)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp508352a – volume: 8 start-page: 1237 year: 2016 ident: C8SC04206C-(cit9)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR07681A – volume: 3 start-page: 1 year: 2017 ident: C8SC04206C-(cit56)/*[position()=1] publication-title: Sci. Adv. – volume: 107 start-page: 13563 year: 2003 ident: C8SC04206C-(cit1)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp036815m – volume: 132 start-page: 12522 year: 2010 ident: C8SC04206C-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104154t – start-page: 956 year: 2018 ident: C8SC04206C-(cit23)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00409 – volume: 133 start-page: 4718 year: 2011 ident: C8SC04206C-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1117528 – start-page: 358 year: 2018 ident: C8SC04206C-(cit22)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00082 – volume: 4 start-page: 268 year: 2012 ident: C8SC04206C-(cit30)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1281 – volume: 7 start-page: 12097 year: 2016 ident: C8SC04206C-(cit20)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms12097 – volume: 128 start-page: 14863 year: 2006 ident: C8SC04206C-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062892u – volume: 411 start-page: 672 year: 2001 ident: C8SC04206C-(cit45)/*[position()=1] publication-title: Nature doi: 10.1038/35079541 – volume: 45 start-page: 4597 year: 2006 ident: C8SC04206C-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601277 – volume: 18 start-page: 2081 year: 2018 ident: C8SC04206C-(cit14)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00187 – volume: 8 start-page: 4776 year: 2017 ident: C8SC04206C-(cit21)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY01131H – volume: 8 start-page: 636 year: 2012 ident: C8SC04206C-(cit25)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C1SM06325A – volume: 116 start-page: 962 year: 2016 ident: C8SC04206C-(cit52)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00188 – volume: 116 start-page: 14056 year: 2016 ident: C8SC04206C-(cit53)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00374 – volume: 15 start-page: 2711 year: 2015 ident: C8SC04206C-(cit46)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00414 – volume: 22 start-page: 3239 year: 2012 ident: C8SC04206C-(cit34)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102664 – volume: 105 start-page: 11613 year: 2008 ident: C8SC04206C-(cit38)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0801763105 – volume: 10 start-page: 2652 year: 2016 ident: C8SC04206C-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07689 – volume: 8 start-page: 843 year: 2009 ident: C8SC04206C-(cit15)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2512 – volume: 136 start-page: 2602 year: 2014 ident: C8SC04206C-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412172f – volume: 143 start-page: 235 year: 2009 ident: C8SC04206C-(cit28)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/b902003a – volume: 1 start-page: 1512 year: 2010 ident: C8SC04206C-(cit41)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c0py00172d – volume: 50 start-page: 7070 year: 2011 ident: C8SC04206C-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102167 – volume: 117 start-page: 11476 year: 2017 ident: C8SC04206C-(cit39)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00194 – volume: 8 start-page: 1240 year: 2017 ident: C8SC04206C-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01372-z – volume: 7 start-page: 3547 year: 2013 ident: C8SC04206C-(cit48)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400484y – volume: 9 start-page: 671 year: 2012 ident: C8SC04206C-(cit42)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 46 start-page: 1783 year: 2013 ident: C8SC04206C-(cit7)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300209w – volume: 10 start-page: 230 year: 2011 ident: C8SC04206C-(cit55)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2959 – volume: 10 start-page: 2287 year: 2016 ident: C8SC04206C-(cit27)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b06991 – volume: 8 start-page: 4650 year: 2014 ident: C8SC04206C-(cit18)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5004088 – volume: 3 start-page: e1700362 year: 2017 ident: C8SC04206C-(cit33)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700362 – volume: 136 start-page: 10878 year: 2014 ident: C8SC04206C-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505716v – volume: 53 start-page: 7018 year: 2014 ident: C8SC04206C-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400183 – volume: 27 start-page: 325 year: 1988 ident: C8SC04206C-(cit43)/*[position()=1] publication-title: Prog. Lipid Res. doi: 10.1016/0163-7827(88)90010-0 – volume: 8 start-page: 15856 year: 2017 ident: C8SC04206C-(cit54)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15856 – volume: 11 start-page: 1957 year: 2017 ident: C8SC04206C-(cit35)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b08079 – volume: 135 start-page: 16308 year: 2013 ident: C8SC04206C-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408754z – volume: 9 start-page: 8088 year: 2013 ident: C8SC04206C-(cit26)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c3sm51729b – volume: 2 start-page: 843 year: 2016 ident: C8SC04206C-(cit32)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00254 – volume: 13 start-page: 1 year: 2017 ident: C8SC04206C-(cit37)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700642 – volume: 41 start-page: 5969 year: 2012 ident: C8SC04206C-(cit40)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35115c – volume: 391 start-page: 376 year: 1998 ident: C8SC04206C-(cit44)/*[position()=1] publication-title: Nature doi: 10.1038/34885 |
| SSID | ssj0000331527 |
| Score | 2.4367611 |
| Snippet | The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes
via
block copolymer self-assembly remains a challenge. In... The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes block copolymer self-assembly remains a challenge. In this... The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In... The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In... We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2725 |
| SubjectTerms | Block copolymers Chemistry Deformation Drug delivery systems Fluorescence Formability Mathematical morphology Nanoparticles Polyhedra Self-assembly Spherical shells Transformations |
| Title | Faceted polymersomes: a sphere-to-polyhedron shape transformation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30996990 https://www.proquest.com/docview/2186396398 https://www.proquest.com/docview/2211325624 https://pubmed.ncbi.nlm.nih.gov/PMC6419931 |
| Volume | 10 |
| WOSCitedRecordID | wos000459929800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry Current Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SEGgvfaRt4jZdXJpLD6J6WY_egunSUwhpA3szWj3YQGIva6eQfx_J63WzSQs5zxiLmZHmk2aYD-BYOc6xkxoRXlDEtcFIBSuQ9TwQJRym3vRkE_L0VM1m-mwHjv9TwWf6W6l-lTGysCjTQSuLFLrn5-X4kIIZG6hZKeYEiYLizRjSra-3E88jNPmwKfJelpm-etr6XsPLAUXmJ2u3v4EdX-_D83JD3vYWTqbGRjjs8mVzdZuepptr337PTd6mMQIedQ1KkoV3q6bO24VZ-ry7h2Gb-h1cTH_8Ln-igS0BWS5ph1Qq7moRlLPaUGeFjVjIqyIiOOGFolY54jmxPlASEp23j1hFzImRUgbhCHsPu3VT-0PIibe64CTMBQtcMmbmAvswZ4obEzCxGXzdmLKywyjxxGhxVfUlbaarv0bJ4Muou1wP0Pin1tHGI9Wwidoq0WWxeEBolcHnURwNmWoapvbNTdSJF1gWYRvlGRysHTj-hkX0K2K2zUBuuXZUSKO1tyX15aIfsS14amwkH560-I_wIsIo3XemySPY7VY3_hPs2T_dZbuawDM5U5P-rj_pI_cOqSTkiQ |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faceted+polymersomes%3A+a+sphere-to-polyhedron+shape+transformation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wong%2C+Chin+Ken&rft.au=Martin%2C+Adam+D.&rft.au=Floetenmeyer%2C+Matthias&rft.au=Parton%2C+Robert+G.&rft.date=2019-03-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=9&rft.spage=2725&rft.epage=2731&rft_id=info:doi/10.1039%2Fc8sc04206c&rft_id=info%3Apmid%2F30996990&rft.externalDocID=PMC6419931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |