Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree- and Stand-Level

UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the trans...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2796
Main Authors: Vandendaele, Bastien, Fournier, Richard A., Vepakomma, Udayalakshmi, Pelletier, Gaetan, Lejeune, Philippe, Martin-Ducup, Olivier
Format: Journal Article
Language:English
Published: Basel MDPI AG 16.07.2021
MDPI
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations.
AbstractList UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations
UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations.
UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R² = 0.29 to R² = 0.61), and prediction of tree DBH (from R² = 0.36 to R² = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R² = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models -12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations
UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R² = 0.29 to R² = 0.61), and prediction of tree DBH (from R² = 0.36 to R² = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R² = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations.
Author Lejeune, Philippe
Pelletier, Gaetan
Vepakomma, Udayalakshmi
Martin-Ducup, Olivier
Vandendaele, Bastien
Fournier, Richard A.
Author_xml – sequence: 1
  givenname: Bastien
  orcidid: 0000-0002-6142-9009
  surname: Vandendaele
  fullname: Vandendaele, Bastien
– sequence: 2
  givenname: Richard A.
  surname: Fournier
  fullname: Fournier, Richard A.
– sequence: 3
  givenname: Udayalakshmi
  surname: Vepakomma
  fullname: Vepakomma, Udayalakshmi
– sequence: 4
  givenname: Gaetan
  surname: Pelletier
  fullname: Pelletier, Gaetan
– sequence: 5
  givenname: Philippe
  orcidid: 0000-0001-9987-9673
  surname: Lejeune
  fullname: Lejeune, Philippe
– sequence: 6
  givenname: Olivier
  surname: Martin-Ducup
  fullname: Martin-Ducup, Olivier
BackLink https://hal.inrae.fr/hal-03346149$$DView record in HAL
BookMark eNptkl2LEzEUhgdZwbXujb8g4M2uUM0kmUzjXSm7tlD1oltvw5nMmTZlmtQkrfQn-q9MW_FjMZAPDs95z8vJeVlcOe-wKF6X9B3nir4PseSlYLWSz4prRms2FEyxq7_eL4qbGDc0L85LRcV18eM-JruFZL0jviOffUhrDI5MIbTfvW_Jgw8YE5m5A7rkw5GMUwq22SeMZBmtW5Hl-CuZQ8RAFgacO4Vul_PF3QfyGMDFDgM0trfpeCrwBPyEae3bSMC1ZOK3Owg2XpyM98lnX9iS8W4XPJh1LgiJZHtZF3F4zlmkfA7neMD-VfG8gz7iza97UCwf7h8n0-H8y8fZZDwfGlGzNKyAtVRWHJtOyBpkXVUc5KgTpkUFom0o7XjJQCGvupJ2yKkSUjFuFAdaAh8Us4tu62GjdyF3Lxy1B6vPAR9WGkKypkcNtC4NViCbphQGjaK5HGdNWzfSNNUoa_GLVm9xhTm3sfrAzmLn977PYkY3qBmTI80UH-U9KO4uWWvo_zEwHc_1KZZ_V8hSqEOZ2dsLm3v4bZ9_Um9tNNj34NDvo2aSS6FoJXlG3zxBN34fXO6lZlWVm6WYOFFvL5QJPsaA3W8HJdWnMdR_xjDD9AlsbDoPWwpg-_-l_ARLJeE1
CitedBy_id crossref_primary_10_1016_j_jag_2022_103056
crossref_primary_10_1016_j_ecolind_2024_111882
crossref_primary_10_1080_01431161_2024_2370499
crossref_primary_10_1093_forestry_cpaf010
crossref_primary_10_3390_drones7100613
crossref_primary_10_3389_fevo_2023_1214419
crossref_primary_10_3390_rs16101721
crossref_primary_10_1109_TGRS_2025_3585524
crossref_primary_10_3390_rs16234544
crossref_primary_10_1016_j_jag_2023_103480
crossref_primary_10_3390_rs17071271
crossref_primary_10_3390_f12111521
crossref_primary_10_1016_j_rse_2022_113180
crossref_primary_10_3390_rs15133272
crossref_primary_10_3390_f16030449
crossref_primary_10_3390_rs14122753
crossref_primary_10_3390_rs15092380
crossref_primary_10_3390_drones8120772
crossref_primary_10_1016_j_isprsjprs_2022_07_021
crossref_primary_10_3390_rs14184522
crossref_primary_10_1007_s40725_025_00251_x
crossref_primary_10_1016_j_rsase_2023_101068
Cites_doi 10.3390/rs12061046
10.1016/j.isprsjprs.2019.01.020
10.1002/ece3.3737
10.3390/rs13020257
10.1139/cjfr-2014-0285
10.3390/rs4040830
10.3390/rs10071094
10.1007/s40725-017-0051-6
10.3390/s8063938
10.1016/j.cag.2017.05.016
10.3390/f5051069
10.1016/j.isprsjprs.2020.11.016
10.1109/JSTARS.2014.2331276
10.3390/rs4040950
10.5194/isprs-archives-XLII-2-W6-393-2017
10.1016/j.rse.2020.112061
10.1016/j.rse.2019.111309
10.14358/PERS.72.8.923
10.1016/j.rse.2017.09.037
10.1080/01431161.2011.565815
10.3390/s19040810
10.3390/f12020131
10.3390/rs11091086
10.1023/A:1018922728855
10.1109/TGRS.2014.2315649
10.3390/rs9030231
10.1016/j.rse.2020.112102
10.1190/tle36070566.1
10.3390/f7120307
10.3390/rs8040333
10.1016/j.isprsjprs.2015.05.007
10.14358/PERS.78.11.1275
10.3390/su10093305
10.3390/f6114245
10.14358/PERS.78.1.75
10.3390/rs9080785
10.3390/f6041274
10.1080/2150704X.2018.1444286
10.1016/j.isprsjprs.2010.08.002
10.1002/rse2.137
10.3390/rs4061519
10.1016/j.rse.2013.08.049
10.5589/m03-027
10.3390/f6051721
10.1007/s11676-017-0378-7
10.1016/j.rse.2013.07.044
10.1109/ACCESS.2020.2995389
10.1016/j.rse.2015.11.008
10.1016/j.ecolind.2017.10.066
10.1093/forestry/cpu018
10.1016/S0034-4257(03)00008-7
10.3390/drones4020010
10.1093/forestry/cpr053
10.1371/journal.pone.0054776
10.1016/j.rse.2019.111355
10.1016/j.isprsjprs.2014.03.014
10.1111/gcb.13388
10.1016/j.isprsjprs.2009.04.002
10.1093/forestry/cpr051
10.5194/isprsannals-II-3-W4-189-2015
10.1093/forestscience/43.3.455
10.1109/TGRS.2015.2448056
10.1080/01431161.2016.1252477
10.1016/j.isprsjprs.2020.09.014
10.1016/j.biombioe.2007.06.022
10.1007/s12371-014-0104-1
10.1016/j.rse.2014.10.004
10.1080/07038992.2016.1207484
10.3390/f8020038
10.1016/j.jag.2020.102160
10.1016/j.foreco.2016.04.047
10.1139/juvs-2017-0030
10.3390/rs12010173
10.1016/j.isprsjprs.2020.08.002
10.5194/isprsarchives-XL-8-891-2014
10.3390/s17102371
10.1016/j.rse.2012.07.006
10.1109/TGRS.2014.2308208
10.1016/j.isprsjprs.2020.10.016
10.1007/BF01386390
10.5558/tfc2011-050
10.1016/j.rse.2012.01.020
10.3390/rs70201877
10.3390/f6113899
10.1016/j.foreco.2013.08.014
10.1016/j.rse.2010.01.024
10.1016/j.isprsjprs.2018.11.008
10.1109/36.921414
10.1016/j.isprsjprs.2018.11.001
10.1080/02827580310019257
10.1080/22797254.2018.1474722
10.1016/j.rse.2017.03.017
10.3390/f7070143
10.1016/j.rse.2012.03.027
10.1016/j.isprsjprs.2018.06.021
10.5194/isprs-archives-XLII-2-W13-657-2019
10.3390/rs9111154
10.1016/j.isprsjprs.2014.02.013
10.1016/j.rse.2016.05.028
10.1111/2041-210X.12071
10.1016/j.isprsjprs.2014.06.015
10.3390/rs10071078
10.3390/ijgi9090495
10.14358/PERS.72.4.357
10.3390/rs3081614
10.20944/preprints201907.0058.v2
10.1109/JSTARS.2016.2541780
10.1109/TGRS.2016.2543225
10.3390/rs11060717
10.3389/fpls.2021.635440
10.1186/s40663-019-0173-3
10.1016/j.isprsjprs.2016.01.006
10.1016/j.agrformet.2011.10.006
10.1080/01431160903380649
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
1XC
VOOES
JLOSS
Q33
DOA
DOI 10.3390/rs13142796
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


Publicly Available Content Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Environmental Sciences
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_a071ce5a6bb14cec9067532bd7b6cb58
oai_orbi_ulg_ac_be_2268_293829
oai:HAL:hal-03346149v1
10_3390_rs13142796
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
1XC
VOOES
JLOSS
Q33
ID FETCH-LOGICAL-c472t-5a2d0653ebf467a67553a68f4cde9a4db00f312a9e35f10fe30946923c93a01a3
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:43:57 EDT 2025
Sat Nov 29 01:24:48 EST 2025
Tue Oct 14 20:56:49 EDT 2025
Thu Oct 02 09:41:35 EDT 2025
Fri Jul 25 09:30:43 EDT 2025
Sat Nov 29 07:14:02 EST 2025
Tue Nov 18 20:54:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords hardwood
open-source analytic tools
airborne laser scanning (ALS)
UAV laser scanning (ULS)
terrestrial laser scanning (TLS)
individual tree detection and delineation (ITD)
forest inventory
diameter at breast height (DBH)
uneven-aged forest
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-5a2d0653ebf467a67553a68f4cde9a4db00f312a9e35f10fe30946923c93a01a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85111305476
ORCID 0000-0001-9987-9673
0000-0002-6142-9009
OpenAccessLink https://doaj.org/article/a071ce5a6bb14cec9067532bd7b6cb58
PQID 2554679243
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_a071ce5a6bb14cec9067532bd7b6cb58
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_293829
hal_primary_oai_HAL_hal_03346149v1
proquest_miscellaneous_2636490563
proquest_journals_2554679243
crossref_primary_10_3390_rs13142796
crossref_citationtrail_10_3390_rs13142796
PublicationCentury 2000
PublicationDate 20210716
PublicationDateYYYYMMDD 2021-07-16
PublicationDate_xml – month: 07
  year: 2021
  text: 20210716
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ferraz (ref_20) 2012; 121
Balsi (ref_70) 2018; 51
Maltamo (ref_25) 2014; 27
ref_91
Torresan (ref_55) 2017; 38
Wang (ref_85) 2019; 147
ref_11
ref_99
ref_98
Vega (ref_32) 2014; 33
ref_96
ref_134
Woods (ref_12) 2011; 87
Dersch (ref_114) 2021; 172
(ref_52) 2010; 114
Weinacker (ref_46) 2004; 36
Maltamo (ref_110) 2004; 36
Vastaranta (ref_41) 2011; 3
Sofonia (ref_68) 2019; 149
Lindberg (ref_131) 2010; 31
Coomes (ref_21) 2017; 194
Treitz (ref_13) 2012; 4
ref_23
ref_123
Hackenberg (ref_36) 2015; 6
Vauhkonen (ref_132) 2014; 45
Ravaglia (ref_37) 2017; 66
Audet (ref_97) 2015; 6
Chen (ref_26) 2006; 72
Wang (ref_33) 2008; 8
ref_71
Jing (ref_47) 2012; 78
Gottfried (ref_60) 2015; 2015
ref_79
ref_78
ref_77
Reitberger (ref_117) 2009; 64
Zaforemska (ref_76) 2019; 42
Wang (ref_44) 2016; 54
ref_74
(ref_9) 2004; 19
Nolet (ref_7) 2018; 8
Kaartinen (ref_42) 2012; 4
Diaci (ref_5) 2011; 84
Colomina (ref_54) 2014; 92
Shendryk (ref_49) 2016; 173
Larjavaara (ref_84) 2013; 4
Raumonen (ref_35) 2015; 2
Wallace (ref_50) 2014; 52
Lindberg (ref_125) 2014; 7
ref_83
ref_80
Jaskierniak (ref_116) 2021; 171
Bruggisser (ref_72) 2020; 168
Jaakkola (ref_65) 2010; 65
Seidel (ref_128) 2021; 12
Duncanson (ref_130) 2014; 154
Wallace (ref_73) 2014; 52
Dalponte (ref_129) 2018; 85
Brang (ref_4) 2014; 87
Koch (ref_27) 2006; 72
(ref_48) 2017; 28
Belmonte (ref_63) 2020; 6
Hilker (ref_93) 2012; 3
Srinivasan (ref_89) 2015; 7
Hamraz (ref_127) 2016; 52
Dijkstra (ref_102) 1959; 1
Brandtberg (ref_14) 2003; 85
Hackenberg (ref_104) 2015; 6
ref_57
ref_56
Jucker (ref_28) 2017; 23
ref_53
ref_51
Andersen (ref_118) 2014; 151
Ferraz (ref_133) 2015; 53
Todd (ref_81) 1997; 43
Chen (ref_119) 2015; 106
White (ref_40) 2016; 42
ref_59
Yao (ref_18) 2012; 123
Degerickx (ref_121) 2018; 73
ref_61
Kelle (ref_15) 2001; 39
Ferraz (ref_126) 2016; 183
Lindberg (ref_24) 2017; 3
Liang (ref_39) 2018; 144
ref_67
ref_62
Bouvier (ref_10) 2015; 156
Li (ref_29) 2012; 78
Vepakomma (ref_69) 2017; 42
Theiler (ref_94) 2014; 96
Gleason (ref_19) 2012; 125
Liang (ref_90) 2016; 115
Vauhkonen (ref_95) 2012; 85
Olivier (ref_122) 2016; 374
Wallace (ref_58) 2012; 4
Metz (ref_87) 2013; 310
Seidel (ref_88) 2012; 154–155
ref_111
ref_30
ref_113
ref_112
Ravanel (ref_64) 2014; 6
Wang (ref_115) 2020; 8
ref_38
Morsdorf (ref_124) 2017; 36
Hackenberg (ref_103) 2014; 5
Xiao (ref_31) 2016; 9
ref_106
ref_105
Liu (ref_75) 2018; 146
Liang (ref_86) 2020; 169
ref_109
ref_45
Lu (ref_22) 2014; 94
ref_100
Alba (ref_82) 2007; 36
ref_101
ref_3
Ravaglia (ref_108) 2013; 1
Budei (ref_120) 2017; 204
ref_2
Rajendra (ref_92) 2014; 40
Xu (ref_34) 2018; 9
ref_8
Popescu (ref_16) 2003; 29
Muggeo (ref_107) 2008; 3
Kucharczyk (ref_66) 2018; 6
Eysn (ref_43) 2015; 6
Church (ref_1) 2000; 95
Popescu (ref_17) 2007; 31
ref_6
References_xml – ident: ref_56
  doi: 10.3390/rs12061046
– volume: 149
  start-page: 105
  year: 2019
  ident: ref_68
  article-title: Modelling the Effects of Fundamental UAV Flight Parameters on LiDAR Point Clouds to Facilitate Objectives-Based Planning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.020
– volume: 8
  start-page: 1217
  year: 2018
  ident: ref_7
  article-title: Comparing the Effects of Even- and Uneven-Aged Silviculture on Ecological Diversity and Processes: A Review
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.3737
– ident: ref_80
– ident: ref_91
  doi: 10.3390/rs13020257
– volume: 45
  start-page: 353
  year: 2014
  ident: ref_132
  article-title: Matching Remotely Sensed and Field Measured Tree Size Distributions
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2014-0285
– volume: 4
  start-page: 830
  year: 2012
  ident: ref_13
  article-title: LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada
  publication-title: Remote Sens.
  doi: 10.3390/rs4040830
– ident: ref_67
  doi: 10.3390/rs10071094
– ident: ref_100
– volume: 3
  start-page: 19
  year: 2017
  ident: ref_24
  article-title: Individual Tree Crown Methods for 3D Data from Remote Sensing
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-017-0051-6
– volume: 8
  start-page: 3938
  year: 2008
  ident: ref_33
  article-title: A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis and 3D Single Tree Modelling in Forest
  publication-title: Sensors
  doi: 10.3390/s8063938
– volume: 66
  start-page: 23
  year: 2017
  ident: ref_37
  article-title: Extraction of Tubular Shapes from Dense Point Clouds and Application to Tree Reconstruction from Laser Scanned Data
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2017.05.016
– volume: 5
  start-page: 1069
  year: 2014
  ident: ref_103
  article-title: Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description
  publication-title: Forests
  doi: 10.3390/f5051069
– volume: 172
  start-page: 207
  year: 2021
  ident: ref_114
  article-title: Combining Graph-Cut Clustering with Object-Based Stem Detection for Tree Segmentation in Highly Dense Airborne Lidar Point Clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.016
– volume: 7
  start-page: 3174
  year: 2014
  ident: ref_125
  article-title: Delineation of Tree Crowns and Tree Species Classification from Full-Waveform Airborne Laser Scanning Data Using 3-d Ellipsoidal Clustering
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2331276
– volume: 4
  start-page: 950
  year: 2012
  ident: ref_42
  article-title: An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs4040950
– volume: 42
  start-page: 393
  year: 2017
  ident: ref_69
  article-title: Potential of Multi-Temporal UAV-Borne Lidar in Assessing Effectiveness of Silvicultural Treatments
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W6-393-2017
– volume: 33
  start-page: 98
  year: 2014
  ident: ref_32
  article-title: PTrees: A Point-Based Approach to Forest Tree Extractionfrom Lidar Data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_96
  doi: 10.1016/j.rse.2020.112061
– ident: ref_77
  doi: 10.1016/j.rse.2019.111309
– volume: 72
  start-page: 923
  year: 2006
  ident: ref_26
  article-title: Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.8.923
– volume: 204
  start-page: 632
  year: 2017
  ident: ref_120
  article-title: Identifying the Genus or Species of Individual Trees Using a Three-Wavelength Airborne Lidar System
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.037
– volume: 3
  start-page: 239
  year: 2012
  ident: ref_93
  article-title: A Simple Technique for Co-Registration of Terrestrial LiDAR Observations for Forestry Applications
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431161.2011.565815
– ident: ref_112
  doi: 10.3390/s19040810
– ident: ref_123
  doi: 10.3390/f12020131
– ident: ref_83
– ident: ref_30
  doi: 10.3390/rs11091086
– volume: 95
  start-page: 3
  year: 2000
  ident: ref_1
  article-title: Forest Planning at the Tactical Level
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018922728855
– volume: 52
  start-page: 7619
  year: 2014
  ident: ref_50
  article-title: Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Ata
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2315649
– ident: ref_101
  doi: 10.3390/rs9030231
– ident: ref_45
  doi: 10.1016/j.rse.2020.112102
– volume: 36
  start-page: 566
  year: 2017
  ident: ref_124
  article-title: UAV-Based LiDAR Acquisition for the Derivation of High-Resolution Forest and Ground Information
  publication-title: Lead. Edge
  doi: 10.1190/tle36070566.1
– ident: ref_78
  doi: 10.3390/f7120307
– ident: ref_23
  doi: 10.3390/rs8040333
– volume: 106
  start-page: 95
  year: 2015
  ident: ref_119
  article-title: Modeling Aboveground Tree Woody Biomass Using National-Scale Allometric Methods and Airborne Lidar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.007
– volume: 78
  start-page: 1275
  year: 2012
  ident: ref_47
  article-title: Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.11.1275
– ident: ref_6
  doi: 10.3390/su10093305
– volume: 6
  start-page: 4245
  year: 2015
  ident: ref_36
  article-title: SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds
  publication-title: Forests
  doi: 10.3390/f6114245
– volume: 78
  start-page: 75
  year: 2012
  ident: ref_29
  article-title: A New Method for Segmenting Individual Trees from the Lidar Point Cloud
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.1.75
– ident: ref_74
  doi: 10.3390/rs9080785
– volume: 6
  start-page: 1274
  year: 2015
  ident: ref_104
  article-title: Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density
  publication-title: Forests
  doi: 10.3390/f6041274
– volume: 9
  start-page: 515
  year: 2018
  ident: ref_34
  article-title: A Supervoxel Approach to the Segmentation of Individual Trees from LiDAR Point Clouds
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1444286
– volume: 65
  start-page: 514
  year: 2010
  ident: ref_65
  article-title: A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.002
– volume: 6
  start-page: 181
  year: 2020
  ident: ref_63
  article-title: UAV-Derived Estimates of Forest Structure to Inform Ponderosa Pine Forest Restoration
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.137
– volume: 4
  start-page: 1519
  year: 2012
  ident: ref_58
  article-title: Development of a UAV-LiDAR System with Application to Forest Inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs4061519
– ident: ref_11
– volume: 151
  start-page: 157
  year: 2014
  ident: ref_118
  article-title: Monitoring Selective Logging in Western Amazonia with Repeat Lidar Flights
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.049
– volume: 29
  start-page: 564
  year: 2003
  ident: ref_16
  article-title: Measuring Individual Tree Crown Diameter with Lidar and Assessing Its Influence on Estimating Forest Volume and Biomass
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-027
– volume: 6
  start-page: 1721
  year: 2015
  ident: ref_43
  article-title: A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space
  publication-title: Forests
  doi: 10.3390/f6051721
– volume: 28
  start-page: 1049
  year: 2017
  ident: ref_48
  article-title: Automated Tree Detection and Crown Delineation Using Airborne Laser Scanner Data in Heterogeneous East-Central Europe Forest with Different Species Mix
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0378-7
– volume: 154
  start-page: 378
  year: 2014
  ident: ref_130
  article-title: An Efficient, Multi-Layered Crown Delineation Algorithm for Mapping Individual Tree Structure across Multiple Ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.044
– volume: 8
  start-page: 99783
  year: 2020
  ident: ref_115
  article-title: Combining Trunk Detection with Canopy Segmentation to Delineate Single Deciduous Trees Using Airborne LiDAR Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995389
– volume: 173
  start-page: 69
  year: 2016
  ident: ref_49
  article-title: Bottom-up Delineation of Individual Trees from Full-Waveform Airborne Laser Scans in a Structurally Complex Eucalypt Forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.008
– volume: 85
  start-page: 367
  year: 2018
  ident: ref_129
  article-title: Predicting Stem Diameters and Aboveground Biomass of Individual Trees Using Remote Sensing Data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.10.066
– volume: 87
  start-page: 492
  year: 2014
  ident: ref_4
  article-title: Suitability of Close-to-Nature Silviculture for Adapting Temperate European Forests to Climate Change
  publication-title: Forestry
  doi: 10.1093/forestry/cpu018
– volume: 85
  start-page: 290
  year: 2003
  ident: ref_14
  article-title: Detection and Analysis of Individual Leaf-off Tree Crowns in Small Footprint, High Sampling Density Lidar Data from the Eastern Deciduous Forest in North America
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00008-7
– ident: ref_59
  doi: 10.3390/drones4020010
– volume: 2015
  start-page: 105
  year: 2015
  ident: ref_60
  article-title: First Examples from the RIEGL VUX-SYS for Forestry Applications
  publication-title: Proc. SilviLaser
– volume: 84
  start-page: 463
  year: 2011
  ident: ref_5
  article-title: Twenty-First Century Forestry: Integrating Ecologically Based, Uneven-Aged Silviculture with Increased Demands on Forests
  publication-title: Forestry
  doi: 10.1093/forestry/cpr053
– ident: ref_53
  doi: 10.1371/journal.pone.0054776
– ident: ref_62
  doi: 10.1016/j.rse.2019.111355
– volume: 94
  start-page: 1
  year: 2014
  ident: ref_22
  article-title: A Bottom-up Approach to Segment Individual Deciduous Trees Using Leaf-off Lidar Point Cloud Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.014
– volume: 23
  start-page: 177
  year: 2017
  ident: ref_28
  article-title: Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13388
– volume: 64
  start-page: 561
  year: 2009
  ident: ref_117
  article-title: 3D Segmentation of Single Trees Exploiting Full Waveform LIDAR Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.04.002
– volume: 85
  start-page: 27
  year: 2012
  ident: ref_95
  article-title: Comparative Testing of Single-Tree Detection Algorithms under Different Types of Forest
  publication-title: Forestry
  doi: 10.1093/forestry/cpr051
– volume: 2
  start-page: 189
  year: 2015
  ident: ref_35
  article-title: Massive-Scale Tree Modelling from TLS Data
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprsannals-II-3-W4-189-2015
– volume: 43
  start-page: 455
  year: 1997
  ident: ref_81
  article-title: Bowersox, The Practice of Silviculture—Applied Forest Ecology, Ninth Edition
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/43.3.455
– volume: 53
  start-page: 6776
  year: 2015
  ident: ref_133
  article-title: Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2448056
– volume: 38
  start-page: 2427
  year: 2017
  ident: ref_55
  article-title: Forestry Applications of UAVs in Europe: A Review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1252477
– volume: 169
  start-page: 227
  year: 2020
  ident: ref_86
  article-title: Is Field-Measured Tree Height as Reliable as Believed—Part II, A Comparison Study of Tree Height Estimates from Conventional Field Measurement and Low-Cost Close-Range Remote Sensing in a Deciduous Forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.014
– volume: 31
  start-page: 646
  year: 2007
  ident: ref_17
  article-title: Estimating Biomass of Individual Pine Trees Using Airborne Lidar
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.06.022
– volume: 6
  start-page: 129
  year: 2014
  ident: ref_64
  article-title: Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites
  publication-title: Geoheritage
  doi: 10.1007/s12371-014-0104-1
– volume: 156
  start-page: 322
  year: 2015
  ident: ref_10
  article-title: Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.004
– volume: 42
  start-page: 619
  year: 2016
  ident: ref_40
  article-title: Remote Sensing Technologies for Enhancing Forest Inventories: A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1207484
– ident: ref_3
  doi: 10.3390/f8020038
– ident: ref_51
  doi: 10.1016/j.jag.2020.102160
– volume: 374
  start-page: 20
  year: 2016
  ident: ref_122
  article-title: Response of Sugar Maple (Acer saccharum, Marsh.) Tree Crown Structure to Competition in Pure versus Mixed Stands
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.04.047
– volume: 36
  start-page: W2
  year: 2004
  ident: ref_46
  article-title: Development of Filtering, Segmentation and Modelling Modules for Lidar and Multispectral Data as a Fundament of an Automatic Forest Inventory System
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 6
  start-page: 212
  year: 2018
  ident: ref_66
  article-title: UAV-LiDAR Accuracy in Vegetated Terrain
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2017-0030
– volume: 1
  start-page: 649
  year: 2013
  ident: ref_108
  article-title: Laser-Scanned Tree Stem Filtering for Forest Inventories Measurements
  publication-title: Digit. Herit. Int. Congr.
– ident: ref_106
  doi: 10.3390/rs12010173
– volume: 168
  start-page: 28
  year: 2020
  ident: ref_72
  article-title: Influence of ULS Acquisition Characteristics on Tree Stem Parameter Estimation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.08.002
– volume: 40
  start-page: 891
  year: 2014
  ident: ref_92
  article-title: Evaluation of Partially Overlapping 3D Point Cloud’s Registration by Using ICP Variant and Cloudcompare
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprsarchives-XL-8-891-2014
– ident: ref_61
  doi: 10.3390/s17102371
– ident: ref_98
– volume: 125
  start-page: 80
  year: 2012
  ident: ref_19
  article-title: Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.07.006
– volume: 73
  start-page: 26
  year: 2018
  ident: ref_121
  article-title: Urban Tree Health Assessment Using Airborne Hyperspectral and LiDAR Imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 52
  start-page: 7160
  year: 2014
  ident: ref_73
  article-title: An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived from UAV-Borne Laser Scanning Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2308208
– volume: 171
  start-page: 171
  year: 2021
  ident: ref_116
  article-title: Individual Tree Detection and Crown Delineation from Unmanned Aircraft System (UAS) LiDAR in Structurally Complex Mixed Species Eucalypt Forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.016
– volume: 1
  start-page: 269
  year: 1959
  ident: ref_102
  article-title: A Note on Two Problems in Connexion with Graphs
  publication-title: Numer. Math
  doi: 10.1007/BF01386390
– ident: ref_8
– volume: 3
  start-page: 343
  year: 2008
  ident: ref_107
  article-title: Segmented: An R Package to Fit Regression Models with Broken-Line Relationships
  publication-title: R. News
– volume: 87
  start-page: 512
  year: 2011
  ident: ref_12
  article-title: Operational Implementation of a LiDAR Inventory in Boreal Ontario
  publication-title: For. Chron.
  doi: 10.5558/tfc2011-050
– ident: ref_38
– volume: 121
  start-page: 210
  year: 2012
  ident: ref_20
  article-title: 3-D Mapping of a Multi-Layered Mediterranean Forest Using ALS Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.020
– volume: 7
  start-page: 1877
  year: 2015
  ident: ref_89
  article-title: Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter
  publication-title: Remote Sens.
  doi: 10.3390/rs70201877
– volume: 6
  start-page: 3899
  year: 2015
  ident: ref_97
  article-title: Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds
  publication-title: Forests
  doi: 10.3390/f6113899
– volume: 310
  start-page: 275
  year: 2013
  ident: ref_87
  article-title: Crown Modeling by Terrestrial Laser Scanning as an Approach to Assess the Effect of Aboveground Intra- and Interspecific Competition on Tree Growth
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.08.014
– volume: 27
  start-page: 2014
  year: 2014
  ident: ref_25
  article-title: Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies
  publication-title: Manag. Ecosyst.
– volume: 114
  start-page: 1445
  year: 2010
  ident: ref_52
  article-title: Effects of Different Sensors and Leaf-on and Leaf-off Canopy Conditions on Echo Distributions and Individual Tree Properties Derived from Airborne Laser Scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.024
– volume: 147
  start-page: 132
  year: 2019
  ident: ref_85
  article-title: Is Field-Measured Tree Height as Reliable as Believed—A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser Scanning and Terrestrial Laser Scanning in a Boreal Forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– volume: 39
  start-page: 969
  year: 2001
  ident: ref_15
  article-title: A Segmentation-Based Method to Retrieve Stem Volume Estimates from 3-D Tree Height Models Produced by Laser Scanners
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921414
– volume: 146
  start-page: 465
  year: 2018
  ident: ref_75
  article-title: Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.001
– volume: 19
  start-page: 164
  year: 2004
  ident: ref_9
  article-title: Practical Large-Scale Forest Stand Inventory Using a Small-Footprint Airborne Scanning Laser
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580310019257
– volume: 51
  start-page: 679
  year: 2018
  ident: ref_70
  article-title: Single-Tree Detection in High-Density LiDAR Data from UAV-Based Survey
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1474722
– volume: 194
  start-page: 77
  year: 2017
  ident: ref_21
  article-title: Area-Based vs Tree-Centric Approaches to Mapping Forest Carbon in Southeast Asian Forests from Airborne Laser Scanning Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.017
– ident: ref_111
  doi: 10.3390/f7070143
– volume: 123
  start-page: 368
  year: 2012
  ident: ref_18
  article-title: Tree Species Classification and Estimation of Stem Volume and DBH Based on Single Tree Extraction by Exploiting Airborne Full-Waveform LiDAR Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.027
– volume: 144
  start-page: 137
  year: 2018
  ident: ref_39
  article-title: International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.021
– volume: 42
  start-page: 657
  year: 2019
  ident: ref_76
  article-title: Individual Tree Detection from UAV Lidar Data in a Mixed Species Woodland
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W13-657-2019
– ident: ref_79
  doi: 10.3390/rs9111154
– volume: 92
  start-page: 79
  year: 2014
  ident: ref_54
  article-title: Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 183
  start-page: 318
  year: 2016
  ident: ref_126
  article-title: Lidar Detection of Individual Tree Size in Tropical Forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.05.028
– volume: 4
  start-page: 793
  year: 2013
  ident: ref_84
  article-title: Measuring Tree Height: A Quantitative Comparison of Two Common Field Methods in a Moist Tropical Forest
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12071
– volume: 96
  start-page: 149
  year: 2014
  ident: ref_94
  article-title: Keypoint-Based 4-Points Congruent Sets—Automated Marker-Less Registration of Laser Scans
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.06.015
– ident: ref_113
  doi: 10.3390/rs10071078
– ident: ref_109
  doi: 10.3390/ijgi9090495
– volume: 52
  start-page: 532
  year: 2016
  ident: ref_127
  article-title: A Robust Approach for Tree Segmentation in Deciduous Forests Using Small-Footprint Airborne LiDAR Data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 36
  start-page: 187
  year: 2004
  ident: ref_110
  article-title: Adaptive Methods for Individual Tree Detection on Airborne Laser Based Canopy Height Model
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Info. Sci.
– ident: ref_2
– volume: 72
  start-page: 357
  year: 2006
  ident: ref_27
  article-title: Detection of Individual Tree Crowns in Airborne LIDAR Data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.4.357
– volume: 3
  start-page: 1614
  year: 2011
  ident: ref_41
  article-title: Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations
  publication-title: Remote Sens.
  doi: 10.3390/rs3081614
– volume: 36
  start-page: 25
  year: 2007
  ident: ref_82
  article-title: Comparison of Techniques for Terrestrial Laser Scanning Data Georeferencing Applied to 3D Modeling of Cultural Heritage
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_134
  doi: 10.20944/preprints201907.0058.v2
– volume: 9
  start-page: 3467
  year: 2016
  ident: ref_31
  article-title: Individual Tree Crown Modeling and Change Detection from Airborne Lidar Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2541780
– volume: 54
  start-page: 5011
  year: 2016
  ident: ref_44
  article-title: International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2543225
– ident: ref_71
  doi: 10.3390/rs11060717
– ident: ref_105
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_128
  article-title: Predicting Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.635440
– ident: ref_57
  doi: 10.1186/s40663-019-0173-3
– volume: 115
  start-page: 63
  year: 2016
  ident: ref_90
  article-title: Terrestrial Laser Scanning in Forest Inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.006
– volume: 154–155
  start-page: 1
  year: 2012
  ident: ref_88
  article-title: Analyzing Forest Canopies with Ground-Based Laser Scanning: A Comparison with Hemispherical Photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.10.006
– volume: 31
  start-page: 1175
  year: 2010
  ident: ref_131
  article-title: Estimation of Tree Lists from Airborne Laser Scanning by Combining Single-Tree and Area-Based Methods
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903380649
– ident: ref_99
SSID ssj0000331904
Score 2.4187927
Snippet UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study...
SourceID doaj
liege
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2796
SubjectTerms Agriculture & agronomie
Agriculture & agronomy
airborne laser scanning (ALS)
Algorithms
allometry
Automation
Biodiversity
Biodiversity and Ecology
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Botanics
Canopies
canopy
Data collection
Density
diameter at breast height (DBH)
Diameters
Ecology, environment
Ecosystems
Engineering, computing & technology
Environmental Sciences
forest inventory
Forests
hardwood
hardwood forests
Hardwoods
individual tree detection and delineation (ITD)
Ingénierie, informatique & technologie
Investigations
Laser applications
Lasers
Leaves
Lidar
Life Sciences
Occlusion
open-source analytic tools
Phytobiology (plant sciences, forestry, mycology...)
prediction
Raster
Remote sensing
Scanning
Sciences du vivant
Systematics, Phylogenetics and taxonomy
terrestrial laser scanning (TLS)
Timber
Trees
UAV laser scanning (ULS)
uneven-aged forest
Unmanned aerial vehicles
Vegetal Biology
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgQ4KXcZ3IGMhcHphEtMR2nIQXFKZNQyoTUinam-U4NptUJSNJK_Un8q84x0k7buKFtyo9ta328_E5PqffR8grI2XKJHdhJCwkKLnjYWYyFxqhpbOlSKsq82IT6dlZdn6efxov3LqxrXLtE72jrhqDd-SHDNupUsgW-LurbyGqRmF1dZTQuEm2kSUh9q17080dS8QBYJEYWEk5ZPeHbRfzWLAUOfp_Ooc8XT-cLhfYDLk9x3L1H77ZHzgnd_93qffIzhhq0mLAxn1yw9YPyO1R9fxi9ZB8P4b9Pfx1kTaO-hKObWuK1XxsxaGo29n19INvTG_aFS36QSDLdtT3GtBZ8YVO4CBs6dQM6kf09WwyPXhL_SHobDvwgK9wgt8MP3rx6o7quqJHGzlENCwWfQPrshUtRspzmFD3FJYH41ob-s-gAHIVTrDr6RGZnRx_PjoNR2kHAEHK-jDRrEJWXFs6-Ko0ZC0J1zJzwlQ216ICZ-B4zHRueeLiyFkOaaiEYNTkXEex5rtkq25q-5jQRHIbWaYj7axwsdZCJtbEpRYoYRGxgBysf2hlRt5zlN-YK8h_EBTqGhQBebmxvRrYPv5q9R7xsrFAhm7_oGm_qnHDKw2xm7GJlmUZC2NNjqkZZ2WVltKUSRaQF4C2X8Y4LSYKnwFsBURN-TIOyBsPRhi5vFRL5s3868UcpjKqtAri50xB0JaxPCD7a0Cq0RV16hqNAXm-eRucCFaGdG2bBdhILkUOsTDf-_cQT8gdhk09yCwq98lW3y7sU3LLLPvLrn3md98PdsA68w
  priority: 102
  providerName: ProQuest
Title Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree- and Stand-Level
URI https://www.proquest.com/docview/2554679243
https://www.proquest.com/docview/2636490563
https://hal.inrae.fr/hal-03346149
https://orbi.uliege.be/handle/2268/293829
https://doaj.org/article/a071ce5a6bb14cec9067532bd7b6cb58
Volume 13
WOSCitedRecordID wos000677173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejHWwvY5_MWxe0j4cVZmpLsmzvLS0pLaQhLMvo9iJkWaKF4AzbCeRl_9_-q93JbpZ9wF72Yox9lmTfSXeHzr8fIW-MlCmT3IWRsJCg5I6HmclcaISWzhYiLcvMk02kk0l2eZlPd6i-sCasgwfuPtyRBh9obKJlUcTCWJNjiMtZUaaFNEXif_ON0nwnmfJrMAfTikSHR8ohrz-qm5jHgqWIzr_jgTxQP_iVKyyD3F_gRvUfq7J3Naf3yb0-RqTDbmwPyC1bPSR3erryq80j8n0EE7P755AuHfV7L7auKG7DYw0NRcLNpqXnvqJ8WW_osO2YrWxDfZEAnQ8_0TF4sJrOTEdbRN_Ox7PD99R7L2frDsB7gx38JnjhWacbqquSnmx5DFFwuGqXMC5b0mGPVQ4d6pbC8KBda0P_DDIXl-EYy5Uek_np6OPJWdhzMoD2UtaGiWYlwtnawsESq0EXCdcyc8KUNteihFnseMx0bnni4shZDvmjhCjS5FxHseZPyF61rOxTQhPJbWSZjrSzwsVaC5lYExdaIPdExAJyeKMnZXrAcuTNWChIXFCn6qdOA_J6K_u1g-n4q9QxqnsrgdDa_gIYnOoNTv3L4ALyCozllzbOhmOF18DqBIQ7-ToOyDtvS9Byca3WzIv589UCujKqsAoC30xBtJWxPCAHNyan-jWkUQwLCFPIj3lAXm5vw-zHLR1d2eUKZCSXIocglj_7H-_2nNxlWLODwKHygOy19cq-ILfNur1u6gHZPx5Nph8GfqoNsEp2hsdvIzhOky9wf3p-Mf38A4jJNAg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELVKi1ReuCMWCpibRCWiJrbjJEgILaVVV91WldqtypNxHJtWqjYlyRbtT_Ef_BUzTnbLTbz1gbcomYyj5Hgu9mQOIS-MlAmT3AWhsJCgZI4HqUldYISWzuYiKYrUk00ku7vp0VG2t0C-zf6FwbLKmU30hrooDa6RrzEsp0ogW-Dvzr4EyBqFu6szCo0WFtt2-hVStvrt4AN835eMbW4crG8FHasAjJ-wJog1K7Ahq80dKNQQMMdcy9QJU9hMiwJw6HjEdGZ57KLQWQ4ZkIQ4yGRch5HmoPcKWRII9kWytDfY2fs4X9UJOUA6FG0fVM6zcK2qIx4JliArwE-ezxMEgD87xvLLpVPcIP_DG3gXt3njf3s5N8n1Lpim_Rb9t8iCHd8myx2v-_H0Dvm-ARas_TmTlo76TSpbjSnWK2CxEUVm0rqhA196X1ZT2m9aCjBbU19NQUf9QzoEV1_RfdPyO9FXo-H-6hvq3byzVdvpfIoD_Ca44-m5a6rHBV2fEz6iYH_SlPBctqD9rqk7DKgbCo8Heq0N_D1I8VwEQ6zruktGl_Im75HFcTm29wmNJbehZTrUzgoXaS1kbE2Ua4EkHSHrkdUZsJTpOrsjwcipggwPQaguQNgjz-eyZ20_k79KvUd8ziWwB7k_UVafVWfSlIbo1NhYyzyPhLEmw-STs7xIcmnyOO2RZ4DuX3Rs9YcKz8E0ERAXZudRj7z24AfN-Yk6Z17MH09OYSijcqsgQ0gVhKUpy3pkZTYBVGdsa3WB_h55Or8MZhL3vvTYlhOQkVyKDKJ9_uDfKp6Q5a2DnaEaDna3H5JrDEuYsI-qXCGLTTWxj8hVc96c1NXjbu5T8umyZ9QPLc-YVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELVKi4AX7oiFAuYmUYmoie04CRJCSy_qqktVqSyqeDGOY9NK1aYk2UX7a_wBf8WMk91yE2994G3lnYytZGY8E5_MIeSZkTJhkrsgFBYKlMzxIDWpC4zQ0tlcJEWRerKJZG8vPTzM9pfIt_m3MAirnMdEH6iL0uA78nWGcKoEqgW-7jpYxP7m9pvTLwEySOFJ65xOozWRXTv7CuVb_XqwCc_6OWPbW-83doKOYQDWkrAmiDUrsDmrzR0o15A8x1zL1AlT2EyLAmzS8YjpzPLYRaGzHKohCTmRybgOI81B7wWyksAYwgn344-L9zshB-MORdsRlfMsXK_qiEeCJcgP8NMe6KkCYGc7QiDmygkelf-xL_jNbvva_3ybrpOrXYpN-61P3CBLdnyTXO7Y3o9mt8j3LYhr7SebtHTUH13ZakwRxYAQJIp8pXVDBx6QX1Yz2m9aYjBbU4-xoKP-BzqEBKCiB6ZlfaIvRsODtVfUb_7OVm3_8xlO8JvgO0_aXVM9LujGggYSBfuTpoR12YL2u1bvMKFuKCwP9Fob-GuQ-LkIhoj2uk1G53In75DlcTm2dwmNJbehZTrUzgoXaS1kbE2Ua4HUHSHrkbW5kSnT9XtH2pETBXUfGqQ6M8geebqQPW27nPxV6i3a6kICO5P7gbL6rLpApzTkrMbGWuZ5JIw1GZaknOVFkkuTx2mPPAFL_0XHTn-ocAxcRkC2mE2jHnnpHQE058dqyryY_z05gamMyq2CuiFVkKymLOuR1bkzqC4E1-rME3rk8eJvCJ54IqbHtpyAjORSZFAD8Hv_VvGIXAI3UsPB3u59coUhrgmbq8pVstxUE_uAXDTT5riuHvogQMmn83anH1wxn7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Northern+Hardwood+Forest+Inventory+Attributes+Using+UAV+Laser+Scanning+%28ULS%29%3A+Transferability+of+Laser+Scanning+Methods+and+Comparison+of+Automated+Approaches+at+the+Tree-and+Stand-Level&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vandendaele%2C+Bastien&rft.au=Fournier%2C+Richard+A.&rft.au=Vepakomma%2C+Udayalakshmi&rft.au=Pelletier%2C+Gaetan&rft.date=2021-07-16&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=2796&rft.spage=32&rft_id=info:doi/10.3390%2Frs13142796&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_293829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon