Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree- and Stand-Level
UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the trans...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2796 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
16.07.2021
MDPI |
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations. |
|---|---|
| AbstractList | UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R2 = 0.29 to R2 = 0.61), and prediction of tree DBH (from R2 = 0.36 to R2 = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R2 = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations. UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R² = 0.29 to R² = 0.61), and prediction of tree DBH (from R² = 0.36 to R² = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R² = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models -12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R² = 0.29 to R² = 0.61), and prediction of tree DBH (from R² = 0.36 to R² = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R² = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models −12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations. |
| Author | Lejeune, Philippe Pelletier, Gaetan Vepakomma, Udayalakshmi Martin-Ducup, Olivier Vandendaele, Bastien Fournier, Richard A. |
| Author_xml | – sequence: 1 givenname: Bastien orcidid: 0000-0002-6142-9009 surname: Vandendaele fullname: Vandendaele, Bastien – sequence: 2 givenname: Richard A. surname: Fournier fullname: Fournier, Richard A. – sequence: 3 givenname: Udayalakshmi surname: Vepakomma fullname: Vepakomma, Udayalakshmi – sequence: 4 givenname: Gaetan surname: Pelletier fullname: Pelletier, Gaetan – sequence: 5 givenname: Philippe orcidid: 0000-0001-9987-9673 surname: Lejeune fullname: Lejeune, Philippe – sequence: 6 givenname: Olivier surname: Martin-Ducup fullname: Martin-Ducup, Olivier |
| BackLink | https://hal.inrae.fr/hal-03346149$$DView record in HAL |
| BookMark | eNptkl2LEzEUhgdZwbXujb8g4M2uUM0kmUzjXSm7tlD1oltvw5nMmTZlmtQkrfQn-q9MW_FjMZAPDs95z8vJeVlcOe-wKF6X9B3nir4PseSlYLWSz4prRms2FEyxq7_eL4qbGDc0L85LRcV18eM-JruFZL0jviOffUhrDI5MIbTfvW_Jgw8YE5m5A7rkw5GMUwq22SeMZBmtW5Hl-CuZQ8RAFgacO4Vul_PF3QfyGMDFDgM0trfpeCrwBPyEae3bSMC1ZOK3Owg2XpyM98lnX9iS8W4XPJh1LgiJZHtZF3F4zlmkfA7neMD-VfG8gz7iza97UCwf7h8n0-H8y8fZZDwfGlGzNKyAtVRWHJtOyBpkXVUc5KgTpkUFom0o7XjJQCGvupJ2yKkSUjFuFAdaAh8Us4tu62GjdyF3Lxy1B6vPAR9WGkKypkcNtC4NViCbphQGjaK5HGdNWzfSNNUoa_GLVm9xhTm3sfrAzmLn977PYkY3qBmTI80UH-U9KO4uWWvo_zEwHc_1KZZ_V8hSqEOZ2dsLm3v4bZ9_Um9tNNj34NDvo2aSS6FoJXlG3zxBN34fXO6lZlWVm6WYOFFvL5QJPsaA3W8HJdWnMdR_xjDD9AlsbDoPWwpg-_-l_ARLJeE1 |
| CitedBy_id | crossref_primary_10_1016_j_jag_2022_103056 crossref_primary_10_1016_j_ecolind_2024_111882 crossref_primary_10_1080_01431161_2024_2370499 crossref_primary_10_1093_forestry_cpaf010 crossref_primary_10_3390_drones7100613 crossref_primary_10_3389_fevo_2023_1214419 crossref_primary_10_3390_rs16101721 crossref_primary_10_1109_TGRS_2025_3585524 crossref_primary_10_3390_rs16234544 crossref_primary_10_1016_j_jag_2023_103480 crossref_primary_10_3390_rs17071271 crossref_primary_10_3390_f12111521 crossref_primary_10_1016_j_rse_2022_113180 crossref_primary_10_3390_rs15133272 crossref_primary_10_3390_f16030449 crossref_primary_10_3390_rs14122753 crossref_primary_10_3390_rs15092380 crossref_primary_10_3390_drones8120772 crossref_primary_10_1016_j_isprsjprs_2022_07_021 crossref_primary_10_3390_rs14184522 crossref_primary_10_1007_s40725_025_00251_x crossref_primary_10_1016_j_rsase_2023_101068 |
| Cites_doi | 10.3390/rs12061046 10.1016/j.isprsjprs.2019.01.020 10.1002/ece3.3737 10.3390/rs13020257 10.1139/cjfr-2014-0285 10.3390/rs4040830 10.3390/rs10071094 10.1007/s40725-017-0051-6 10.3390/s8063938 10.1016/j.cag.2017.05.016 10.3390/f5051069 10.1016/j.isprsjprs.2020.11.016 10.1109/JSTARS.2014.2331276 10.3390/rs4040950 10.5194/isprs-archives-XLII-2-W6-393-2017 10.1016/j.rse.2020.112061 10.1016/j.rse.2019.111309 10.14358/PERS.72.8.923 10.1016/j.rse.2017.09.037 10.1080/01431161.2011.565815 10.3390/s19040810 10.3390/f12020131 10.3390/rs11091086 10.1023/A:1018922728855 10.1109/TGRS.2014.2315649 10.3390/rs9030231 10.1016/j.rse.2020.112102 10.1190/tle36070566.1 10.3390/f7120307 10.3390/rs8040333 10.1016/j.isprsjprs.2015.05.007 10.14358/PERS.78.11.1275 10.3390/su10093305 10.3390/f6114245 10.14358/PERS.78.1.75 10.3390/rs9080785 10.3390/f6041274 10.1080/2150704X.2018.1444286 10.1016/j.isprsjprs.2010.08.002 10.1002/rse2.137 10.3390/rs4061519 10.1016/j.rse.2013.08.049 10.5589/m03-027 10.3390/f6051721 10.1007/s11676-017-0378-7 10.1016/j.rse.2013.07.044 10.1109/ACCESS.2020.2995389 10.1016/j.rse.2015.11.008 10.1016/j.ecolind.2017.10.066 10.1093/forestry/cpu018 10.1016/S0034-4257(03)00008-7 10.3390/drones4020010 10.1093/forestry/cpr053 10.1371/journal.pone.0054776 10.1016/j.rse.2019.111355 10.1016/j.isprsjprs.2014.03.014 10.1111/gcb.13388 10.1016/j.isprsjprs.2009.04.002 10.1093/forestry/cpr051 10.5194/isprsannals-II-3-W4-189-2015 10.1093/forestscience/43.3.455 10.1109/TGRS.2015.2448056 10.1080/01431161.2016.1252477 10.1016/j.isprsjprs.2020.09.014 10.1016/j.biombioe.2007.06.022 10.1007/s12371-014-0104-1 10.1016/j.rse.2014.10.004 10.1080/07038992.2016.1207484 10.3390/f8020038 10.1016/j.jag.2020.102160 10.1016/j.foreco.2016.04.047 10.1139/juvs-2017-0030 10.3390/rs12010173 10.1016/j.isprsjprs.2020.08.002 10.5194/isprsarchives-XL-8-891-2014 10.3390/s17102371 10.1016/j.rse.2012.07.006 10.1109/TGRS.2014.2308208 10.1016/j.isprsjprs.2020.10.016 10.1007/BF01386390 10.5558/tfc2011-050 10.1016/j.rse.2012.01.020 10.3390/rs70201877 10.3390/f6113899 10.1016/j.foreco.2013.08.014 10.1016/j.rse.2010.01.024 10.1016/j.isprsjprs.2018.11.008 10.1109/36.921414 10.1016/j.isprsjprs.2018.11.001 10.1080/02827580310019257 10.1080/22797254.2018.1474722 10.1016/j.rse.2017.03.017 10.3390/f7070143 10.1016/j.rse.2012.03.027 10.1016/j.isprsjprs.2018.06.021 10.5194/isprs-archives-XLII-2-W13-657-2019 10.3390/rs9111154 10.1016/j.isprsjprs.2014.02.013 10.1016/j.rse.2016.05.028 10.1111/2041-210X.12071 10.1016/j.isprsjprs.2014.06.015 10.3390/rs10071078 10.3390/ijgi9090495 10.14358/PERS.72.4.357 10.3390/rs3081614 10.20944/preprints201907.0058.v2 10.1109/JSTARS.2016.2541780 10.1109/TGRS.2016.2543225 10.3390/rs11060717 10.3389/fpls.2021.635440 10.1186/s40663-019-0173-3 10.1016/j.isprsjprs.2016.01.006 10.1016/j.agrformet.2011.10.006 10.1080/01431160903380649 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 1XC VOOES JLOSS Q33 DOA |
| DOI | 10.3390/rs13142796 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Environmental Sciences |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_a071ce5a6bb14cec9067532bd7b6cb58 oai_orbi_ulg_ac_be_2268_293829 oai:HAL:hal-03346149v1 10_3390_rs13142796 |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO 1XC VOOES JLOSS Q33 |
| ID | FETCH-LOGICAL-c472t-5a2d0653ebf467a67553a68f4cde9a4db00f312a9e35f10fe30946923c93a01a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:43:57 EDT 2025 Sat Nov 29 01:24:48 EST 2025 Tue Oct 14 20:56:49 EDT 2025 Thu Oct 02 09:41:35 EDT 2025 Fri Jul 25 09:30:43 EDT 2025 Sat Nov 29 07:14:02 EST 2025 Tue Nov 18 20:54:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | hardwood open-source analytic tools airborne laser scanning (ALS) UAV laser scanning (ULS) terrestrial laser scanning (TLS) individual tree detection and delineation (ITD) forest inventory diameter at breast height (DBH) uneven-aged forest |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-5a2d0653ebf467a67553a68f4cde9a4db00f312a9e35f10fe30946923c93a01a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85111305476 |
| ORCID | 0000-0001-9987-9673 0000-0002-6142-9009 |
| OpenAccessLink | https://doaj.org/article/a071ce5a6bb14cec9067532bd7b6cb58 |
| PQID | 2554679243 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a071ce5a6bb14cec9067532bd7b6cb58 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_293829 hal_primary_oai_HAL_hal_03346149v1 proquest_miscellaneous_2636490563 proquest_journals_2554679243 crossref_primary_10_3390_rs13142796 crossref_citationtrail_10_3390_rs13142796 |
| PublicationCentury | 2000 |
| PublicationDate | 20210716 |
| PublicationDateYYYYMMDD | 2021-07-16 |
| PublicationDate_xml | – month: 07 year: 2021 text: 20210716 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Ferraz (ref_20) 2012; 121 Balsi (ref_70) 2018; 51 Maltamo (ref_25) 2014; 27 ref_91 Torresan (ref_55) 2017; 38 Wang (ref_85) 2019; 147 ref_11 ref_99 ref_98 Vega (ref_32) 2014; 33 ref_96 ref_134 Woods (ref_12) 2011; 87 Dersch (ref_114) 2021; 172 (ref_52) 2010; 114 Weinacker (ref_46) 2004; 36 Maltamo (ref_110) 2004; 36 Vastaranta (ref_41) 2011; 3 Sofonia (ref_68) 2019; 149 Lindberg (ref_131) 2010; 31 Coomes (ref_21) 2017; 194 Treitz (ref_13) 2012; 4 ref_23 ref_123 Hackenberg (ref_36) 2015; 6 Vauhkonen (ref_132) 2014; 45 Ravaglia (ref_37) 2017; 66 Audet (ref_97) 2015; 6 Chen (ref_26) 2006; 72 Wang (ref_33) 2008; 8 ref_71 Jing (ref_47) 2012; 78 Gottfried (ref_60) 2015; 2015 ref_79 ref_78 ref_77 Reitberger (ref_117) 2009; 64 Zaforemska (ref_76) 2019; 42 Wang (ref_44) 2016; 54 ref_74 (ref_9) 2004; 19 Nolet (ref_7) 2018; 8 Kaartinen (ref_42) 2012; 4 Diaci (ref_5) 2011; 84 Colomina (ref_54) 2014; 92 Shendryk (ref_49) 2016; 173 Larjavaara (ref_84) 2013; 4 Raumonen (ref_35) 2015; 2 Wallace (ref_50) 2014; 52 Lindberg (ref_125) 2014; 7 ref_83 ref_80 Jaskierniak (ref_116) 2021; 171 Bruggisser (ref_72) 2020; 168 Jaakkola (ref_65) 2010; 65 Seidel (ref_128) 2021; 12 Duncanson (ref_130) 2014; 154 Wallace (ref_73) 