SLiM-Enrich: computational assessment of protein–protein interaction data as a source of domain-motif interactions

Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challeng...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PeerJ (San Francisco, CA) Ročník 6; s. e5858
Hlavní autori: Idrees, Sobia, Pérez-Bercoff, Åsa, Edwards, Richard J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States PeerJ. Ltd 31.10.2018
PeerJ Inc
Predmet:
ISSN:2167-8359, 2167-8359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich . A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/ .
AbstractList Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/.Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/.
Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at:
Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich . A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/ .
Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/.
ArticleNumber e5858
Audience Academic
Author Edwards, Richard J.
Pérez-Bercoff, Åsa
Idrees, Sobia
Author_xml – sequence: 1
  givenname: Sobia
  surname: Idrees
  fullname: Idrees, Sobia
  organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
– sequence: 2
  givenname: Åsa
  surname: Pérez-Bercoff
  fullname: Pérez-Bercoff, Åsa
  organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
– sequence: 3
  givenname: Richard J.
  surname: Edwards
  fullname: Edwards, Richard J.
  organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30402352$$D View this record in MEDLINE/PubMed
BookMark eNptktGK1DAUhousuOu6Nz6AFAQRoWOaNE3qhbAsqy6MeKFeh2NyMpOlbcYkFbzzHXxDn8R0ZlZmZNuLhPT7vybt_7g4Gf2IRfG0JgshavF6gxhuF1xy-aA4o3UrKsl4d3IwPy0uYrwl-ZK0JZI9Kk4ZaQhlnJ4V6fPSfayux-D0-k2p_bCZEiTnR-hLiBFjHHBMpbflJviEbvzz6_d-VroxYQA906WBBDlQQhn9FDTOCeMHcGM1-OTsIRyfFA8t9BEv9uN58fXd9ZerD9Xy0_ubq8tlpRtBU9UI0hHsJLQmD5wRMNaAYZZ1QnRtLShpJW2A2AYsM52oEVGKDqixRBDLzoubndd4uFWb4AYIP5UHp7YLPqwUhOR0j4rJBo2Qmtc0vzxrrDa65QQ56axFyK63O9dm-jag0fmrBOiPpMdPRrdWK_9DtbTmDWuz4OVeEPz3CWNSg4sa-x5G9FNUtGZEkrqhM_p8h64gb82N1mejnnF1yVvCRU1pk6nFPVS-DQ5O55ZYl9ePAi8OAmuEPq2j76ftPzkGnx2e9d8h72qTAbIDdPAxBrRKu11t8hZcr2qi5nKqbTnVXM4cefVf5M56D_wXzuXnkg
CitedBy_id crossref_primary_10_1007_s00203_023_03764_w
crossref_primary_10_12688_f1000research_160063_1
crossref_primary_10_1002_ccs3_12014
crossref_primary_10_1002_pmic_202100389
crossref_primary_10_12688_f1000research_160063_2
crossref_primary_10_1007_s00203_024_03832_9
crossref_primary_10_1002_1873_3468_14841
crossref_primary_10_1007_s00203_024_03892_x
crossref_primary_10_3390_microorganisms12030630
crossref_primary_10_3389_fmicb_2021_618856
crossref_primary_10_3390_ijms26083674
Cites_doi 10.1016/j.cell.2014.10.050
10.1371/journal.pbio.0030405
10.1093/database/bav014
10.1093/bioinformatics/btp424
10.1007/978-1-4939-2285-7_6
10.1093/bioinformatics/bti541
10.1093/bioinformatics/btt137
10.1016/j.copbio.2006.08.002
10.1093/nar/gks444
10.1093/nar/gkr1189
10.1039/c1mb05231d
10.1073/pnas.1518469113
10.1016/j.molcel.2014.05.032
10.1002/cpbi.26
10.1371/journal.pone.0000967
10.1093/nar/gkv1291
10.1093/nar/gkt887
10.1021/cr400585q
10.1093/nar/gkx1085
10.1039/c1mb05212h
10.1016/j.febslet.2005.04.005
10.1093/nar/gkv1344
10.1146/annurev.biochem.75.103004.142710
10.1371/journal.pone.0014444
10.1093/nar/gkx238
10.1093/nar/gkj063
10.1371/journal.pone.0025376
10.1093/bioinformatics/btv155
10.1093/nar/gkx1077
10.1093/nar/gkw1099
ContentType Journal Article
Copyright COPYRIGHT 2018 PeerJ. Ltd.
2018 Idrees et al. 2018 Idrees et al.
Copyright_xml – notice: COPYRIGHT 2018 PeerJ. Ltd.
– notice: 2018 Idrees et al. 2018 Idrees et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.7717/peerj.5858
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_384ed78c512c47ee8fcdc650e509ffea
PMC6215436
A560571224
30402352
10_7717_peerj_5858
Genre Journal Article
GrantInformation_xml – fundername: University International Postgraduate Award to Sobia Idrees
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
W2D
YAO
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-47090e98a6d0e9530adfdad3f39779617206824a0f4af3d971eee879a2df070f3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448856900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2167-8359
IngestDate Mon Nov 10 04:28:13 EST 2025
Tue Nov 04 01:46:50 EST 2025
Thu Oct 02 11:44:01 EDT 2025
Tue Nov 11 10:04:55 EST 2025
Tue Nov 04 17:32:04 EST 2025
Thu May 22 21:20:06 EDT 2025
Thu Apr 03 07:10:07 EDT 2025
Tue Nov 18 21:29:57 EST 2025
Sat Nov 29 01:37:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Short linear motifs
Protein–protein interactions
Protein disorder
Domain-motif interactions
Yeast two-hybrid
Shiny app
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-47090e98a6d0e9530adfdad3f39779617206824a0f4af3d971eee879a2df070f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/384ed78c512c47ee8fcdc650e509ffea
PMID 30402352
PQID 2130801426
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_384ed78c512c47ee8fcdc650e509ffea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6215436
proquest_miscellaneous_2130801426
gale_infotracmisc_A560571224
gale_infotracacademiconefile_A560571224
gale_healthsolutions_A560571224
pubmed_primary_30402352
crossref_citationtrail_10_7717_peerj_5858
crossref_primary_10_7717_peerj_5858
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2018
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Bhattacharyya (10.7717/peerj.5858/ref-1) 2006; 75
Rolland (10.7717/peerj.5858/ref-25) 2014; 159
Finn (10.7717/peerj.5858/ref-10) 2016; 44
Luck (10.7717/peerj.5858/ref-17) 2011; 6
UniProt Consortium (10.7717/peerj.5858/ref-28) 2017; 45
Van Roey (10.7717/peerj.5858/ref-29) 2014; 114
Mi (10.7717/peerj.5858/ref-19) 2012; 40
Kelil (10.7717/peerj.5858/ref-14) 2016; 113
Edwards (10.7717/peerj.5858/ref-8) 2015; 1268
Neduva (10.7717/peerj.5858/ref-23) 2006; 17
Sarkar (10.7717/peerj.5858/ref-26) 2015; 2015
Tompa (10.7717/peerj.5858/ref-27) 2014; 55
Davey (10.7717/peerj.5858/ref-2) 2012; 8
Edwards (10.7717/peerj.5858/ref-6) 2012; 8
Neduva (10.7717/peerj.5858/ref-22) 2005; 579
Neduva (10.7717/peerj.5858/ref-21) 2005; 3
Dinkel (10.7717/peerj.5858/ref-3) 2016; 44
Gouw (10.7717/peerj.5858/ref-11) 2018; 46
Durmus Tekir (10.7717/peerj.5858/ref-5) 2013; 29
Dosztanyi (10.7717/peerj.5858/ref-4) 2005; 21
Edwards (10.7717/peerj.5858/ref-7) 2007; 2
Hulo (10.7717/peerj.5858/ref-13) 2006; 34
Lyon (10.7717/peerj.5858/ref-18) 2018; 46
Weatheritt (10.7717/peerj.5858/ref-30) 2012; 40
Lieber (10.7717/peerj.5858/ref-16) 2010; 5
Encinar (10.7717/peerj.5858/ref-9) 2009; 25
Mosca (10.7717/peerj.5858/ref-20) 2014; 42
Gouw (10.7717/peerj.5858/ref-12) 2017; 58
Krystkowiak (10.7717/peerj.5858/ref-15) 2017; 45
Palopoli (10.7717/peerj.5858/ref-24) 2015; 31
22638578 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W364-9
16279839 - PLoS Biol. 2005 Dec;3(12):e405
21206902 - PLoS One. 2010 Dec 29;5(12):e14444
25792551 - Bioinformatics. 2015 Jul 15;31(14):2284-93
25038412 - Mol Cell. 2014 Jul 17;55(2):161-9
25555723 - Methods Mol Biol. 2015;1268:89-141
29136216 - Nucleic Acids Res. 2018 Jan 4;46(D1):D428-D434
22069443 - PLoS One. 2011;6(11):e25376
15943979 - FEBS Lett. 2005 Jun 13;579(15):3342-5
19602529 - Bioinformatics. 2009 Sep 15;25(18):2418-24
27899622 - Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169
26615199 - Nucleic Acids Res. 2016 Jan 4;44(D1):D294-300
23515528 - Bioinformatics. 2013 May 15;29(10):1357-8
16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30
24081580 - Nucleic Acids Res. 2014 Jan;42(Database issue):D374-9
25776024 - Database (Oxford). 2015 Mar 16;2015:null
28387819 - Nucleic Acids Res. 2017 Jul 3;45(W1):W464-W469
26673716 - Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85
29140456 - Nucleic Acids Res. 2018 Jan 4;46(D1):D465-D470
24926813 - Chem Rev. 2014 Jul 9;114(13):6733-78
21909575 - Mol Biosyst. 2012 Jan;8(1):268-81
16962311 - Curr Opin Biotechnol. 2006 Oct;17(5):465-71
15955779 - Bioinformatics. 2005 Aug 15;21(16):3433-4
17912346 - PLoS One. 2007 Oct 03;2(10):e967
27317745 - Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3862-71
16756506 - Annu Rev Biochem. 2006;75:655-80
28654726 - Curr Protoc Bioinformatics. 2017 Jun 27;58:8.22.1-8.22.35
25416956 - Cell. 2014 Nov 20;159(5):1212-1226
21879107 - Mol Biosyst. 2012 Jan;8(1):282-95
22146221 - Nucleic Acids Res. 2012 Jan;40(Database issue):D252-60
References_xml – volume: 159
  start-page: 1212
  year: 2014
  ident: 10.7717/peerj.5858/ref-25
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
– volume: 3
  start-page: e405
  year: 2005
  ident: 10.7717/peerj.5858/ref-21
  article-title: Systematic discovery of new recognition peptides mediating protein interaction networks
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.0030405
– volume: 2015
  start-page: bav014
  year: 2015
  ident: 10.7717/peerj.5858/ref-26
  article-title: LMPID: a manually curated database of linear motifs mediating protein–protein interactions
  publication-title: Database
  doi: 10.1093/database/bav014
– volume: 25
  start-page: 2418
  year: 2009
  ident: 10.7717/peerj.5858/ref-9
  article-title: ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp424
– volume: 1268
  start-page: 89
  year: 2015
  ident: 10.7717/peerj.5858/ref-8
  article-title: Computational prediction of short linear motifs from protein sequences
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-4939-2285-7_6
– volume: 21
  start-page: 3433
  year: 2005
  ident: 10.7717/peerj.5858/ref-4
  article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti541
– volume: 29
  start-page: 1357
  year: 2013
  ident: 10.7717/peerj.5858/ref-5
  article-title: PHISTO: pathogen-host interaction search tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt137
– volume: 17
  start-page: 465
  year: 2006
  ident: 10.7717/peerj.5858/ref-23
  article-title: Peptides mediating interaction networks: new leads at last
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2006.08.002
– volume: 40
  start-page: W364
  year: 2012
  ident: 10.7717/peerj.5858/ref-30
  article-title: iELM—a web server to explore short linear motif-mediated interactions
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks444
– volume: 40
  start-page: D252
  year: 2012
  ident: 10.7717/peerj.5858/ref-19
  article-title: Minimotif Miner 3.0: database expansion and significantly improved reduction of false-positive predictions from consensus sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkr1189
– volume: 8
  start-page: 268
  year: 2012
  ident: 10.7717/peerj.5858/ref-2
  article-title: Attributes of short linear motifs
  publication-title: Molecular BioSystems
  doi: 10.1039/c1mb05231d
– volume: 113
  start-page: E3862–E3871
  year: 2016
  ident: 10.7717/peerj.5858/ref-14
  article-title: Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1518469113
– volume: 55
  start-page: 161
  year: 2014
  ident: 10.7717/peerj.5858/ref-27
  article-title: A million peptide motifs for the molecular biologist
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.05.032
– volume: 58
  start-page: 8 22 21
  year: 2017
  ident: 10.7717/peerj.5858/ref-12
  article-title: Exploring short linear motifs using the ELM database and tools
  publication-title: Current Protocols in Bioinformatics
  doi: 10.1002/cpbi.26
– volume: 2
  start-page: e967
  year: 2007
  ident: 10.7717/peerj.5858/ref-7
  article-title: SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0000967
– volume: 44
  start-page: D294
  year: 2016
  ident: 10.7717/peerj.5858/ref-3
  article-title: ELM 2016-data update and new functionality of the eukaryotic linear motif resource
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1291
– volume: 42
  start-page: D374
  year: 2014
  ident: 10.7717/peerj.5858/ref-20
  article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt887
– volume: 114
  start-page: 6733
  year: 2014
  ident: 10.7717/peerj.5858/ref-29
  article-title: Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation
  publication-title: Chemical Reviews
  doi: 10.1021/cr400585q
– volume: 46
  start-page: D465
  year: 2018
  ident: 10.7717/peerj.5858/ref-18
  article-title: Minimotif Miner 4: a million peptide minimotifs and counting
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx1085
– volume: 8
  start-page: 282
  year: 2012
  ident: 10.7717/peerj.5858/ref-6
  article-title: Interactome-wide prediction of short, disordered protein interaction motifs in humans
  publication-title: Molecular BioSystems
  doi: 10.1039/c1mb05212h
– volume: 579
  start-page: 3342
  year: 2005
  ident: 10.7717/peerj.5858/ref-22
  article-title: Linear motifs: evolutionary interaction switches
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2005.04.005
– volume: 44
  start-page: D279
  year: 2016
  ident: 10.7717/peerj.5858/ref-10
  article-title: The Pfam protein families database: towards a more sustainable future
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1344
– volume: 75
  start-page: 655
  year: 2006
  ident: 10.7717/peerj.5858/ref-1
  article-title: Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.75.103004.142710
– volume: 5
  start-page: e14444
  year: 2010
  ident: 10.7717/peerj.5858/ref-16
  article-title: Large-scale discovery and characterization of protein regulatory motifs in eukaryotes
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0014444
– volume: 45
  start-page: W464
  issue: W1
  year: 2017
  ident: 10.7717/peerj.5858/ref-15
  article-title: SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx238
– volume: 34
  start-page: D227
  year: 2006
  ident: 10.7717/peerj.5858/ref-13
  article-title: The PROSITE database
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkj063
– volume: 6
  start-page: e25376
  year: 2011
  ident: 10.7717/peerj.5858/ref-17
  article-title: Putting into practice domain-linear motif interaction predictions for exploration of protein networks
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0025376
– volume: 31
  start-page: 2284
  year: 2015
  ident: 10.7717/peerj.5858/ref-24
  article-title: QSLiMFinder: improved short linear motif prediction using specific query protein data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv155
– volume: 46
  start-page: D428
  year: 2018
  ident: 10.7717/peerj.5858/ref-11
  article-title: The eukaryotic linear motif resource—2018 update
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx1077
– volume: 45
  start-page: D158
  year: 2017
  ident: 10.7717/peerj.5858/ref-28
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1099
– reference: 22069443 - PLoS One. 2011;6(11):e25376
– reference: 28654726 - Curr Protoc Bioinformatics. 2017 Jun 27;58:8.22.1-8.22.35
– reference: 24081580 - Nucleic Acids Res. 2014 Jan;42(Database issue):D374-9
– reference: 23515528 - Bioinformatics. 2013 May 15;29(10):1357-8
– reference: 16756506 - Annu Rev Biochem. 2006;75:655-80
– reference: 25555723 - Methods Mol Biol. 2015;1268:89-141
– reference: 25792551 - Bioinformatics. 2015 Jul 15;31(14):2284-93
– reference: 22146221 - Nucleic Acids Res. 2012 Jan;40(Database issue):D252-60
– reference: 16962311 - Curr Opin Biotechnol. 2006 Oct;17(5):465-71
– reference: 29136216 - Nucleic Acids Res. 2018 Jan 4;46(D1):D428-D434
– reference: 21879107 - Mol Biosyst. 2012 Jan;8(1):282-95
– reference: 22638578 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W364-9
– reference: 25776024 - Database (Oxford). 2015 Mar 16;2015:null
– reference: 15955779 - Bioinformatics. 2005 Aug 15;21(16):3433-4
– reference: 15943979 - FEBS Lett. 2005 Jun 13;579(15):3342-5
– reference: 27899622 - Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169
– reference: 25038412 - Mol Cell. 2014 Jul 17;55(2):161-9
– reference: 26615199 - Nucleic Acids Res. 2016 Jan 4;44(D1):D294-300
– reference: 24926813 - Chem Rev. 2014 Jul 9;114(13):6733-78
– reference: 19602529 - Bioinformatics. 2009 Sep 15;25(18):2418-24
– reference: 21206902 - PLoS One. 2010 Dec 29;5(12):e14444
– reference: 29140456 - Nucleic Acids Res. 2018 Jan 4;46(D1):D465-D470
– reference: 25416956 - Cell. 2014 Nov 20;159(5):1212-1226
– reference: 28387819 - Nucleic Acids Res. 2017 Jul 3;45(W1):W464-W469
– reference: 26673716 - Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85
– reference: 16279839 - PLoS Biol. 2005 Dec;3(12):e405
– reference: 16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30
– reference: 27317745 - Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3862-71
– reference: 17912346 - PLoS One. 2007 Oct 03;2(10):e967
– reference: 21909575 - Mol Biosyst. 2012 Jan;8(1):268-81
SSID ssj0000826083
Score 2.200799
Snippet Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a...
Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e5858
SubjectTerms Bioinformatics
Computational Biology
Domain-motif interactions
Eukaryotes
Molecular Biology
Protein disorder
Protein-protein interactions
Shiny app
Short linear motifs
Yeast two-hybrid
Title SLiM-Enrich: computational assessment of protein–protein interaction data as a source of domain-motif interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/30402352
https://www.proquest.com/docview/2130801426
https://pubmed.ncbi.nlm.nih.gov/PMC6215436
https://doaj.org/article/384ed78c512c47ee8fcdc650e509ffea
Volume 6
WOSCitedRecordID wos000448856900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Biological Science Database (via ProQuest)
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M7P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: PIMPY
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M2P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRYgL4k2gLEYgIQ5ps4kTO9xatBVI3VXEQ1pOluOHGtRmq90tZ_4D_5BfwoydRolA4sLFG60nUjwz9nxOxt8Q8io1WpjCJnGumY4ZZogJlds4q-tpUdTTmoeqJSd8sRDLZVkNSn1hTligBw6KO8gEs4YLDYFJM26tcNpogBUWIp1z1kMjQD2DzZRfgwE1A7gIfKQctiwHF9auv-0DOBajCOSJ-v9cjgfxaJwrOQg-x3fI7Q410sPwtHfJNdveIzfn3Xfx-2T76aSZx7MWFrXTt1T7Sg3dWz6qeu5NunLU8zI07a8fP7srioQR63C8gWK-KNxAFQ0v9fEOszpXTRtj0p4bCm8ekC_Hs8_v3sddPYUYNJduY8aTMrGlUIWBnzxLlHFGmcwhCCwRyiSFSJlKHFMuMyWfWtA3L1VqHKwMLntIdtpVax8TCkYUzuXIbVOzkqc1c4koNVyo3JRGR-TNlY6l7sjGsebFmYRNB9pDentItEdEXvayF4Fi469SR2iqXgJpsf0f4Cyycxb5L2eJyHM0tAxnTPvJLQ8B9-UcPzJG5LWXwOkND6xVd0oBho1EWSPJvZEkTEs96n5x5UwSuzCXrbWry41MATYgZ09aRORRcK5-VBmsqSlg4ojwkduNhj3uaZtTzwpeAHhjWfHkf-jpKbkFwFCEGL1HdrbrS_uM3NDft81mPSHX-VJMyO7RbFF9nPiJB-08rbDl0O5WH-bV19_USjsV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLiM-Enrich%3A+computational+assessment+of+protein-protein+interaction+data+as+a+source+of+domain-motif+interactions&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Idrees%2C+Sobia&rft.au=P%C3%A9rez-Bercoff%2C+%C3%85sa&rft.au=Edwards%2C+Richard+J&rft.date=2018-10-31&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=6&rft.spage=e5858&rft_id=info:doi/10.7717%2Fpeerj.5858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon