CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts

We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 7; s. 1312 - 1328
Hlavní autoři: Carreira, J., Sminchisescu, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.07.2012
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2011.231