2014; 52 Dalponte (ref_129) 2018; 85 Brang (ref_4) 2014; 87 Koch (ref_27) 2006; 72 (ref_48) 2017; 28 Belmonte (ref_63) 2020; 6 Hilker (ref_93) 2012; 3 Srinivasan (ref_89) 2015; 7 Hamraz (ref_127) 2016; 52 Dijkstra (ref_102) 1959; 1 Brandtberg (ref_14) 2003; 85 Hackenberg (ref_104) 2015; 6 ref_57 ref_56 Jucker (ref_28) 2017; 23 ref_53 ref_51 Andersen (ref_118) 2014; 151 Ferraz (ref_133) 2015; 53 Todd (ref_81) 1997; 43 Chen (ref_119) 2015; 106 White (ref_40) 2016; 42 ref_59 Yao (ref_18) 2012; 123 Degerickx (ref_121) 2018; 73 ref_61 Kelle (ref_15) 2001; 39 Ferraz (ref_126) 2016; 183 Lindberg (ref_24) 2017; 3 Liang (ref_39) 2018; 144 ref_67 ref_62 Bouvier (ref_10) 2015; 156 Li (ref_29) 2012; 78 Vepakomma (ref_69) 2017; 42 Theiler (ref_94) 2014; 96 Gleason (ref_19) 2012; 125 Liang (ref_90) 2016; 115 Vauhkonen (ref_95) 2012; 85 Olivier (ref_122) 2016; 374 Wallace (ref_58) 2012; 4 Metz (ref_87) 2013; 310 Seidel (ref_88) 2012; 154–155 ref_111 ref_30 ref_113 ref_112 Ravanel (ref_64) 2014; 6 Wang (ref_115) 2020; 8 ref_38 Morsdorf (ref_124) 2017; 36 Hackenberg (ref_103) 2014; 5 Xiao (ref_31) 2016; 9 ref_106 ref_105 Liu (ref_75) 2018; 146 Liang (ref_86) 2020; 169 ref_109 ref_45 Lu (ref_22) 2014; 94 ref_100 Alba (ref_82) 2007; 36 ref_101 ref_3 Ravaglia (ref_108) 2013; 1 Budei (ref_120) 2017; 204 ref_2 Rajendra (ref_92) 2014; 40 Xu (ref_34) 2018; 9 ref_8 Popescu (ref_16) 2003; 29 Muggeo (ref_107) 2008; 3 Kucharczyk (ref_66) 2018; 6 Eysn (ref_43) 2015; 6 Church (ref_1) 2000; 95 Popescu (ref_17) 2007; 31 ref_6 |
| References_xml | – ident: ref_56 doi: 10.3390/rs12061046 – volume: 149 start-page: 105 year: 2019 ident: ref_68 article-title: Modelling the Effects of Fundamental UAV Flight Parameters on LiDAR Point Clouds to Facilitate Objectives-Based Planning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.020 – volume: 8 start-page: 1217 year: 2018 ident: ref_7 article-title: Comparing the Effects of Even- and Uneven-Aged Silviculture on Ecological Diversity and Processes: A Review publication-title: Ecol. Evol. doi: 10.1002/ece3.3737 – ident: ref_80 – ident: ref_91 doi: 10.3390/rs13020257 – volume: 45 start-page: 353 year: 2014 ident: ref_132 article-title: Matching Remotely Sensed and Field Measured Tree Size Distributions publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2014-0285 – volume: 4 start-page: 830 year: 2012 ident: ref_13 article-title: LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada publication-title: Remote Sens. doi: 10.3390/rs4040830 – ident: ref_67 doi: 10.3390/rs10071094 – ident: ref_100 – volume: 3 start-page: 19 year: 2017 ident: ref_24 article-title: Individual Tree Crown Methods for 3D Data from Remote Sensing publication-title: Curr. For. Rep. doi: 10.1007/s40725-017-0051-6 – volume: 8 start-page: 3938 year: 2008 ident: ref_33 article-title: A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis and 3D Single Tree Modelling in Forest publication-title: Sensors doi: 10.3390/s8063938 – volume: 66 start-page: 23 year: 2017 ident: ref_37 article-title: Extraction of Tubular Shapes from Dense Point Clouds and Application to Tree Reconstruction from Laser Scanned Data publication-title: Comput. Graph. doi: 10.1016/j.cag.2017.05.016 – volume: 5 start-page: 1069 year: 2014 ident: ref_103 article-title: Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description publication-title: Forests doi: 10.3390/f5051069 – volume: 172 start-page: 207 year: 2021 ident: ref_114 article-title: Combining Graph-Cut Clustering with Object-Based Stem Detection for Tree Segmentation in Highly Dense Airborne Lidar Point Clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.016 – volume: 7 start-page: 3174 year: 2014 ident: ref_125 article-title: Delineation of Tree Crowns and Tree Species Classification from Full-Waveform Airborne Laser Scanning Data Using 3-d Ellipsoidal Clustering publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2331276 – volume: 4 start-page: 950 year: 2012 ident: ref_42 article-title: An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning publication-title: Remote Sens. doi: 10.3390/rs4040950 – volume: 42 start-page: 393 year: 2017 ident: ref_69 article-title: Potential of Multi-Temporal UAV-Borne Lidar in Assessing Effectiveness of Silvicultural Treatments publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-W6-393-2017 – volume: 33 start-page: 98 year: 2014 ident: ref_32 article-title: PTrees: A Point-Based Approach to Forest Tree Extractionfrom Lidar Data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_96 doi: 10.1016/j.rse.2020.112061 – ident: ref_77 doi: 10.1016/j.rse.2019.111309 – volume: 72 start-page: 923 year: 2006 ident: ref_26 article-title: Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.8.923 – volume: 204 start-page: 632 year: 2017 ident: ref_120 article-title: Identifying the Genus or Species of Individual Trees Using a Three-Wavelength Airborne Lidar System publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.037 – volume: 3 start-page: 239 year: 2012 ident: ref_93 article-title: A Simple Technique for Co-Registration of Terrestrial LiDAR Observations for Forestry Applications publication-title: Remote Sens. Lett. doi: 10.1080/01431161.2011.565815 – ident: ref_112 doi: 10.3390/s19040810 – ident: ref_123 doi: 10.3390/f12020131 – ident: ref_83 – ident: ref_30 doi: 10.3390/rs11091086 – volume: 95 start-page: 3 year: 2000 ident: ref_1 article-title: Forest Planning at the Tactical Level publication-title: Ann. Oper. Res. doi: 10.1023/A:1018922728855 – volume: 52 start-page: 7619 year: 2014 ident: ref_50 article-title: Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Ata publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2315649 – ident: ref_101 doi: 10.3390/rs9030231 – ident: ref_45 doi: 10.1016/j.rse.2020.112102 – volume: 36 start-page: 566 year: 2017 ident: ref_124 article-title: UAV-Based LiDAR Acquisition for the Derivation of High-Resolution Forest and Ground Information publication-title: Lead. Edge doi: 10.1190/tle36070566.1 – ident: ref_78 doi: 10.3390/f7120307 – ident: ref_23 doi: 10.3390/rs8040333 – volume: 106 start-page: 95 year: 2015 ident: ref_119 article-title: Modeling Aboveground Tree Woody Biomass Using National-Scale Allometric Methods and Airborne Lidar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.007 – volume: 78 start-page: 1275 year: 2012 ident: ref_47 article-title: Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.11.1275 – ident: ref_6 doi: 10.3390/su10093305 – volume: 6 start-page: 4245 year: 2015 ident: ref_36 article-title: SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds publication-title: Forests doi: 10.3390/f6114245 – volume: 78 start-page: 75 year: 2012 ident: ref_29 article-title: A New Method for Segmenting Individual Trees from the Lidar Point Cloud publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.1.75 – ident: ref_74 doi: 10.3390/rs9080785 – volume: 6 start-page: 1274 year: 2015 ident: ref_104 article-title: Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density publication-title: Forests doi: 10.3390/f6041274 – volume: 9 start-page: 515 year: 2018 ident: ref_34 article-title: A Supervoxel Approach to the Segmentation of Individual Trees from LiDAR Point Clouds publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1444286 – volume: 65 start-page: 514 year: 2010 ident: ref_65 article-title: A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.002 – volume: 6 start-page: 181 year: 2020 ident: ref_63 article-title: UAV-Derived Estimates of Forest Structure to Inform Ponderosa Pine Forest Restoration publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.137 – volume: 4 start-page: 1519 year: 2012 ident: ref_58 article-title: Development of a UAV-LiDAR System with Application to Forest Inventory publication-title: Remote Sens. doi: 10.3390/rs4061519 – ident: ref_11 – volume: 151 start-page: 157 year: 2014 ident: ref_118 article-title: Monitoring Selective Logging in Western Amazonia with Repeat Lidar Flights publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.049 – volume: 29 start-page: 564 year: 2003 ident: ref_16 article-title: Measuring Individual Tree Crown Diameter with Lidar and Assessing Its Influence on Estimating Forest Volume and Biomass publication-title: Can. J. Remote Sens. doi: 10.5589/m03-027 – volume: 6 start-page: 1721 year: 2015 ident: ref_43 article-title: A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space publication-title: Forests doi: 10.3390/f6051721 – volume: 28 start-page: 1049 year: 2017 ident: ref_48 article-title: Automated Tree Detection and Crown Delineation Using Airborne Laser Scanner Data in Heterogeneous East-Central Europe Forest with Different Species Mix publication-title: J. For. Res. doi: 10.1007/s11676-017-0378-7 – volume: 154 start-page: 378 year: 2014 ident: ref_130 article-title: An Efficient, Multi-Layered Crown Delineation Algorithm for Mapping Individual Tree Structure across Multiple Ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.044 – volume: 8 start-page: 99783 year: 2020 ident: ref_115 article-title: Combining Trunk Detection with Canopy Segmentation to Delineate Single Deciduous Trees Using Airborne LiDAR Data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995389 – volume: 173 start-page: 69 year: 2016 ident: ref_49 article-title: Bottom-up Delineation of Individual Trees from Full-Waveform Airborne Laser Scans in a Structurally Complex Eucalypt Forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.008 – volume: 85 start-page: 367 year: 2018 ident: ref_129 article-title: Predicting Stem Diameters and Aboveground Biomass of Individual Trees Using Remote Sensing Data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.10.066 – volume: 87 start-page: 492 year: 2014 ident: ref_4 article-title: Suitability of Close-to-Nature Silviculture for Adapting Temperate European Forests to Climate Change publication-title: Forestry doi: 10.1093/forestry/cpu018 – volume: 85 start-page: 290 year: 2003 ident: ref_14 article-title: Detection and Analysis of Individual Leaf-off Tree Crowns in Small Footprint, High Sampling Density Lidar Data from the Eastern Deciduous Forest in North America publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00008-7 – ident: ref_59 doi: 10.3390/drones4020010 – volume: 2015 start-page: 105 year: 2015 ident: ref_60 article-title: First Examples from the RIEGL VUX-SYS for Forestry Applications publication-title: Proc. SilviLaser – volume: 84 start-page: 463 year: 2011 ident: ref_5 article-title: Twenty-First Century Forestry: Integrating Ecologically Based, Uneven-Aged Silviculture with Increased Demands on Forests publication-title: Forestry doi: 10.1093/forestry/cpr053 – ident: ref_53 doi: 10.1371/journal.pone.0054776 – ident: ref_62 doi: 10.1016/j.rse.2019.111355 – volume: 94 start-page: 1 year: 2014 ident: ref_22 article-title: A Bottom-up Approach to Segment Individual Deciduous Trees Using Leaf-off Lidar Point Cloud Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.03.014 – volume: 23 start-page: 177 year: 2017 ident: ref_28 article-title: Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13388 – volume: 64 start-page: 561 year: 2009 ident: ref_117 article-title: 3D Segmentation of Single Trees Exploiting Full Waveform LIDAR Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.04.002 – volume: 85 start-page: 27 year: 2012 ident: ref_95 article-title: Comparative Testing of Single-Tree Detection Algorithms under Different Types of Forest publication-title: Forestry doi: 10.1093/forestry/cpr051 – volume: 2 start-page: 189 year: 2015 ident: ref_35 article-title: Massive-Scale Tree Modelling from TLS Data publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprsannals-II-3-W4-189-2015 – volume: 43 start-page: 455 year: 1997 ident: ref_81 article-title: Bowersox, The Practice of Silviculture—Applied Forest Ecology, Ninth Edition publication-title: Forest Sci. doi: 10.1093/forestscience/43.3.455 – volume: 53 start-page: 6776 year: 2015 ident: ref_133 article-title: Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2448056 – volume: 38 start-page: 2427 year: 2017 ident: ref_55 article-title: Forestry Applications of UAVs in Europe: A Review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1252477 – volume: 169 start-page: 227 year: 2020 ident: ref_86 article-title: Is Field-Measured Tree Height as Reliable as Believed—Part II, A Comparison Study of Tree Height Estimates from Conventional Field Measurement and Low-Cost Close-Range Remote Sensing in a Deciduous Forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.014 – volume: 31 start-page: 646 year: 2007 ident: ref_17 article-title: Estimating Biomass of Individual Pine Trees Using Airborne Lidar publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.06.022 – volume: 6 start-page: 129 year: 2014 ident: ref_64 article-title: Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites publication-title: Geoheritage doi: 10.1007/s12371-014-0104-1 – volume: 156 start-page: 322 year: 2015 ident: ref_10 article-title: Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.004 – volume: 42 start-page: 619 year: 2016 ident: ref_40 article-title: Remote Sensing Technologies for Enhancing Forest Inventories: A Review publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1207484 – ident: ref_3 doi: 10.3390/f8020038 – ident: ref_51 doi: 10.1016/j.jag.2020.102160 – volume: 374 start-page: 20 year: 2016 ident: ref_122 article-title: Response of Sugar Maple (Acer saccharum, Marsh.) Tree Crown Structure to Competition in Pure versus Mixed Stands publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.04.047 – volume: 36 start-page: W2 year: 2004 ident: ref_46 article-title: Development of Filtering, Segmentation and Modelling Modules for Lidar and Multispectral Data as a Fundament of an Automatic Forest Inventory System publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 6 start-page: 212 year: 2018 ident: ref_66 article-title: UAV-LiDAR Accuracy in Vegetated Terrain publication-title: J. Unmanned Veh. Syst. doi: 10.1139/juvs-2017-0030 – volume: 1 start-page: 649 year: 2013 ident: ref_108 article-title: Laser-Scanned Tree Stem Filtering for Forest Inventories Measurements publication-title: Digit. Herit. Int. Congr. – ident: ref_106 doi: 10.3390/rs12010173 – volume: 168 start-page: 28 year: 2020 ident: ref_72 article-title: Influence of ULS Acquisition Characteristics on Tree Stem Parameter Estimation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.08.002 – volume: 40 start-page: 891 year: 2014 ident: ref_92 article-title: Evaluation of Partially Overlapping 3D Point Cloud’s Registration by Using ICP Variant and Cloudcompare publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprsarchives-XL-8-891-2014 – ident: ref_61 doi: 10.3390/s17102371 – ident: ref_98 – volume: 125 start-page: 80 year: 2012 ident: ref_19 article-title: Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.006 – volume: 73 start-page: 26 year: 2018 ident: ref_121 article-title: Urban Tree Health Assessment Using Airborne Hyperspectral and LiDAR Imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 52 start-page: 7160 year: 2014 ident: ref_73 article-title: An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived from UAV-Borne Laser Scanning Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2308208 – volume: 171 start-page: 171 year: 2021 ident: ref_116 article-title: Individual Tree Detection and Crown Delineation from Unmanned Aircraft System (UAS) LiDAR in Structurally Complex Mixed Species Eucalypt Forests publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.10.016 – volume: 1 start-page: 269 year: 1959 ident: ref_102 article-title: A Note on Two Problems in Connexion with Graphs publication-title: Numer. Math doi: 10.1007/BF01386390 – ident: ref_8 – volume: 3 start-page: 343 year: 2008 ident: ref_107 article-title: Segmented: An R Package to Fit Regression Models with Broken-Line Relationships publication-title: R. News – volume: 87 start-page: 512 year: 2011 ident: ref_12 article-title: Operational Implementation of a LiDAR Inventory in Boreal Ontario publication-title: For. Chron. doi: 10.5558/tfc2011-050 – ident: ref_38 – volume: 121 start-page: 210 year: 2012 ident: ref_20 article-title: 3-D Mapping of a Multi-Layered Mediterranean Forest Using ALS Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.020 – volume: 7 start-page: 1877 year: 2015 ident: ref_89 article-title: Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter publication-title: Remote Sens. doi: 10.3390/rs70201877 – volume: 6 start-page: 3899 year: 2015 ident: ref_97 article-title: Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds publication-title: Forests doi: 10.3390/f6113899 – volume: 310 start-page: 275 year: 2013 ident: ref_87 article-title: Crown Modeling by Terrestrial Laser Scanning as an Approach to Assess the Effect of Aboveground Intra- and Interspecific Competition on Tree Growth publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.08.014 – volume: 27 start-page: 2014 year: 2014 ident: ref_25 article-title: Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies publication-title: Manag. Ecosyst. – volume: 114 start-page: 1445 year: 2010 ident: ref_52 article-title: Effects of Different Sensors and Leaf-on and Leaf-off Canopy Conditions on Echo Distributions and Individual Tree Properties Derived from Airborne Laser Scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.024 – volume: 147 start-page: 132 year: 2019 ident: ref_85 article-title: Is Field-Measured Tree Height as Reliable as Believed—A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser Scanning and Terrestrial Laser Scanning in a Boreal Forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – volume: 39 start-page: 969 year: 2001 ident: ref_15 article-title: A Segmentation-Based Method to Retrieve Stem Volume Estimates from 3-D Tree Height Models Produced by Laser Scanners publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921414 – volume: 146 start-page: 465 year: 2018 ident: ref_75 article-title: Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.001 – volume: 19 start-page: 164 year: 2004 ident: ref_9 article-title: Practical Large-Scale Forest Stand Inventory Using a Small-Footprint Airborne Scanning Laser publication-title: Scand. J. For. Res. doi: 10.1080/02827580310019257 – volume: 51 start-page: 679 year: 2018 ident: ref_70 article-title: Single-Tree Detection in High-Density LiDAR Data from UAV-Based Survey publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1474722 – volume: 194 start-page: 77 year: 2017 ident: ref_21 article-title: Area-Based vs Tree-Centric Approaches to Mapping Forest Carbon in Southeast Asian Forests from Airborne Laser Scanning Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.017 – ident: ref_111 doi: 10.3390/f7070143 – volume: 123 start-page: 368 year: 2012 ident: ref_18 article-title: Tree Species Classification and Estimation of Stem Volume and DBH Based on Single Tree Extraction by Exploiting Airborne Full-Waveform LiDAR Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.027 – volume: 144 start-page: 137 year: 2018 ident: ref_39 article-title: International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.06.021 – volume: 42 start-page: 657 year: 2019 ident: ref_76 article-title: Individual Tree Detection from UAV Lidar Data in a Mixed Species Woodland publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-W13-657-2019 – ident: ref_79 doi: 10.3390/rs9111154 – volume: 92 start-page: 79 year: 2014 ident: ref_54 article-title: Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 183 start-page: 318 year: 2016 ident: ref_126 article-title: Lidar Detection of Individual Tree Size in Tropical Forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.05.028 – volume: 4 start-page: 793 year: 2013 ident: ref_84 article-title: Measuring Tree Height: A Quantitative Comparison of Two Common Field Methods in a Moist Tropical Forest publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12071 – volume: 96 start-page: 149 year: 2014 ident: ref_94 article-title: Keypoint-Based 4-Points Congruent Sets—Automated Marker-Less Registration of Laser Scans publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.06.015 – ident: ref_113 doi: 10.3390/rs10071078 – ident: ref_109 doi: 10.3390/ijgi9090495 – volume: 52 start-page: 532 year: 2016 ident: ref_127 article-title: A Robust Approach for Tree Segmentation in Deciduous Forests Using Small-Footprint Airborne LiDAR Data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 36 start-page: 187 year: 2004 ident: ref_110 article-title: Adaptive Methods for Individual Tree Detection on Airborne Laser Based Canopy Height Model publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Info. Sci. – ident: ref_2 – volume: 72 start-page: 357 year: 2006 ident: ref_27 article-title: Detection of Individual Tree Crowns in Airborne LIDAR Data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.4.357 – volume: 3 start-page: 1614 year: 2011 ident: ref_41 article-title: Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations publication-title: Remote Sens. doi: 10.3390/rs3081614 – volume: 36 start-page: 25 year: 2007 ident: ref_82 article-title: Comparison of Techniques for Terrestrial Laser Scanning Data Georeferencing Applied to 3D Modeling of Cultural Heritage publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref_134 doi: 10.20944/preprints201907.0058.v2 – volume: 9 start-page: 3467 year: 2016 ident: ref_31 article-title: Individual Tree Crown Modeling and Change Detection from Airborne Lidar Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2541780 – volume: 54 start-page: 5011 year: 2016 ident: ref_44 article-title: International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2543225 – ident: ref_71 doi: 10.3390/rs11060717 – ident: ref_105 – volume: 12 start-page: 1 year: 2021 ident: ref_128 article-title: Predicting Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.635440 – ident: ref_57 doi: 10.1186/s40663-019-0173-3 – volume: 115 start-page: 63 year: 2016 ident: ref_90 article-title: Terrestrial Laser Scanning in Forest Inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.006 – volume: 154–155 start-page: 1 year: 2012 ident: ref_88 article-title: Analyzing Forest Canopies with Ground-Based Laser Scanning: A Comparison with Hemispherical Photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.10.006 – volume: 31 start-page: 1175 year: 2010 ident: ref_131 article-title: Estimation of Tree Lists from Airborne Laser Scanning by Combining Single-Tree and Area-Based Methods publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903380649 – ident: ref_99 |
| SSID | ssj0000331904 |
| Score | 2.4187927 |
| Snippet | UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study... |
| SourceID | doaj liege hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2796 |
| SubjectTerms | Agriculture & agronomie Agriculture & agronomy airborne laser scanning (ALS) Algorithms allometry Automation Biodiversity Biodiversity and Ecology Biologie végétale (sciences végétales, sylviculture, mycologie...) Botanics Canopies canopy Data collection Density diameter at breast height (DBH) Diameters Ecology, environment Ecosystems Engineering, computing & technology Environmental Sciences forest inventory Forests hardwood hardwood forests Hardwoods individual tree detection and delineation (ITD) Ingénierie, informatique & technologie Investigations Laser applications Lasers Leaves Lidar Life Sciences Occlusion open-source analytic tools Phytobiology (plant sciences, forestry, mycology...) prediction Raster Remote sensing Scanning Sciences du vivant Systematics, Phylogenetics and taxonomy terrestrial laser scanning (TLS) Timber Trees UAV laser scanning (ULS) uneven-aged forest Unmanned aerial vehicles Vegetal Biology |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgQ4KXcZ3IGMhcHphEtMR2nIQXFKZNQyoTUinam-U4NptUJSNJK_Un8q84x0k7buKFtyo9ta328_E5PqffR8grI2XKJHdhJCwkKLnjYWYyFxqhpbOlSKsq82IT6dlZdn6efxov3LqxrXLtE72jrhqDd-SHDNupUsgW-LurbyGqRmF1dZTQuEm2kSUh9q17080dS8QBYJEYWEk5ZPeHbRfzWLAUOfp_Ooc8XT-cLhfYDLk9x3L1H77ZHzgnd_93qffIzhhq0mLAxn1yw9YPyO1R9fxi9ZB8P4b9Pfx1kTaO-hKObWuK1XxsxaGo29n19INvTG_aFS36QSDLdtT3GtBZ8YVO4CBs6dQM6kf09WwyPXhL_SHobDvwgK9wgt8MP3rx6o7quqJHGzlENCwWfQPrshUtRspzmFD3FJYH41ob-s-gAHIVTrDr6RGZnRx_PjoNR2kHAEHK-jDRrEJWXFs6-Ko0ZC0J1zJzwlQ216ICZ-B4zHRueeLiyFkOaaiEYNTkXEex5rtkq25q-5jQRHIbWaYj7axwsdZCJtbEpRYoYRGxgBysf2hlRt5zlN-YK8h_EBTqGhQBebmxvRrYPv5q9R7xsrFAhm7_oGm_qnHDKw2xm7GJlmUZC2NNjqkZZ2WVltKUSRaQF4C2X8Y4LSYKnwFsBURN-TIOyBsPRhi5vFRL5s3868UcpjKqtAri50xB0JaxPCD7a0Cq0RV16hqNAXm-eRucCFaGdG2bBdhILkUOsTDf-_cQT8gdhk09yCwq98lW3y7sU3LLLPvLrn3md98PdsA68w priority: 102 providerName: ProQuest |
| Title | Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree- and Stand-Level |
| URI | https://www.proquest.com/docview/2554679243 https://www.proquest.com/docview/2636490563 https://hal.inrae.fr/hal-03346149 https://orbi.uliege.be/handle/2268/293829 https://doaj.org/article/a071ce5a6bb14cec9067532bd7b6cb58 |
| Volume | 13 |
| WOSCitedRecordID | wos000677173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejHWwvY5_MWxe0j4cVZmpLsmzvLS0pLaQhLMvo9iJkWaKF4AzbCeRl_9_-q93JbpZ9wF72Yox9lmTfSXeHzr8fIW-MlCmT3IWRsJCg5I6HmclcaISWzhYiLcvMk02kk0l2eZlPd6i-sCasgwfuPtyRBh9obKJlUcTCWJNjiMtZUaaFNEXif_ON0nwnmfJrMAfTikSHR8ohrz-qm5jHgqWIzr_jgTxQP_iVKyyD3F_gRvUfq7J3Naf3yb0-RqTDbmwPyC1bPSR3erryq80j8n0EE7P755AuHfV7L7auKG7DYw0NRcLNpqXnvqJ8WW_osO2YrWxDfZEAnQ8_0TF4sJrOTEdbRN_Ox7PD99R7L2frDsB7gx38JnjhWacbqquSnmx5DFFwuGqXMC5b0mGPVQ4d6pbC8KBda0P_DDIXl-EYy5Uek_np6OPJWdhzMoD2UtaGiWYlwtnawsESq0EXCdcyc8KUNteihFnseMx0bnni4shZDvmjhCjS5FxHseZPyF61rOxTQhPJbWSZjrSzwsVaC5lYExdaIPdExAJyeKMnZXrAcuTNWChIXFCn6qdOA_J6K_u1g-n4q9QxqnsrgdDa_gIYnOoNTv3L4ALyCozllzbOhmOF18DqBIQ7-ToOyDtvS9Byca3WzIv589UCujKqsAoC30xBtJWxPCAHNyan-jWkUQwLCFPIj3lAXm5vw-zHLR1d2eUKZCSXIocglj_7H-_2nNxlWLODwKHygOy19cq-ILfNur1u6gHZPx5Nph8GfqoNsEp2hsdvIzhOky9wf3p-Mf38A4jJNAg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELVKi1ReuCMWCpibRCWiJrbjJEgILaVVV91WldqtypNxHJtWqjYlyRbtT_Ef_BUzTnbLTbz1gbcomYyj5Hgu9mQOIS-MlAmT3AWhsJCgZI4HqUldYISWzuYiKYrUk00ku7vp0VG2t0C-zf6FwbLKmU30hrooDa6RrzEsp0ogW-Dvzr4EyBqFu6szCo0WFtt2-hVStvrt4AN835eMbW4crG8FHasAjJ-wJog1K7Ahq80dKNQQMMdcy9QJU9hMiwJw6HjEdGZ57KLQWQ4ZkIQ4yGRch5HmoPcKWRII9kWytDfY2fs4X9UJOUA6FG0fVM6zcK2qIx4JliArwE-ezxMEgD87xvLLpVPcIP_DG3gXt3njf3s5N8n1Lpim_Rb9t8iCHd8myx2v-_H0Dvm-ARas_TmTlo76TSpbjSnWK2CxEUVm0rqhA196X1ZT2m9aCjBbU19NQUf9QzoEV1_RfdPyO9FXo-H-6hvq3byzVdvpfIoD_Ca44-m5a6rHBV2fEz6iYH_SlPBctqD9rqk7DKgbCo8Heq0N_D1I8VwEQ6zruktGl_Im75HFcTm29wmNJbehZTrUzgoXaS1kbE2Ua4EkHSHrkdUZsJTpOrsjwcipggwPQaguQNgjz-eyZ20_k79KvUd8ziWwB7k_UVafVWfSlIbo1NhYyzyPhLEmw-STs7xIcmnyOO2RZ4DuX3Rs9YcKz8E0ERAXZudRj7z24AfN-Yk6Z17MH09OYSijcqsgQ0gVhKUpy3pkZTYBVGdsa3WB_h55Or8MZhL3vvTYlhOQkVyKDKJ9_uDfKp6Q5a2DnaEaDna3H5JrDEuYsI-qXCGLTTWxj8hVc96c1NXjbu5T8umyZ9QPLc-YVQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELVKi4AX7oiFAuYmUYmoie04CRJCSy_qqktVqSyqeDGOY9NK1aYk2UX7a_wBf8WMk91yE2994G3lnYytZGY8E5_MIeSZkTJhkrsgFBYKlMzxIDWpC4zQ0tlcJEWRerKJZG8vPTzM9pfIt_m3MAirnMdEH6iL0uA78nWGcKoEqgW-7jpYxP7m9pvTLwEySOFJ65xOozWRXTv7CuVb_XqwCc_6OWPbW-83doKOYQDWkrAmiDUrsDmrzR0o15A8x1zL1AlT2EyLAmzS8YjpzPLYRaGzHKohCTmRybgOI81B7wWyksAYwgn344-L9zshB-MORdsRlfMsXK_qiEeCJcgP8NMe6KkCYGc7QiDmygkelf-xL_jNbvva_3ybrpOrXYpN-61P3CBLdnyTXO7Y3o9mt8j3LYhr7SebtHTUH13ZakwRxYAQJIp8pXVDBx6QX1Yz2m9aYjBbU4-xoKP-BzqEBKCiB6ZlfaIvRsODtVfUb_7OVm3_8xlO8JvgO0_aXVM9LujGggYSBfuTpoR12YL2u1bvMKFuKCwP9Fob-GuQ-LkIhoj2uk1G53In75DlcTm2dwmNJbehZTrUzgoXaS1kbE2Ua4HUHSHrkbW5kSnT9XtH2pETBXUfGqQ6M8geebqQPW27nPxV6i3a6kICO5P7gbL6rLpApzTkrMbGWuZ5JIw1GZaknOVFkkuTx2mPPAFL_0XHTn-ocAxcRkC2mE2jHnnpHQE058dqyryY_z05gamMyq2CuiFVkKymLOuR1bkzqC4E1-rME3rk8eJvCJ54IqbHtpyAjORSZFAD8Hv_VvGIXAI3UsPB3u59coUhrgmbq8pVstxUE_uAXDTT5riuHvogQMmn83anH1wxn7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Northern+Hardwood+Forest+Inventory+Attributes+Using+UAV+Laser+Scanning+%28ULS%29%3A+Transferability+of+Laser+Scanning+Methods+and+Comparison+of+Automated+Approaches+at+the+Tree-and+Stand-Level&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vandendaele%2C+Bastien&rft.au=Fournier%2C+Richard+A.&rft.au=Vepakomma%2C+Udayalakshmi&rft.au=Pelletier%2C+Gaetan&rft.date=2021-07-16&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=2796&rft.spage=32&rft_id=info:doi/10.3390%2Frs13142796&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_293829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |