SLiM-Enrich: computational assessment of protein–protein interaction data as a source of domain-motif interactions
Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challeng...
Uložené v:
| Vydané v: | PeerJ (San Francisco, CA) Ročník 6; s. e5858 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
PeerJ. Ltd
31.10.2018
PeerJ Inc |
| Predmet: | |
| ISSN: | 2167-8359, 2167-8359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at:
https://github.com/slimsuite/SLiMEnrich
. A web server is available at:
http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/
. |
|---|---|
| AbstractList | Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/.Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/. Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich . A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/ . Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naïve DMI prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/. |
| ArticleNumber | e5858 |
| Audience | Academic |
| Author | Edwards, Richard J. Pérez-Bercoff, Åsa Idrees, Sobia |
| Author_xml | – sequence: 1 givenname: Sobia surname: Idrees fullname: Idrees, Sobia organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia – sequence: 2 givenname: Åsa surname: Pérez-Bercoff fullname: Pérez-Bercoff, Åsa organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia – sequence: 3 givenname: Richard J. surname: Edwards fullname: Edwards, Richard J. organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30402352$$D View this record in MEDLINE/PubMed |
| BookMark | eNptktGK1DAUhousuOu6Nz6AFAQRoWOaNE3qhbAsqy6MeKFeh2NyMpOlbcYkFbzzHXxDn8R0ZlZmZNuLhPT7vybt_7g4Gf2IRfG0JgshavF6gxhuF1xy-aA4o3UrKsl4d3IwPy0uYrwl-ZK0JZI9Kk4ZaQhlnJ4V6fPSfayux-D0-k2p_bCZEiTnR-hLiBFjHHBMpbflJviEbvzz6_d-VroxYQA906WBBDlQQhn9FDTOCeMHcGM1-OTsIRyfFA8t9BEv9uN58fXd9ZerD9Xy0_ubq8tlpRtBU9UI0hHsJLQmD5wRMNaAYZZ1QnRtLShpJW2A2AYsM52oEVGKDqixRBDLzoubndd4uFWb4AYIP5UHp7YLPqwUhOR0j4rJBo2Qmtc0vzxrrDa65QQ56axFyK63O9dm-jag0fmrBOiPpMdPRrdWK_9DtbTmDWuz4OVeEPz3CWNSg4sa-x5G9FNUtGZEkrqhM_p8h64gb82N1mejnnF1yVvCRU1pk6nFPVS-DQ5O55ZYl9ePAi8OAmuEPq2j76ftPzkGnx2e9d8h72qTAbIDdPAxBrRKu11t8hZcr2qi5nKqbTnVXM4cefVf5M56D_wXzuXnkg |
| CitedBy_id | crossref_primary_10_1007_s00203_023_03764_w crossref_primary_10_12688_f1000research_160063_1 crossref_primary_10_1002_ccs3_12014 crossref_primary_10_1002_pmic_202100389 crossref_primary_10_12688_f1000research_160063_2 crossref_primary_10_1007_s00203_024_03832_9 crossref_primary_10_1002_1873_3468_14841 crossref_primary_10_1007_s00203_024_03892_x crossref_primary_10_3390_microorganisms12030630 crossref_primary_10_3389_fmicb_2021_618856 crossref_primary_10_3390_ijms26083674 |
| Cites_doi | 10.1016/j.cell.2014.10.050 10.1371/journal.pbio.0030405 10.1093/database/bav014 10.1093/bioinformatics/btp424 10.1007/978-1-4939-2285-7_6 10.1093/bioinformatics/bti541 10.1093/bioinformatics/btt137 10.1016/j.copbio.2006.08.002 10.1093/nar/gks444 10.1093/nar/gkr1189 10.1039/c1mb05231d 10.1073/pnas.1518469113 10.1016/j.molcel.2014.05.032 10.1002/cpbi.26 10.1371/journal.pone.0000967 10.1093/nar/gkv1291 10.1093/nar/gkt887 10.1021/cr400585q 10.1093/nar/gkx1085 10.1039/c1mb05212h 10.1016/j.febslet.2005.04.005 10.1093/nar/gkv1344 10.1146/annurev.biochem.75.103004.142710 10.1371/journal.pone.0014444 10.1093/nar/gkx238 10.1093/nar/gkj063 10.1371/journal.pone.0025376 10.1093/bioinformatics/btv155 10.1093/nar/gkx1077 10.1093/nar/gkw1099 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 PeerJ. Ltd. 2018 Idrees et al. 2018 Idrees et al. |
| Copyright_xml | – notice: COPYRIGHT 2018 PeerJ. Ltd. – notice: 2018 Idrees et al. 2018 Idrees et al. |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.7717/peerj.5858 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2167-8359 |
| ExternalDocumentID | oai_doaj_org_article_384ed78c512c47ee8fcdc650e509ffea PMC6215436 A560571224 30402352 10_7717_peerj_5858 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: University International Postgraduate Award to Sobia Idrees |
| GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM W2D YAO NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c472t-47090e98a6d0e9530adfdad3f39779617206824a0f4af3d971eee879a2df070f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448856900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2167-8359 |
| IngestDate | Mon Nov 10 04:28:13 EST 2025 Tue Nov 04 01:46:50 EST 2025 Thu Oct 02 11:44:01 EDT 2025 Tue Nov 11 10:04:55 EST 2025 Tue Nov 04 17:32:04 EST 2025 Thu May 22 21:20:06 EDT 2025 Thu Apr 03 07:10:07 EDT 2025 Tue Nov 18 21:29:57 EST 2025 Sat Nov 29 01:37:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Short linear motifs Protein–protein interactions Protein disorder Domain-motif interactions Yeast two-hybrid Shiny app |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-47090e98a6d0e9530adfdad3f39779617206824a0f4af3d971eee879a2df070f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/384ed78c512c47ee8fcdc650e509ffea |
| PMID | 30402352 |
| PQID | 2130801426 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_384ed78c512c47ee8fcdc650e509ffea pubmedcentral_primary_oai_pubmedcentral_nih_gov_6215436 proquest_miscellaneous_2130801426 gale_infotracmisc_A560571224 gale_infotracacademiconefile_A560571224 gale_healthsolutions_A560571224 pubmed_primary_30402352 crossref_citationtrail_10_7717_peerj_5858 crossref_primary_10_7717_peerj_5858 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-31 |
| PublicationDateYYYYMMDD | 2018-10-31 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ (San Francisco, CA) |
| PublicationTitleAlternate | PeerJ |
| PublicationYear | 2018 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Bhattacharyya (10.7717/peerj.5858/ref-1) 2006; 75 Rolland (10.7717/peerj.5858/ref-25) 2014; 159 Finn (10.7717/peerj.5858/ref-10) 2016; 44 Luck (10.7717/peerj.5858/ref-17) 2011; 6 UniProt Consortium (10.7717/peerj.5858/ref-28) 2017; 45 Van Roey (10.7717/peerj.5858/ref-29) 2014; 114 Mi (10.7717/peerj.5858/ref-19) 2012; 40 Kelil (10.7717/peerj.5858/ref-14) 2016; 113 Edwards (10.7717/peerj.5858/ref-8) 2015; 1268 Neduva (10.7717/peerj.5858/ref-23) 2006; 17 Sarkar (10.7717/peerj.5858/ref-26) 2015; 2015 Tompa (10.7717/peerj.5858/ref-27) 2014; 55 Davey (10.7717/peerj.5858/ref-2) 2012; 8 Edwards (10.7717/peerj.5858/ref-6) 2012; 8 Neduva (10.7717/peerj.5858/ref-22) 2005; 579 Neduva (10.7717/peerj.5858/ref-21) 2005; 3 Dinkel (10.7717/peerj.5858/ref-3) 2016; 44 Gouw (10.7717/peerj.5858/ref-11) 2018; 46 Durmus Tekir (10.7717/peerj.5858/ref-5) 2013; 29 Dosztanyi (10.7717/peerj.5858/ref-4) 2005; 21 Edwards (10.7717/peerj.5858/ref-7) 2007; 2 Hulo (10.7717/peerj.5858/ref-13) 2006; 34 Lyon (10.7717/peerj.5858/ref-18) 2018; 46 Weatheritt (10.7717/peerj.5858/ref-30) 2012; 40 Lieber (10.7717/peerj.5858/ref-16) 2010; 5 Encinar (10.7717/peerj.5858/ref-9) 2009; 25 Mosca (10.7717/peerj.5858/ref-20) 2014; 42 Gouw (10.7717/peerj.5858/ref-12) 2017; 58 Krystkowiak (10.7717/peerj.5858/ref-15) 2017; 45 Palopoli (10.7717/peerj.5858/ref-24) 2015; 31 22638578 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W364-9 16279839 - PLoS Biol. 2005 Dec;3(12):e405 21206902 - PLoS One. 2010 Dec 29;5(12):e14444 25792551 - Bioinformatics. 2015 Jul 15;31(14):2284-93 25038412 - Mol Cell. 2014 Jul 17;55(2):161-9 25555723 - Methods Mol Biol. 2015;1268:89-141 29136216 - Nucleic Acids Res. 2018 Jan 4;46(D1):D428-D434 22069443 - PLoS One. 2011;6(11):e25376 15943979 - FEBS Lett. 2005 Jun 13;579(15):3342-5 19602529 - Bioinformatics. 2009 Sep 15;25(18):2418-24 27899622 - Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 26615199 - Nucleic Acids Res. 2016 Jan 4;44(D1):D294-300 23515528 - Bioinformatics. 2013 May 15;29(10):1357-8 16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30 24081580 - Nucleic Acids Res. 2014 Jan;42(Database issue):D374-9 25776024 - Database (Oxford). 2015 Mar 16;2015:null 28387819 - Nucleic Acids Res. 2017 Jul 3;45(W1):W464-W469 26673716 - Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 29140456 - Nucleic Acids Res. 2018 Jan 4;46(D1):D465-D470 24926813 - Chem Rev. 2014 Jul 9;114(13):6733-78 21909575 - Mol Biosyst. 2012 Jan;8(1):268-81 16962311 - Curr Opin Biotechnol. 2006 Oct;17(5):465-71 15955779 - Bioinformatics. 2005 Aug 15;21(16):3433-4 17912346 - PLoS One. 2007 Oct 03;2(10):e967 27317745 - Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3862-71 16756506 - Annu Rev Biochem. 2006;75:655-80 28654726 - Curr Protoc Bioinformatics. 2017 Jun 27;58:8.22.1-8.22.35 25416956 - Cell. 2014 Nov 20;159(5):1212-1226 21879107 - Mol Biosyst. 2012 Jan;8(1):282-95 22146221 - Nucleic Acids Res. 2012 Jan;40(Database issue):D252-60 |
| References_xml | – volume: 159 start-page: 1212 year: 2014 ident: 10.7717/peerj.5858/ref-25 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 – volume: 3 start-page: e405 year: 2005 ident: 10.7717/peerj.5858/ref-21 article-title: Systematic discovery of new recognition peptides mediating protein interaction networks publication-title: PLOS Biology doi: 10.1371/journal.pbio.0030405 – volume: 2015 start-page: bav014 year: 2015 ident: 10.7717/peerj.5858/ref-26 article-title: LMPID: a manually curated database of linear motifs mediating protein–protein interactions publication-title: Database doi: 10.1093/database/bav014 – volume: 25 start-page: 2418 year: 2009 ident: 10.7717/peerj.5858/ref-9 article-title: ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp424 – volume: 1268 start-page: 89 year: 2015 ident: 10.7717/peerj.5858/ref-8 article-title: Computational prediction of short linear motifs from protein sequences publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-2285-7_6 – volume: 21 start-page: 3433 year: 2005 ident: 10.7717/peerj.5858/ref-4 article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti541 – volume: 29 start-page: 1357 year: 2013 ident: 10.7717/peerj.5858/ref-5 article-title: PHISTO: pathogen-host interaction search tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt137 – volume: 17 start-page: 465 year: 2006 ident: 10.7717/peerj.5858/ref-23 article-title: Peptides mediating interaction networks: new leads at last publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2006.08.002 – volume: 40 start-page: W364 year: 2012 ident: 10.7717/peerj.5858/ref-30 article-title: iELM—a web server to explore short linear motif-mediated interactions publication-title: Nucleic Acids Research doi: 10.1093/nar/gks444 – volume: 40 start-page: D252 year: 2012 ident: 10.7717/peerj.5858/ref-19 article-title: Minimotif Miner 3.0: database expansion and significantly improved reduction of false-positive predictions from consensus sequences publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr1189 – volume: 8 start-page: 268 year: 2012 ident: 10.7717/peerj.5858/ref-2 article-title: Attributes of short linear motifs publication-title: Molecular BioSystems doi: 10.1039/c1mb05231d – volume: 113 start-page: E3862–E3871 year: 2016 ident: 10.7717/peerj.5858/ref-14 article-title: Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1518469113 – volume: 55 start-page: 161 year: 2014 ident: 10.7717/peerj.5858/ref-27 article-title: A million peptide motifs for the molecular biologist publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.05.032 – volume: 58 start-page: 8 22 21 year: 2017 ident: 10.7717/peerj.5858/ref-12 article-title: Exploring short linear motifs using the ELM database and tools publication-title: Current Protocols in Bioinformatics doi: 10.1002/cpbi.26 – volume: 2 start-page: e967 year: 2007 ident: 10.7717/peerj.5858/ref-7 article-title: SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins publication-title: PLOS ONE doi: 10.1371/journal.pone.0000967 – volume: 44 start-page: D294 year: 2016 ident: 10.7717/peerj.5858/ref-3 article-title: ELM 2016-data update and new functionality of the eukaryotic linear motif resource publication-title: Nucleic Acids Research doi: 10.1093/nar/gkv1291 – volume: 42 start-page: D374 year: 2014 ident: 10.7717/peerj.5858/ref-20 article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt887 – volume: 114 start-page: 6733 year: 2014 ident: 10.7717/peerj.5858/ref-29 article-title: Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation publication-title: Chemical Reviews doi: 10.1021/cr400585q – volume: 46 start-page: D465 year: 2018 ident: 10.7717/peerj.5858/ref-18 article-title: Minimotif Miner 4: a million peptide minimotifs and counting publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1085 – volume: 8 start-page: 282 year: 2012 ident: 10.7717/peerj.5858/ref-6 article-title: Interactome-wide prediction of short, disordered protein interaction motifs in humans publication-title: Molecular BioSystems doi: 10.1039/c1mb05212h – volume: 579 start-page: 3342 year: 2005 ident: 10.7717/peerj.5858/ref-22 article-title: Linear motifs: evolutionary interaction switches publication-title: FEBS Letters doi: 10.1016/j.febslet.2005.04.005 – volume: 44 start-page: D279 year: 2016 ident: 10.7717/peerj.5858/ref-10 article-title: The Pfam protein families database: towards a more sustainable future publication-title: Nucleic Acids Research doi: 10.1093/nar/gkv1344 – volume: 75 start-page: 655 year: 2006 ident: 10.7717/peerj.5858/ref-1 article-title: Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.75.103004.142710 – volume: 5 start-page: e14444 year: 2010 ident: 10.7717/peerj.5858/ref-16 article-title: Large-scale discovery and characterization of protein regulatory motifs in eukaryotes publication-title: PLOS ONE doi: 10.1371/journal.pone.0014444 – volume: 45 start-page: W464 issue: W1 year: 2017 ident: 10.7717/peerj.5858/ref-15 article-title: SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx238 – volume: 34 start-page: D227 year: 2006 ident: 10.7717/peerj.5858/ref-13 article-title: The PROSITE database publication-title: Nucleic Acids Research doi: 10.1093/nar/gkj063 – volume: 6 start-page: e25376 year: 2011 ident: 10.7717/peerj.5858/ref-17 article-title: Putting into practice domain-linear motif interaction predictions for exploration of protein networks publication-title: PLOS ONE doi: 10.1371/journal.pone.0025376 – volume: 31 start-page: 2284 year: 2015 ident: 10.7717/peerj.5858/ref-24 article-title: QSLiMFinder: improved short linear motif prediction using specific query protein data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv155 – volume: 46 start-page: D428 year: 2018 ident: 10.7717/peerj.5858/ref-11 article-title: The eukaryotic linear motif resource—2018 update publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1077 – volume: 45 start-page: D158 year: 2017 ident: 10.7717/peerj.5858/ref-28 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1099 – reference: 22069443 - PLoS One. 2011;6(11):e25376 – reference: 28654726 - Curr Protoc Bioinformatics. 2017 Jun 27;58:8.22.1-8.22.35 – reference: 24081580 - Nucleic Acids Res. 2014 Jan;42(Database issue):D374-9 – reference: 23515528 - Bioinformatics. 2013 May 15;29(10):1357-8 – reference: 16756506 - Annu Rev Biochem. 2006;75:655-80 – reference: 25555723 - Methods Mol Biol. 2015;1268:89-141 – reference: 25792551 - Bioinformatics. 2015 Jul 15;31(14):2284-93 – reference: 22146221 - Nucleic Acids Res. 2012 Jan;40(Database issue):D252-60 – reference: 16962311 - Curr Opin Biotechnol. 2006 Oct;17(5):465-71 – reference: 29136216 - Nucleic Acids Res. 2018 Jan 4;46(D1):D428-D434 – reference: 21879107 - Mol Biosyst. 2012 Jan;8(1):282-95 – reference: 22638578 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W364-9 – reference: 25776024 - Database (Oxford). 2015 Mar 16;2015:null – reference: 15955779 - Bioinformatics. 2005 Aug 15;21(16):3433-4 – reference: 15943979 - FEBS Lett. 2005 Jun 13;579(15):3342-5 – reference: 27899622 - Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 – reference: 25038412 - Mol Cell. 2014 Jul 17;55(2):161-9 – reference: 26615199 - Nucleic Acids Res. 2016 Jan 4;44(D1):D294-300 – reference: 24926813 - Chem Rev. 2014 Jul 9;114(13):6733-78 – reference: 19602529 - Bioinformatics. 2009 Sep 15;25(18):2418-24 – reference: 21206902 - PLoS One. 2010 Dec 29;5(12):e14444 – reference: 29140456 - Nucleic Acids Res. 2018 Jan 4;46(D1):D465-D470 – reference: 25416956 - Cell. 2014 Nov 20;159(5):1212-1226 – reference: 28387819 - Nucleic Acids Res. 2017 Jul 3;45(W1):W464-W469 – reference: 26673716 - Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 – reference: 16279839 - PLoS Biol. 2005 Dec;3(12):e405 – reference: 16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30 – reference: 27317745 - Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3862-71 – reference: 17912346 - PLoS One. 2007 Oct 03;2(10):e967 – reference: 21909575 - Mol Biosyst. 2012 Jan;8(1):268-81 |
| SSID | ssj0000826083 |
| Score | 2.200799 |
| Snippet | Many important cellular processes involve protein–protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a... Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e5858 |
| SubjectTerms | Bioinformatics Computational Biology Domain-motif interactions Eukaryotes Molecular Biology Protein disorder Protein-protein interactions Shiny app Short linear motifs Yeast two-hybrid |
| Title | SLiM-Enrich: computational assessment of protein–protein interaction data as a source of domain-motif interactions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30402352 https://www.proquest.com/docview/2130801426 https://pubmed.ncbi.nlm.nih.gov/PMC6215436 https://doaj.org/article/384ed78c512c47ee8fcdc650e509ffea |
| Volume | 6 |
| WOSCitedRecordID | wos000448856900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: BENPR dateStart: 20130212 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Biological Science Database (via ProQuest) customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M7P dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: PIMPY dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M2P dateStart: 20130212 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRYgL4k2gLEYgIQ5ps4kTO9xatBVI3VXEQ1pOluOHGtRmq90tZ_4D_5BfwoydRolA4sLFG60nUjwz9nxOxt8Q8io1WpjCJnGumY4ZZogJlds4q-tpUdTTmoeqJSd8sRDLZVkNSn1hTligBw6KO8gEs4YLDYFJM26tcNpogBUWIp1z1kMjQD2DzZRfgwE1A7gIfKQctiwHF9auv-0DOBajCOSJ-v9cjgfxaJwrOQg-x3fI7Q410sPwtHfJNdveIzfn3Xfx-2T76aSZx7MWFrXTt1T7Sg3dWz6qeu5NunLU8zI07a8fP7srioQR63C8gWK-KNxAFQ0v9fEOszpXTRtj0p4bCm8ekC_Hs8_v3sddPYUYNJduY8aTMrGlUIWBnzxLlHFGmcwhCCwRyiSFSJlKHFMuMyWfWtA3L1VqHKwMLntIdtpVax8TCkYUzuXIbVOzkqc1c4koNVyo3JRGR-TNlY6l7sjGsebFmYRNB9pDentItEdEXvayF4Fi469SR2iqXgJpsf0f4Cyycxb5L2eJyHM0tAxnTPvJLQ8B9-UcPzJG5LWXwOkND6xVd0oBho1EWSPJvZEkTEs96n5x5UwSuzCXrbWry41MATYgZ09aRORRcK5-VBmsqSlg4ojwkduNhj3uaZtTzwpeAHhjWfHkf-jpKbkFwFCEGL1HdrbrS_uM3NDft81mPSHX-VJMyO7RbFF9nPiJB-08rbDl0O5WH-bV19_USjsV |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLiM-Enrich%3A+computational+assessment+of+protein-protein+interaction+data+as+a+source+of+domain-motif+interactions&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Idrees%2C+Sobia&rft.au=P%C3%A9rez-Bercoff%2C+%C3%85sa&rft.au=Edwards%2C+Richard+J&rft.date=2018-10-31&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=6&rft.spage=e5858&rft_id=info:doi/10.7717%2Fpeerj.5858&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |