Gas–Liquid Two-Phase Flow Pattern Identification of a Centrifugal Pump Based on SMOTE and Artificial Neural Network

The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas–liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Micromachines (Basel) Ročník 13; číslo 1; s. 2
Hlavní autori: He, Denghui, Li, Ruilin, Zhang, Zhenduo, Sun, Shuaihui, Guo, Pengcheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 21.12.2021
MDPI
Predmet:
ISSN:2072-666X, 2072-666X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas–liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump.
AbstractList The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump.
The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump.The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump.
Author Guo, Pengcheng
Sun, Shuaihui
He, Denghui
Li, Ruilin
Zhang, Zhenduo
AuthorAffiliation 1 Institute of Water Resources and Electric Power, Xi’an University of Technology, Xi’an 710048, China; lrl541@163.com (R.L.); 18234085789@163.com (Z.Z.); shs@xaut.edu.cn (S.S.); guoyicheng@xaut.edu.cn (P.G.)
2 State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China
AuthorAffiliation_xml – name: 1 Institute of Water Resources and Electric Power, Xi’an University of Technology, Xi’an 710048, China; lrl541@163.com (R.L.); 18234085789@163.com (Z.Z.); shs@xaut.edu.cn (S.S.); guoyicheng@xaut.edu.cn (P.G.)
– name: 2 State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China
Author_xml – sequence: 1
  givenname: Denghui
  orcidid: 0000-0003-3748-6369
  surname: He
  fullname: He, Denghui
– sequence: 2
  givenname: Ruilin
  surname: Li
  fullname: Li, Ruilin
– sequence: 3
  givenname: Zhenduo
  surname: Zhang
  fullname: Zhang, Zhenduo
– sequence: 4
  givenname: Shuaihui
  surname: Sun
  fullname: Sun, Shuaihui
– sequence: 5
  givenname: Pengcheng
  orcidid: 0000-0002-1249-2300
  surname: Guo
  fullname: Guo, Pengcheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35056168$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiJbSDQ-ALLFBSAO2x5fxBqlEbYkUaKRmwc7y-JI6zIxTe4aIHe_AG_IkOEkpbcXGxzrnO7_O7Xlx0IfeFsVLBN9VlYDvO48qiCCE-ElxhCHHJWPs68G9_2FxktIqE5BzkZ9nxWFFIWWI1UfFeKHS75-_Zv5m9AYsNqGcX6tkwXkbNmCuhsHGHkyN7QfvvFaDDz0IDigwya7o3bhULZiP3Rp8zGkG5PDV58vFGVC9Aadxl-Uz8sWOcWeGTYjfXhRPnWqTPbm1x8XV-dli8qmcXV5MJ6ezUhOOhxI1ghKtakMaVVFteUOR0bVtuCAGq9wOow0nDXUaOY4NEaTWlWJGWK5RdVxM96omqJVcR9-p-EMG5eXOEeJSqlyhbq2sDCRGYGfrRhGHqKBM1U4QgRFyqLFZ68Neaz02nTV6271qH4g-jPT-Wi7Dd1lzXjNBssCbW4EYbkabBtn5pG3bqt6GMUnMMMY1Q7TO6OtH6CqMsc-D2lKoIogymKlX9yu6K-XvbjPwdg_oGFKK1t0hCMrt7ch_t5Nh-AjWftitO3fj2_-l_AGC8Maf
CitedBy_id crossref_primary_10_1016_j_aei_2025_103181
crossref_primary_10_1016_j_nucengdes_2024_113504
crossref_primary_10_1016_j_flowmeasinst_2025_102829
crossref_primary_10_1007_s10489_024_06206_2
crossref_primary_10_1007_s11042_024_18295_9
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104452
crossref_primary_10_3390_en16176292
crossref_primary_10_1016_j_flowmeasinst_2023_102389
crossref_primary_10_3390_en16114392
Cites_doi 10.1016/j.flowmeasinst.2015.06.001
10.1016/j.ijheatfluidflow.2018.05.011
10.1016/j.ces.2018.03.050
10.1016/j.ces.2013.08.048
10.1115/1.4033029
10.1016/j.applthermaleng.2018.07.077
10.1016/j.ces.2012.08.042
10.1016/j.fuel.2020.118848
10.1016/j.ces.2017.05.017
10.1016/j.ces.2016.02.040
10.1115/1.4047064
10.1109/ISMS.2016.14
10.1016/j.expthermflusci.2017.02.019
10.3390/mi11080728
10.1016/j.petrol.2021.108587
10.1016/S1004-9541(11)60161-4
10.1016/j.energy.2020.118541
10.1016/j.fuel.2019.05.023
10.1016/j.ijmultiphaseflow.2010.05.001
10.1016/j.measen.2020.100033
10.1016/j.ces.2012.07.028
10.1016/j.ijmultiphaseflow.2010.04.007
10.1088/0957-0233/27/8/084002
10.1016/j.petrol.2009.11.012
10.1016/j.expthermflusci.2019.110022
10.1613/jair.953
10.3390/en11010180
10.1016/j.expthermflusci.2015.08.013
10.1007/s00348-002-0415-x
10.1016/j.powtec.2019.12.018
10.1016/j.petrol.2021.108582
10.1016/j.ijmultiphaseflow.2016.08.007
10.1007/978-3-030-14788-4
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi13010002
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_3d04d92fe8ba4f15956a8f949211f1be
PMC8778694
35056168
10_3390_mi13010002
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51839010, 51709227
– fundername: Scientific Research Program for Youth Innovation Team Construction of Shaanxi Provincial Department of Education
  grantid: 21JP087
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c472t-1b954ca8d4ba35ce7b51dc8eb794d2a77965b74b5fc1f72d4948c3a6d9e7c13
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-666X
IngestDate Mon Nov 10 04:35:05 EST 2025
Tue Nov 04 01:55:42 EST 2025
Fri Sep 05 10:46:03 EDT 2025
Fri Jul 25 11:42:17 EDT 2025
Wed Feb 19 02:27:14 EST 2025
Sat Nov 29 07:17:35 EST 2025
Tue Nov 18 22:12:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SMOTE algorithm
centrifugal pump
flow pattern identification
neural network
gas–liquid flow
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-1b954ca8d4ba35ce7b51dc8eb794d2a77965b74b5fc1f72d4948c3a6d9e7c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1249-2300
0000-0003-3748-6369
OpenAccessLink https://www.proquest.com/docview/2621341560?pq-origsite=%requestingapplication%
PMID 35056168
PQID 2621341560
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_3d04d92fe8ba4f15956a8f949211f1be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778694
proquest_miscellaneous_2622286158
proquest_journals_2621341560
pubmed_primary_35056168
crossref_primary_10_3390_mi13010002
crossref_citationtrail_10_3390_mi13010002
PublicationCentury 2000
PublicationDate 20211221
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 20211221
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhou (ref_15) 2018; 184
He (ref_34) 2020; 142
Li (ref_14) 2017; 171
Zhang (ref_9) 2016; 70
Perissinotto (ref_3) 2021; 203
Xu (ref_25) 2020; 362
Abbagoni (ref_27) 2016; 27
Bieberle (ref_11) 2015; 46
Rosa (ref_26) 2010; 36
Xu (ref_24) 2020; 113
ref_33
Neumann (ref_12) 2016; 138
Elperin (ref_17) 2002; 32
Ghosh (ref_28) 2012; 84
Ye (ref_21) 2013; 102
Zhao (ref_10) 2021; 13
Zou (ref_22) 2017; 88
He (ref_6) 2021; 203
Du (ref_18) 2012; 82
Lin (ref_23) 2020; 210
Chawla (ref_29) 2002; 16
Ding (ref_13) 2016; 146
Yin (ref_16) 2019; 146
Zhou (ref_4) 2010; 70
Sharma (ref_31) 2017; 6
Wang (ref_32) 2019; 253
ref_1
Shao (ref_7) 2018; 71
ref_2
Verde (ref_8) 2017; 85
Sun (ref_19) 2011; 19
ref_5
Euh (ref_20) 2010; 36
Wang (ref_30) 2020; 282
References_xml – volume: 46
  start-page: 262
  year: 2015
  ident: ref_11
  article-title: Application of gamma-ray computed tomography for the analysis of gas holdup distributions in centrifugal pumps
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2015.06.001
– volume: 71
  start-page: 460
  year: 2018
  ident: ref_7
  article-title: Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2018.05.011
– volume: 184
  start-page: 72
  year: 2018
  ident: ref_15
  article-title: Investigation and prediction of severe slugging frequency in pipeline-riser systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.03.050
– volume: 6
  start-page: 310
  year: 2017
  ident: ref_31
  article-title: Activation functions in neural networks
  publication-title: Towards Data Sci.
– volume: 102
  start-page: 486
  year: 2013
  ident: ref_21
  article-title: Multiphase flow pattern recognition in pipeline–riser system by statistical feature clustering of pressure fluctuations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.08.048
– volume: 138
  start-page: 091301
  year: 2016
  ident: ref_12
  article-title: An experimental study on the gas entrainment in horizontally and vertically installed centrifugal pumps
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4033029
– volume: 146
  start-page: 30
  year: 2019
  ident: ref_16
  article-title: Flow-pattern recognition and dynamic characteristic analysis based on multi-scale marginal spectrum entropy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.077
– volume: 84
  start-page: 417
  year: 2012
  ident: ref_28
  article-title: Identification of flow regimes using conductivity probe signals and neural networks for counter-current gas–liquid two-phase flow
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.042
– volume: 282
  start-page: 118848
  year: 2020
  ident: ref_30
  article-title: A new method of diesel fuel brands identification: SMOTE oversampling combined with XGBoost ensemble learning
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118848
– volume: 171
  start-page: 379
  year: 2017
  ident: ref_14
  article-title: Effects of a long pipeline on severe slugging in an S-shaped riser
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.05.017
– volume: 146
  start-page: 199
  year: 2016
  ident: ref_13
  article-title: Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.02.040
– volume: 142
  start-page: 081402
  year: 2020
  ident: ref_34
  article-title: Gas–Liquid Two-Phase Performance of Centrifugal Pump Under Bubble Inflow Based on Computational Fluid Dynamics–Population Balance Model Coupling Model
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4047064
– ident: ref_33
  doi: 10.1109/ISMS.2016.14
– volume: 85
  start-page: 37
  year: 2017
  ident: ref_8
  article-title: Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.02.019
– ident: ref_5
  doi: 10.3390/mi11080728
– volume: 203
  start-page: 108587
  year: 2021
  ident: ref_6
  article-title: On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108587
– volume: 19
  start-page: 243
  year: 2011
  ident: ref_19
  article-title: Time-frequency signal processing for gas-liquid two phase flow through a horizontal venturi based on adaptive optimal-kernel theory
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(11)60161-4
– volume: 210
  start-page: 118541
  year: 2020
  ident: ref_23
  article-title: Prediction of two-phase flow patterns in upward inclined pipes via deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118541
– volume: 253
  start-page: 209
  year: 2019
  ident: ref_32
  article-title: Accelerating and stabilizing the vapor-liquid equilibrium (VLE) calculation in compositional simulation of unconventional reservoirs using deep learning based flash calculation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.05.023
– volume: 36
  start-page: 738
  year: 2010
  ident: ref_26
  article-title: Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas–liquid flows
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.05.001
– volume: 13
  start-page: 100033
  year: 2021
  ident: ref_10
  article-title: Visualization of gas-liquid flow pattern in a centrifugal pump impeller and its influence on the pump performance
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2020.100033
– volume: 82
  start-page: 144
  year: 2012
  ident: ref_18
  article-title: Analysis of total energy and time-frequency entropy of gas–liquid two-phase flow pattern
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.07.028
– volume: 36
  start-page: 755
  year: 2010
  ident: ref_20
  article-title: An application of the wavelet analysis technique for the objective discrimination of two-phase flow patterns
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.04.007
– volume: 27
  start-page: 084002
  year: 2016
  ident: ref_27
  article-title: Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/8/084002
– volume: 70
  start-page: 204
  year: 2010
  ident: ref_4
  article-title: Simple model of electric submersible pump in gassy well
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2009.11.012
– volume: 113
  start-page: 110022
  year: 2020
  ident: ref_24
  article-title: Intelligent recognition of severe slugging in a long-distance pipeline-riser system
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2019.110022
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_29
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: ref_2
  doi: 10.3390/en11010180
– volume: 70
  start-page: 125
  year: 2016
  ident: ref_9
  article-title: Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2015.08.013
– volume: 32
  start-page: 674
  year: 2002
  ident: ref_17
  article-title: Flow regime identification in a two-phase flow using wavelet transform
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-002-0415-x
– volume: 362
  start-page: 507
  year: 2020
  ident: ref_25
  article-title: Study of identification of global flow regime in a long pipeline transportation system
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.12.018
– volume: 203
  start-page: 108582
  year: 2021
  ident: ref_3
  article-title: Flow visualization in centrifugal pumps: A review of methods and experimental studies
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108582
– volume: 88
  start-page: 222
  year: 2017
  ident: ref_22
  article-title: Fast recognition of global flow regime in pipeline-riser system by spatial correlation of differential pressures
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.08.007
– ident: ref_1
  doi: 10.1007/978-3-030-14788-4
SSID ssj0000779007
Score 2.2887452
Snippet The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for...
The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2
SubjectTerms Algorithms
Artificial neural networks
Cameras
centrifugal pump
Centrifugal pumps
Efficiency
Experiments
Flow characteristics
Flow control
Flow distribution
Flow mapping
flow pattern identification
Flow velocity
Fluid flow
gas–liquid flow
Identification
Impellers
Liquid phases
Machine learning
neural network
Neural networks
Oversampling
Pattern recognition
Polymethyl methacrylate
Signal processing
SMOTE algorithm
Two phase flow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ1QMcEOU30CIjuHCwGjt2bB9p1YUDlJW6h94i_6qRSgLdDb3yDrwhT8LYSZddVIkLp0iZSeJ4ZjwzzuQbhN5ABCJidIxobS3hNAaiZeWJitqoujRamDI3m5Cnp-r8XM83Wn2lmrARHnicuMPKl9xrFoOyhkdwvqI2cCOuIXOJ1Ia0-pZSbyRTeQ1OMHqlHPFIK8jrD7-0sFqnzWy25YEyUP9t0eXfRZIbXmf2AN2fwkX8bhzmHroTuofo3gaI4CM0vDfLXz9-fmy_Da3Hi-uezC_ANeHZZX-N5xk-s8Pj_7hx2qDDfcQG543dNg7gI_AcpIqP4DKPgXz26fPiBJvO5wePGBM4wXjkQ64bf4zOZieL4w9kaqZAHJdsRajVgjujPLemEi5IK6h3KlgwSM8MzFctrORWREejZD7BxrjK1F4H6Wj1BO10fReeISw8rSCsEMIry0tHVcljGepAI-csOFugtzfT27gJZzy1u7hsIN9Iomj-iKJAr9e8X0d0jVu5jpKU1hwJETufAD1pJj1p_qUnBdq_kXEzmemyYXUGtIOor0Cv1mQwsPTVxHShHzIPYwoCP1Wgp6NKrEdSpfiR1kCRW8qyNdRtStdeZBBvlYD7NH_-P97tBbrLUqkNZYTRfbSzuhrCAdp131ft8upltozfkXcVWQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Gas–Liquid Two-Phase Flow Pattern Identification of a Centrifugal Pump Based on SMOTE and Artificial Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/35056168
https://www.proquest.com/docview/2621341560
https://www.proquest.com/docview/2622286158
https://pubmed.ncbi.nlm.nih.gov/PMC8778694
https://doaj.org/article/3d04d92fe8ba4f15956a8f949211f1be
Volume 13
WOSCitedRecordID wos000748138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: M7S
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoywEO_EMDZWUEFw5RY8dO7BNi0S4g0SVi97CcIv_SSG3S7m7oDfEOvCFPgu1kt11UceGSSJmJMsrMeMaTyTcAvHIZCLVW4ZhzKWOCrIl5nuqYWS5YlghORRKGTeSTCZvPedEX3JZ9W-V6TQwLtW6Ur5Ef4ixgj7kA_ebsPPZTo_zX1X6Exg7Y8ygJSWjdm25qLIkH00vyDpU0dbv7w9PKrdm-pI234lCA678ux_y7VfJK7Bnf_V-p74E7fdYJ33Zmch_cMPUDcPsKFuFD0L4Xy98_f32qzttKw9lFExfHLsLB8UlzAYuAwlnD7rde29f5YGOhgKE-XNnWhRpYOOOAQ3ebho48Pfo8G0FR6_DgDqoCejSQcArt54_AdDyavfsQ9zMZYkVyvIqR5JQowTSRIqXK5JIirZiRzq81Fu6FZ1TmRFKrkM2x9ugzKhWZ5iZXKH0MduumNvsAUo1Sl51QqpkkiUIsITYxmUGWEGyUjMDrtX5K1cOV-6kZJ6Xbtnhdlpe6jMDLDe9ZB9JxLdfQq3nD4YG1w4Vm8a3s_bRMdUI0x9YwKYh1uR7NhLNbwt1G2SJpInCwVnTZe_uyvNRyBF5syM5P_ccXUZumDTwYM5c_sgg86WxqI0nq01CUOUq-ZW1bom5T6uo4YIEzj__HydN_i_UM3MK-FwfhGKMDsLtatOY5uKm-r6rlYgB28jkbgL3haFJ8GYSqxCA4kj_-GDlK8fGo-PoHpMIpeQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFoly4P1YKGAEHDhEjR07sQ8IsbBLq26XFd1DT0R-tpFK0u6DFTf-A3-DX8UvwXay2y6quPXAKVI8SZzk88x4PP4GgJfOA6HWKhxxLmVEkDURzxIdMcsFS2PBqYhDsYlsMGAHB3y4Bn4t9sL4tMqFTgyKWlfKx8i3cBq4x5yBfntyGvmqUX51dVFCo4bFrvk-d1O2yZudD-7_vsK41x29346aqgKRIhmeRkhySpRgmkiRUGUySZFWzEiHTI1FlvGUyoxIahWyGdaeP0UlItXcZAol7q5XwDpJCCUtsN7pDoaflzGd2JP3xVnNgpokPN76Wjgb4UPoeMXuhfIAF_m0f6dmnrN1vZv_11e6BW40PjV8Vw-C22DNlHfA9XNMi3fB7KOY_P7xs1-czgoNR_MqGh45-w17x9UcDgPHaAnrTcu2iWLCykIBQ_S7sDNnSOHQQR923GUauub9vU-jLhSlDg-uiTig5zoJh5Bcfw_sX8Jb3wetsirNQwCpRonzvSjVTJJYIRYTG5vUIEsINkq2wesFGnLVkLH7miDHuZuUeeTkZ8hpgxdL2ZOaguRCqY4H1VLC04aHE9X4MG-0UJ7omGiOrWFSEOs8WZoKNyoJxwhZJE0bbC5glTe6bJKfYaoNni-bnRbyS0uiNNUsyGDMnHfM2uBBjeBlTxLvZKPUtWQr2F7p6mpLWRwFpnPm2Q05efTvbj0D17ZHe_28vzPYfQw2sM86QjjCaBO0puOZeQKuqm_TYjJ-2gxYCL5cLvb_AAhWgSs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOvB8LBYyAA4doY8eO7QNClHahallW2j301MhPGqkk7T5YceM_8Gf4PfwSbCe77aKKWw-cIsWTxEk-z4zH428AeOk9EOqcxokQSiUEOZsIlpmEOyF5nkpBZRqLTbB-n-_vi8Ea-LXYCxPSKhc6MSpqU-sQI-_iPHKPeQPddW1axGCr9_b4JAkVpMJK66KcRgORXft97qdvkzc7W_5fv8K4tz16_zFpKwwkmjA8TZASlGjJDVEyo9oyRZHR3CqPUoMlYyKnihFFnUaOYRO4VHQmcyMs0yjzd70ELjNCRRaTBofL6E4aaPxS1vChZplIu19Lby1CMB2vWMBYKOA87_bvJM0zVq938__9XrfAjdbThu-aoXEbrNnqDrh-hn_xLph9kJPfP37ulSez0sDRvE4Gh96qw95RPYeDyDxawWYrs2tjm7B2UMIYEy_dzJtXOPADAm76ywz0zcNPn0fbUFYmPrih54CBASUeYsr9PTC8gLe-D9arurIPAaQGZd4jo9RwRVKNeEpcanOLHCHYatUBrxfIKHRL0R4qhRwVfqoWUFScoqgDXixljxtiknOlNgPAlhKBTDyeqMdfilY3FZlJiRHYWa4kcd6_pbn0Y5UIjJBDynbAxgJiRavhJsUpvjrg-bLZ66aw4CQrW8-iDMbc-8y8Ax40aF72JAuuN8p9C1vB-UpXV1uq8jDyn_PAeSjIo3936xm46gFf7O30dx-DazikIiGcYLQB1qfjmX0Cruhv03IyfhpHLgQHFwv8Py7iiK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas%E2%80%93Liquid+Two-Phase+Flow+Pattern+Identification+of+a+Centrifugal+Pump+Based+on+SMOTE+and+Artificial+Neural+Network&rft.jtitle=Micromachines+%28Basel%29&rft.au=He%2C+Denghui&rft.au=Li%2C+Ruilin&rft.au=Zhang%2C+Zhenduo&rft.au=Sun%2C+Shuaihui&rft.date=2021-12-21&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.3390%2Fmi13010002&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi13010002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon