GeoBM: A Python-based tool for integrated visualization of global bibliometric data

•GeoBM enhances global research mapping beyond traditional choropleth limits.•Combines publication volume and collaboration for richer geovisualization.•Open-source, Python-based tool with real-time, customizable visual outputs. The rapid proliferation of scientometric and bibliometric analyses has...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MethodsX Ročník 15; s. 103497
Hlavní autoři: Fu, Chun Chong, Fleta-Asín, Jorge, Muñoz, Fernando, Sáenz-Royo, Carlos, Wei, Loo Keat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.12.2025
Elsevier
Témata:
ISSN:2215-0161, 2215-0161
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •GeoBM enhances global research mapping beyond traditional choropleth limits.•Combines publication volume and collaboration for richer geovisualization.•Open-source, Python-based tool with real-time, customizable visual outputs. The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies. [Display omitted]
AbstractList •GeoBM enhances global research mapping beyond traditional choropleth limits.•Combines publication volume and collaboration for richer geovisualization.•Open-source, Python-based tool with real-time, customizable visual outputs. The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies. [Display omitted]
•GeoBM enhances global research mapping beyond traditional choropleth limits.•Combines publication volume and collaboration for richer geovisualization.•Open-source, Python-based tool with real-time, customizable visual outputs. The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies. Image, graphical abstract
The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques-most notably choropleth maps-often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.
The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques-most notably choropleth maps-often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques-most notably choropleth maps-often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.
ArticleNumber 103497
Author Fleta-Asín, Jorge
Muñoz, Fernando
Fu, Chun Chong
Sáenz-Royo, Carlos
Wei, Loo Keat
Author_xml – sequence: 1
  givenname: Chun Chong
  surname: Fu
  fullname: Fu, Chun Chong
  organization: Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
– sequence: 2
  givenname: Jorge
  surname: Fleta-Asín
  fullname: Fleta-Asín, Jorge
  organization: IEDIS. Departamento de Dirección y Organización de Empresas, Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía, 2, 50005 Zaragoza, Spain
– sequence: 3
  givenname: Fernando
  surname: Muñoz
  fullname: Muñoz, Fernando
  organization: Expert from the SIP Foundation, Zaragoza, Spain
– sequence: 4
  givenname: Carlos
  surname: Sáenz-Royo
  fullname: Sáenz-Royo, Carlos
  organization: Expert from the SIP Foundation, Zaragoza, Spain
– sequence: 5
  givenname: Loo Keat
  orcidid: 0000-0003-1853-0352
  surname: Wei
  fullname: Wei, Loo Keat
  email: wynnelkw@gmail.com, lookw@utar.edu.my
  organization: Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40735518$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URELIB7BBvWTTg5_9gAVKIgiRgkAC1la1XT3xyN0OtmdE-Ho8dIiSDSuXq26dK9V9Tg7mMCMhLxldMcqaN5vVhL9WnHJV_kL27RNyxDlTdRmygwf1ITlJaUMpZUIKJvkzcihpK5Ri3RH5doHh7PPb6rT6epuvw1wPkNBWOQRfjSFWbs64jpBLb-fSFrz7DdmFuQpjtfZhAF8NbvAuTJijM5WFDC_I0xF8wpO795j8-Pjh-_mn-urLxeX56VVtZMtz3XSUDf3IkAlDoe049L3iHTVSKuiRKVSSD72ifQ8NHTiMtG8k7YaOc9pQK47J5cK1ATb6JroJ4q0O4PTfRohrDTE741HzRlopmW1508ixGztjAVvRyd4yy5o96_3CutkOE1qDc47gH0EfT2Z3rddhpxkXVLZUFcLrO0IMP7eYsp5cMug9zBi2SQsuiq4t_kX66qHZvcu_WIqALQITQ0oRx3sJo3qfvt7okr7ep6-X9MvOu2UHy8l3DqNOxuFs0LqIJpebuP9s_wGEXLT5
Cites_doi 10.1016/j.gene.2025.149533
10.5195/jmla.2022.1434
10.1038/s41597-025-04451-9
10.1186/s43042-025-00687-7
10.48130/epi-0024-0003
10.1002/asi.20317
10.1016/j.mex.2024.102833
10.3390/jmms12010008
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors. Published by Elsevier B.V.
2025 The Authors. Published by Elsevier B.V. 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors. Published by Elsevier B.V.
– notice: 2025 The Authors. Published by Elsevier B.V. 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.mex.2025.103497
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2215-0161
ExternalDocumentID oai_doaj_org_article_264d441d72664f8f8cdae73849d1d16d
PMC12304705
40735518
10_1016_j_mex_2025_103497
S2215016125003425
Genre Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M48
M~E
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c472t-6801b9f1e13c0a782a995280c445a9e15e542b95099a60b2af096408b822060d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001540196900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2215-0161
IngestDate Fri Oct 03 12:52:28 EDT 2025
Tue Sep 30 17:02:00 EDT 2025
Wed Jul 30 23:56:11 EDT 2025
Sat Aug 02 01:41:30 EDT 2025
Thu Nov 27 01:03:26 EST 2025
Sat Aug 23 17:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Python algorithm
Github
Citespace
Bibliometrix
Production
Network
Bibliometric analysis
Country collaboration map
VOSviewer
Google colab
Language English
License This is an open access article under the CC BY license.
2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-6801b9f1e13c0a782a995280c445a9e15e542b95099a60b2af096408b822060d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1853-0352
OpenAccessLink https://doaj.org/article/264d441d72664f8f8cdae73849d1d16d
PMID 40735518
PQID 3234707664
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_264d441d72664f8f8cdae73849d1d16d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12304705
proquest_miscellaneous_3234707664
pubmed_primary_40735518
crossref_primary_10_1016_j_mex_2025_103497
elsevier_sciencedirect_doi_10_1016_j_mex_2025_103497
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle MethodsX
PublicationTitleAlternate MethodsX
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fleta-Asín, Muñoz, Sáenz-Royo (bib0001) 2024; 13
Wei, Fu, Menon, Griffiths (bib0003) 2025
Wei, Menon, Griffiths (bib9) 2025; 12
Aria, Cuccurullo (bib0004) 2017; 11
Web of science core collection.
Wilkinson, Aloqalaa, Belhajjame, Crusoe, de Paula Kinoshita, Gadelha, Goble (bib0008) 2025; 12
Wei, Sutherland, Griffiths (bib11) 2024; 17
Wei, Griffiths, Tollefsbol (bib10) 2025; 26
Arruda, Silva, Lessa, Proença, Bartholo (bib0005) 2022; 110
Chen (bib0006) 2006; 57
[accessed on 26 November 2024].
Fleta-Asín (10.1016/j.mex.2025.103497_bib0001) 2024; 13
Aria (10.1016/j.mex.2025.103497_bib0004) 2017; 11
Wei (10.1016/j.mex.2025.103497_bib0003) 2025
Wei (10.1016/j.mex.2025.103497_bib10) 2025; 26
Arruda (10.1016/j.mex.2025.103497_bib0005) 2022; 110
Chen (10.1016/j.mex.2025.103497_bib0006) 2006; 57
10.1016/j.mex.2025.103497_bib0007
Wei (10.1016/j.mex.2025.103497_bib9) 2025; 12
Wei (10.1016/j.mex.2025.103497_bib11) 2024; 17
Wilkinson (10.1016/j.mex.2025.103497_bib0008) 2025; 12
References_xml – volume: 17
  year: 2024
  ident: bib11
  article-title: Epigenetics and ischemic stroke: a bibliometric analysis from 2014 to 2024
  publication-title: Epigenet. Insights
– volume: 13
  year: 2024
  ident: bib0001
  article-title: A methodological approach for enhancing visualization of country data representation in the presence of significant spatial disparity
  publication-title: MethodsX
– volume: 26
  start-page: 54
  year: 2025
  ident: bib10
  article-title: ceRNA networks in ischemic stroke: a bibliometric analysis. Egypt
  publication-title: J. Med. Hum. Genet.
– volume: 11
  start-page: 959
  year: 2017
  end-page: 975
  ident: bib0004
  article-title: Bibliometrix: an R-tool for comprehensive science mapping analysis
  publication-title: J. Inf.
– volume: 110
  start-page: 392
  year: 2022
  ident: bib0005
  article-title: VOSviewer and bibliometrix
  publication-title: J. Med. Libr. Assoc.
– volume: 12
  start-page: 8
  year: 2025
  ident: bib9
  article-title: Homocysteine and Stroke: A 30-Year Bibliometric Study Uncovering Research Trends and Future Directions
  publication-title: J. Mind Med. Sci.
– volume: 57
  start-page: 359
  year: 2006
  end-page: 377
  ident: bib0006
  article-title: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– reference: /[accessed on 26 November 2024].
– reference: Web of science core collection.
– volume: 12
  start-page: 328
  year: 2025
  ident: bib0008
  article-title: Applying the FAIR principles to computational workflows
  publication-title: Sci. Data
– year: 2025
  ident: bib0003
  article-title: Mapping the research landscape of microRNA and stroke: a bibliometric analysis of insights, hotspots, and future directions
  publication-title: Gene
– year: 2025
  ident: 10.1016/j.mex.2025.103497_bib0003
  article-title: Mapping the research landscape of microRNA and stroke: a bibliometric analysis of insights, hotspots, and future directions
  publication-title: Gene
  doi: 10.1016/j.gene.2025.149533
– volume: 110
  start-page: 392
  issue: 3
  year: 2022
  ident: 10.1016/j.mex.2025.103497_bib0005
  article-title: VOSviewer and bibliometrix
  publication-title: J. Med. Libr. Assoc.
  doi: 10.5195/jmla.2022.1434
– volume: 12
  start-page: 328
  issue: 1
  year: 2025
  ident: 10.1016/j.mex.2025.103497_bib0008
  article-title: Applying the FAIR principles to computational workflows
  publication-title: Sci. Data
  doi: 10.1038/s41597-025-04451-9
– volume: 26
  start-page: 54
  issue: 1
  year: 2025
  ident: 10.1016/j.mex.2025.103497_bib10
  article-title: ceRNA networks in ischemic stroke: a bibliometric analysis. Egypt
  publication-title: J. Med. Hum. Genet.
  doi: 10.1186/s43042-025-00687-7
– volume: 17
  issue: 1
  year: 2024
  ident: 10.1016/j.mex.2025.103497_bib11
  article-title: Epigenetics and ischemic stroke: a bibliometric analysis from 2014 to 2024
  publication-title: Epigenet. Insights
  doi: 10.48130/epi-0024-0003
– volume: 57
  start-page: 359
  issue: 3
  year: 2006
  ident: 10.1016/j.mex.2025.103497_bib0006
  article-title: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature
  publication-title: J. Am. Soc. Inf. Sci. Technol.
  doi: 10.1002/asi.20317
– volume: 13
  year: 2024
  ident: 10.1016/j.mex.2025.103497_bib0001
  article-title: A methodological approach for enhancing visualization of country data representation in the presence of significant spatial disparity
  publication-title: MethodsX
  doi: 10.1016/j.mex.2024.102833
– volume: 12
  start-page: 8
  issue: 1
  year: 2025
  ident: 10.1016/j.mex.2025.103497_bib9
  article-title: Homocysteine and Stroke: A 30-Year Bibliometric Study Uncovering Research Trends and Future Directions
  publication-title: J. Mind Med. Sci.
  doi: 10.3390/jmms12010008
– ident: 10.1016/j.mex.2025.103497_bib0007
– volume: 11
  start-page: 959
  issue: 4
  year: 2017
  ident: 10.1016/j.mex.2025.103497_bib0004
  article-title: Bibliometrix: an R-tool for comprehensive science mapping analysis
  publication-title: J. Inf.
SSID ssj0001343142
Score 2.3262792
Snippet •GeoBM enhances global research mapping beyond traditional choropleth limits.•Combines publication volume and collaboration for richer...
The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103497
SubjectTerms Bibliometric analysis
Bibliometrix
Citespace
Country collaboration map
Economics/Business
Github
Google colab
Network
Production
Python algorithm
VOSviewer
Title GeoBM: A Python-based tool for integrated visualization of global bibliometric data
URI https://dx.doi.org/10.1016/j.mex.2025.103497
https://www.ncbi.nlm.nih.gov/pubmed/40735518
https://www.proquest.com/docview/3234707664
https://pubmed.ncbi.nlm.nih.gov/PMC12304705
https://doaj.org/article/264d441d72664f8f8cdae73849d1d16d
Volume 15
WOSCitedRecordID wos001540196900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogL4k14VEbihBThOE7s4daiFi5bVQKkvVl-iqCSoO62ai_8dsZxstoFCS5cckiiOJ5PzjeTmflMyGvFjbKOyTIGIUphEQuwYMtgmtYBd9yrvNmEPDlRyyWcbm31lWrCsjxwNtxbJGyPlO0lMomIKirnTZC1EuArX7U-fX2ZhK1gavy7UiMxCj6nMceCru_hCuNB3qQ-c5FEnraIaNTr3-GjP_3N38smt3jo-B65OzmQ9CC_-H1yI_QPyO3FlCJ_SD59CMPh4h09oKfXSRegTDzl6XoYzig6qHSjD-HpZbdKLZW5EZMOkWZ1EGo7e5a68pN4P00lpI_Il-Ojz-8_ltPOCaUTkq_LFnnHQqxCVTtm0AkwAA1XzAnRGAhVExrBLaCzAKZllpuIkYxgyqK7wFrm68dkrx_68JRQ8AaUgwDCN8IjllAFE2K0pgLvoirIm9mM-kcWyNBz5dg3jTbXyeY627wgh8nQmxuTtvV4AhHXE-L6X4gXRMww6clNyPSPj-r-NvarGVKNSyjlRUwfhouVrnktJJM4WkGeZIg3b4jxbp1E6wqidsDfmcLulb77Osp0V2NKkzXP_sekn5M7aS65kOYF2VufX4SX5Ja7XHer831yUy7V_rgE8Lj4efQLOSULRA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GeoBM%3A+A+Python-based+tool+for+integrated+visualization+of+global+bibliometric+data&rft.jtitle=MethodsX&rft.au=Fu%2C+Chun+Chong&rft.au=Fleta-As%C3%ADn%2C+Jorge&rft.au=Mu%C3%B1oz%2C+Fernando&rft.au=S%C3%A1enz-Royo%2C+Carlos&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2215-0161&rft.eissn=2215-0161&rft.volume=15&rft_id=info:doi/10.1016%2Fj.mex.2025.103497&rft.externalDocID=S2215016125003425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon