Gas–Liquid Two-Phase Flow Pattern Identification of a Centrifugal Pump Based on SMOTE and Artificial Neural Network
The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas–liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow r...
Uložené v:
| Vydané v: | Micromachines (Basel) Ročník 13; číslo 1; s. 2 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
21.12.2021
MDPI |
| Predmet: | |
| ISSN: | 2072-666X, 2072-666X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas–liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump. |
|---|---|
| AbstractList | The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump. The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump.The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for predicting the gas-liquid two-phase performance of the centrifugal pump. The influences of the inlet gas volume fraction, the liquid phase flow rate and the pump rotational speed on the flow characteristics of the centrifugal pump were investigated experimentally. Four typical flow patterns in the impeller of the centrifugal pump, i.e., the bubble flow, the agglomerated bubble flow, the gas pocket flow and the segregated flow, were obtained, and the corresponding flow pattern maps were drawn. After oversampling based on the SMOTE algorithm, a four-layer artificial neural network model with two hidden layers was constructed. By selecting the appropriate network super parameters, including the neuron numbers in the hidden layer, the learning rate and the activation function, the different flow patterns in the centrifugal pump impeller were identified. The identification rate of the model increased from 89.91% to 94.88% when the original data was oversampled by the SMOTE algorithm. It is demonstrated that the SMOTE algorithm is an effective method to improve the accuracy of the artificial neural network model. In addition, the Kappa coefficient, the Macro-F1 and the Micro-F1 were 0.93, 0.95 and 0.95, respectively, indicating that the model established in this paper can well identify the flow pattern in the impeller of a centrifugal pump. |
| Author | Guo, Pengcheng Sun, Shuaihui He, Denghui Li, Ruilin Zhang, Zhenduo |
| AuthorAffiliation | 1 Institute of Water Resources and Electric Power, Xi’an University of Technology, Xi’an 710048, China; lrl541@163.com (R.L.); 18234085789@163.com (Z.Z.); shs@xaut.edu.cn (S.S.); guoyicheng@xaut.edu.cn (P.G.) 2 State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China |
| AuthorAffiliation_xml | – name: 1 Institute of Water Resources and Electric Power, Xi’an University of Technology, Xi’an 710048, China; lrl541@163.com (R.L.); 18234085789@163.com (Z.Z.); shs@xaut.edu.cn (S.S.); guoyicheng@xaut.edu.cn (P.G.) – name: 2 State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China |
| Author_xml | – sequence: 1 givenname: Denghui orcidid: 0000-0003-3748-6369 surname: He fullname: He, Denghui – sequence: 2 givenname: Ruilin surname: Li fullname: Li, Ruilin – sequence: 3 givenname: Zhenduo surname: Zhang fullname: Zhang, Zhenduo – sequence: 4 givenname: Shuaihui surname: Sun fullname: Sun, Shuaihui – sequence: 5 givenname: Pengcheng orcidid: 0000-0002-1249-2300 surname: Guo fullname: Guo, Pengcheng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35056168$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkstuEzEUhkeoiJbSDQ-ALLFBSAO2x5fxBqlEbYkUaKRmwc7y-JI6zIxTe4aIHe_AG_IkOEkpbcXGxzrnO7_O7Xlx0IfeFsVLBN9VlYDvO48qiCCE-ElxhCHHJWPs68G9_2FxktIqE5BzkZ9nxWFFIWWI1UfFeKHS75-_Zv5m9AYsNqGcX6tkwXkbNmCuhsHGHkyN7QfvvFaDDz0IDigwya7o3bhULZiP3Rp8zGkG5PDV58vFGVC9Aadxl-Uz8sWOcWeGTYjfXhRPnWqTPbm1x8XV-dli8qmcXV5MJ6ezUhOOhxI1ghKtakMaVVFteUOR0bVtuCAGq9wOow0nDXUaOY4NEaTWlWJGWK5RdVxM96omqJVcR9-p-EMG5eXOEeJSqlyhbq2sDCRGYGfrRhGHqKBM1U4QgRFyqLFZ68Neaz02nTV6271qH4g-jPT-Wi7Dd1lzXjNBssCbW4EYbkabBtn5pG3bqt6GMUnMMMY1Q7TO6OtH6CqMsc-D2lKoIogymKlX9yu6K-XvbjPwdg_oGFKK1t0hCMrt7ch_t5Nh-AjWftitO3fj2_-l_AGC8Maf |
| CitedBy_id | crossref_primary_10_1016_j_aei_2025_103181 crossref_primary_10_1016_j_nucengdes_2024_113504 crossref_primary_10_1016_j_flowmeasinst_2025_102829 crossref_primary_10_1007_s10489_024_06206_2 crossref_primary_10_1007_s11042_024_18295_9 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104452 crossref_primary_10_3390_en16176292 crossref_primary_10_1016_j_flowmeasinst_2023_102389 crossref_primary_10_3390_en16114392 |
| Cites_doi | 10.1016/j.flowmeasinst.2015.06.001 10.1016/j.ijheatfluidflow.2018.05.011 10.1016/j.ces.2018.03.050 10.1016/j.ces.2013.08.048 10.1115/1.4033029 10.1016/j.applthermaleng.2018.07.077 10.1016/j.ces.2012.08.042 10.1016/j.fuel.2020.118848 10.1016/j.ces.2017.05.017 10.1016/j.ces.2016.02.040 10.1115/1.4047064 10.1109/ISMS.2016.14 10.1016/j.expthermflusci.2017.02.019 10.3390/mi11080728 10.1016/j.petrol.2021.108587 10.1016/S1004-9541(11)60161-4 10.1016/j.energy.2020.118541 10.1016/j.fuel.2019.05.023 10.1016/j.ijmultiphaseflow.2010.05.001 10.1016/j.measen.2020.100033 10.1016/j.ces.2012.07.028 10.1016/j.ijmultiphaseflow.2010.04.007 10.1088/0957-0233/27/8/084002 10.1016/j.petrol.2009.11.012 10.1016/j.expthermflusci.2019.110022 10.1613/jair.953 10.3390/en11010180 10.1016/j.expthermflusci.2015.08.013 10.1007/s00348-002-0415-x 10.1016/j.powtec.2019.12.018 10.1016/j.petrol.2021.108582 10.1016/j.ijmultiphaseflow.2016.08.007 10.1007/978-3-030-14788-4 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/mi13010002 |
| DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2072-666X |
| ExternalDocumentID | oai_doaj_org_article_3d04d92fe8ba4f15956a8f949211f1be PMC8778694 35056168 10_3390_mi13010002 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51839010, 51709227 – fundername: Scientific Research Program for Youth Innovation Team Construction of Shaanxi Provincial Department of Education grantid: 21JP087 |
| GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM TR2 TUS NPM 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c472t-1b954ca8d4ba35ce7b51dc8eb794d2a77965b74b5fc1f72d4948c3a6d9e7c13 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-666X |
| IngestDate | Mon Nov 10 04:35:05 EST 2025 Tue Nov 04 01:55:42 EST 2025 Fri Sep 05 10:46:03 EDT 2025 Fri Jul 25 11:42:17 EDT 2025 Wed Feb 19 02:27:14 EST 2025 Sat Nov 29 07:17:35 EST 2025 Tue Nov 18 22:12:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | SMOTE algorithm centrifugal pump flow pattern identification neural network gas–liquid flow |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-1b954ca8d4ba35ce7b51dc8eb794d2a77965b74b5fc1f72d4948c3a6d9e7c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1249-2300 0000-0003-3748-6369 |
| OpenAccessLink | https://www.proquest.com/docview/2621341560?pq-origsite=%requestingapplication% |
| PMID | 35056168 |
| PQID | 2621341560 |
| PQPubID | 2032359 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3d04d92fe8ba4f15956a8f949211f1be pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778694 proquest_miscellaneous_2622286158 proquest_journals_2621341560 pubmed_primary_35056168 crossref_primary_10_3390_mi13010002 crossref_citationtrail_10_3390_mi13010002 |
| PublicationCentury | 2000 |
| PublicationDate | 20211221 |
| PublicationDateYYYYMMDD | 2021-12-21 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211221 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Micromachines (Basel) |
| PublicationTitleAlternate | Micromachines (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhou (ref_15) 2018; 184 He (ref_34) 2020; 142 Li (ref_14) 2017; 171 Zhang (ref_9) 2016; 70 Perissinotto (ref_3) 2021; 203 Xu (ref_25) 2020; 362 Abbagoni (ref_27) 2016; 27 Bieberle (ref_11) 2015; 46 Rosa (ref_26) 2010; 36 Xu (ref_24) 2020; 113 ref_33 Neumann (ref_12) 2016; 138 Elperin (ref_17) 2002; 32 Ghosh (ref_28) 2012; 84 Ye (ref_21) 2013; 102 Zhao (ref_10) 2021; 13 Zou (ref_22) 2017; 88 He (ref_6) 2021; 203 Du (ref_18) 2012; 82 Lin (ref_23) 2020; 210 Chawla (ref_29) 2002; 16 Ding (ref_13) 2016; 146 Yin (ref_16) 2019; 146 Zhou (ref_4) 2010; 70 Sharma (ref_31) 2017; 6 Wang (ref_32) 2019; 253 ref_1 Shao (ref_7) 2018; 71 ref_2 Verde (ref_8) 2017; 85 Sun (ref_19) 2011; 19 ref_5 Euh (ref_20) 2010; 36 Wang (ref_30) 2020; 282 |
| References_xml | – volume: 46 start-page: 262 year: 2015 ident: ref_11 article-title: Application of gamma-ray computed tomography for the analysis of gas holdup distributions in centrifugal pumps publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2015.06.001 – volume: 71 start-page: 460 year: 2018 ident: ref_7 article-title: Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2018.05.011 – volume: 184 start-page: 72 year: 2018 ident: ref_15 article-title: Investigation and prediction of severe slugging frequency in pipeline-riser systems publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.03.050 – volume: 6 start-page: 310 year: 2017 ident: ref_31 article-title: Activation functions in neural networks publication-title: Towards Data Sci. – volume: 102 start-page: 486 year: 2013 ident: ref_21 article-title: Multiphase flow pattern recognition in pipeline–riser system by statistical feature clustering of pressure fluctuations publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.08.048 – volume: 138 start-page: 091301 year: 2016 ident: ref_12 article-title: An experimental study on the gas entrainment in horizontally and vertically installed centrifugal pumps publication-title: J. Fluids Eng. doi: 10.1115/1.4033029 – volume: 146 start-page: 30 year: 2019 ident: ref_16 article-title: Flow-pattern recognition and dynamic characteristic analysis based on multi-scale marginal spectrum entropy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.077 – volume: 84 start-page: 417 year: 2012 ident: ref_28 article-title: Identification of flow regimes using conductivity probe signals and neural networks for counter-current gas–liquid two-phase flow publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.042 – volume: 282 start-page: 118848 year: 2020 ident: ref_30 article-title: A new method of diesel fuel brands identification: SMOTE oversampling combined with XGBoost ensemble learning publication-title: Fuel doi: 10.1016/j.fuel.2020.118848 – volume: 171 start-page: 379 year: 2017 ident: ref_14 article-title: Effects of a long pipeline on severe slugging in an S-shaped riser publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.05.017 – volume: 146 start-page: 199 year: 2016 ident: ref_13 article-title: Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.040 – volume: 142 start-page: 081402 year: 2020 ident: ref_34 article-title: Gas–Liquid Two-Phase Performance of Centrifugal Pump Under Bubble Inflow Based on Computational Fluid Dynamics–Population Balance Model Coupling Model publication-title: J. Fluids Eng. doi: 10.1115/1.4047064 – ident: ref_33 doi: 10.1109/ISMS.2016.14 – volume: 85 start-page: 37 year: 2017 ident: ref_8 article-title: Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.02.019 – ident: ref_5 doi: 10.3390/mi11080728 – volume: 203 start-page: 108587 year: 2021 ident: ref_6 article-title: On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108587 – volume: 19 start-page: 243 year: 2011 ident: ref_19 article-title: Time-frequency signal processing for gas-liquid two phase flow through a horizontal venturi based on adaptive optimal-kernel theory publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(11)60161-4 – volume: 210 start-page: 118541 year: 2020 ident: ref_23 article-title: Prediction of two-phase flow patterns in upward inclined pipes via deep learning publication-title: Energy doi: 10.1016/j.energy.2020.118541 – volume: 253 start-page: 209 year: 2019 ident: ref_32 article-title: Accelerating and stabilizing the vapor-liquid equilibrium (VLE) calculation in compositional simulation of unconventional reservoirs using deep learning based flash calculation publication-title: Fuel doi: 10.1016/j.fuel.2019.05.023 – volume: 36 start-page: 738 year: 2010 ident: ref_26 article-title: Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas–liquid flows publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.05.001 – volume: 13 start-page: 100033 year: 2021 ident: ref_10 article-title: Visualization of gas-liquid flow pattern in a centrifugal pump impeller and its influence on the pump performance publication-title: Meas. Sens. doi: 10.1016/j.measen.2020.100033 – volume: 82 start-page: 144 year: 2012 ident: ref_18 article-title: Analysis of total energy and time-frequency entropy of gas–liquid two-phase flow pattern publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.07.028 – volume: 36 start-page: 755 year: 2010 ident: ref_20 article-title: An application of the wavelet analysis technique for the objective discrimination of two-phase flow patterns publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.04.007 – volume: 27 start-page: 084002 year: 2016 ident: ref_27 article-title: Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/8/084002 – volume: 70 start-page: 204 year: 2010 ident: ref_4 article-title: Simple model of electric submersible pump in gassy well publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2009.11.012 – volume: 113 start-page: 110022 year: 2020 ident: ref_24 article-title: Intelligent recognition of severe slugging in a long-distance pipeline-riser system publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2019.110022 – volume: 16 start-page: 321 year: 2002 ident: ref_29 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: ref_2 doi: 10.3390/en11010180 – volume: 70 start-page: 125 year: 2016 ident: ref_9 article-title: Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2015.08.013 – volume: 32 start-page: 674 year: 2002 ident: ref_17 article-title: Flow regime identification in a two-phase flow using wavelet transform publication-title: Exp. Fluids doi: 10.1007/s00348-002-0415-x – volume: 362 start-page: 507 year: 2020 ident: ref_25 article-title: Study of identification of global flow regime in a long pipeline transportation system publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.12.018 – volume: 203 start-page: 108582 year: 2021 ident: ref_3 article-title: Flow visualization in centrifugal pumps: A review of methods and experimental studies publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108582 – volume: 88 start-page: 222 year: 2017 ident: ref_22 article-title: Fast recognition of global flow regime in pipeline-riser system by spatial correlation of differential pressures publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2016.08.007 – ident: ref_1 doi: 10.1007/978-3-030-14788-4 |
| SSID | ssj0000779007 |
| Score | 2.2887452 |
| Snippet | The accurate identification of the gas–liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for... The accurate identification of the gas-liquid two-phase flow pattern within the impeller of a centrifugal pump is critical to develop a reliable model for... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2 |
| SubjectTerms | Algorithms Artificial neural networks Cameras centrifugal pump Centrifugal pumps Efficiency Experiments Flow characteristics Flow control Flow distribution Flow mapping flow pattern identification Flow velocity Fluid flow gas–liquid flow Identification Impellers Liquid phases Machine learning neural network Neural networks Oversampling Pattern recognition Polymethyl methacrylate Signal processing SMOTE algorithm Two phase flow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ1QMcEOU30CIjuHCwGjt2bB9p1YUDlJW6h94i_6qRSgLdDb3yDrwhT8LYSZddVIkLp0iZSeJ4ZjwzzuQbhN5ABCJidIxobS3hNAaiZeWJitqoujRamDI3m5Cnp-r8XM83Wn2lmrARHnicuMPKl9xrFoOyhkdwvqI2cCOuIXOJ1Ia0-pZSbyRTeQ1OMHqlHPFIK8jrD7-0sFqnzWy25YEyUP9t0eXfRZIbXmf2AN2fwkX8bhzmHroTuofo3gaI4CM0vDfLXz9-fmy_Da3Hi-uezC_ANeHZZX-N5xk-s8Pj_7hx2qDDfcQG543dNg7gI_AcpIqP4DKPgXz26fPiBJvO5wePGBM4wXjkQ64bf4zOZieL4w9kaqZAHJdsRajVgjujPLemEi5IK6h3KlgwSM8MzFctrORWREejZD7BxrjK1F4H6Wj1BO10fReeISw8rSCsEMIry0tHVcljGepAI-csOFugtzfT27gJZzy1u7hsIN9Iomj-iKJAr9e8X0d0jVu5jpKU1hwJETufAD1pJj1p_qUnBdq_kXEzmemyYXUGtIOor0Cv1mQwsPTVxHShHzIPYwoCP1Wgp6NKrEdSpfiR1kCRW8qyNdRtStdeZBBvlYD7NH_-P97tBbrLUqkNZYTRfbSzuhrCAdp131ft8upltozfkXcVWQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Gas–Liquid Two-Phase Flow Pattern Identification of a Centrifugal Pump Based on SMOTE and Artificial Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35056168 https://www.proquest.com/docview/2621341560 https://www.proquest.com/docview/2622286158 https://pubmed.ncbi.nlm.nih.gov/PMC8778694 https://doaj.org/article/3d04d92fe8ba4f15956a8f949211f1be |
| Volume | 13 |
| WOSCitedRecordID | wos000748138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: M7S dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: PIMPY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoywEO_EMDZWUEFw5RY8dO7BNi0S4g0SVi97CcIv_SSG3S7m7oDfEOvCFPgu1kt11UceGSSJmJMsrMeMaTyTcAvHIZCLVW4ZhzKWOCrIl5nuqYWS5YlghORRKGTeSTCZvPedEX3JZ9W-V6TQwLtW6Ur5Ef4ixgj7kA_ebsPPZTo_zX1X6Exg7Y8ygJSWjdm25qLIkH00vyDpU0dbv7w9PKrdm-pI234lCA678ux_y7VfJK7Bnf_V-p74E7fdYJ33Zmch_cMPUDcPsKFuFD0L4Xy98_f32qzttKw9lFExfHLsLB8UlzAYuAwlnD7rde29f5YGOhgKE-XNnWhRpYOOOAQ3ebho48Pfo8G0FR6_DgDqoCejSQcArt54_AdDyavfsQ9zMZYkVyvIqR5JQowTSRIqXK5JIirZiRzq81Fu6FZ1TmRFKrkM2x9ugzKhWZ5iZXKH0MduumNvsAUo1Sl51QqpkkiUIsITYxmUGWEGyUjMDrtX5K1cOV-6kZJ6Xbtnhdlpe6jMDLDe9ZB9JxLdfQq3nD4YG1w4Vm8a3s_bRMdUI0x9YwKYh1uR7NhLNbwt1G2SJpInCwVnTZe_uyvNRyBF5syM5P_ccXUZumDTwYM5c_sgg86WxqI0nq01CUOUq-ZW1bom5T6uo4YIEzj__HydN_i_UM3MK-FwfhGKMDsLtatOY5uKm-r6rlYgB28jkbgL3haFJ8GYSqxCA4kj_-GDlK8fGo-PoHpMIpeQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFoly4P1YKGAEHDhEjR07sQ8IsbBLq26XFd1DT0R-tpFK0u6DFTf-A3-DX8UvwXay2y6quPXAKVI8SZzk88x4PP4GgJfOA6HWKhxxLmVEkDURzxIdMcsFS2PBqYhDsYlsMGAHB3y4Bn4t9sL4tMqFTgyKWlfKx8i3cBq4x5yBfntyGvmqUX51dVFCo4bFrvk-d1O2yZudD-7_vsK41x29346aqgKRIhmeRkhySpRgmkiRUGUySZFWzEiHTI1FlvGUyoxIahWyGdaeP0UlItXcZAol7q5XwDpJCCUtsN7pDoaflzGd2JP3xVnNgpokPN76Wjgb4UPoeMXuhfIAF_m0f6dmnrN1vZv_11e6BW40PjV8Vw-C22DNlHfA9XNMi3fB7KOY_P7xs1-czgoNR_MqGh45-w17x9UcDgPHaAnrTcu2iWLCykIBQ_S7sDNnSOHQQR923GUauub9vU-jLhSlDg-uiTig5zoJh5Bcfw_sX8Jb3wetsirNQwCpRonzvSjVTJJYIRYTG5vUIEsINkq2wesFGnLVkLH7miDHuZuUeeTkZ8hpgxdL2ZOaguRCqY4H1VLC04aHE9X4MG-0UJ7omGiOrWFSEOs8WZoKNyoJxwhZJE0bbC5glTe6bJKfYaoNni-bnRbyS0uiNNUsyGDMnHfM2uBBjeBlTxLvZKPUtWQr2F7p6mpLWRwFpnPm2Q05efTvbj0D17ZHe_28vzPYfQw2sM86QjjCaBO0puOZeQKuqm_TYjJ-2gxYCL5cLvb_AAhWgSs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOvB8LBYyAA4doY8eO7QNClHahallW2j301MhPGqkk7T5YceM_8Gf4PfwSbCe77aKKWw-cIsWTxEk-z4zH428AeOk9EOqcxokQSiUEOZsIlpmEOyF5nkpBZRqLTbB-n-_vi8Ea-LXYCxPSKhc6MSpqU-sQI-_iPHKPeQPddW1axGCr9_b4JAkVpMJK66KcRgORXft97qdvkzc7W_5fv8K4tz16_zFpKwwkmjA8TZASlGjJDVEyo9oyRZHR3CqPUoMlYyKnihFFnUaOYRO4VHQmcyMs0yjzd70ELjNCRRaTBofL6E4aaPxS1vChZplIu19Lby1CMB2vWMBYKOA87_bvJM0zVq938__9XrfAjdbThu-aoXEbrNnqDrh-hn_xLph9kJPfP37ulSez0sDRvE4Gh96qw95RPYeDyDxawWYrs2tjm7B2UMIYEy_dzJtXOPADAm76ywz0zcNPn0fbUFYmPrih54CBASUeYsr9PTC8gLe-D9arurIPAaQGZd4jo9RwRVKNeEpcanOLHCHYatUBrxfIKHRL0R4qhRwVfqoWUFScoqgDXixljxtiknOlNgPAlhKBTDyeqMdfilY3FZlJiRHYWa4kcd6_pbn0Y5UIjJBDynbAxgJiRavhJsUpvjrg-bLZ66aw4CQrW8-iDMbc-8y8Ax40aF72JAuuN8p9C1vB-UpXV1uq8jDyn_PAeSjIo3936xm46gFf7O30dx-DazikIiGcYLQB1qfjmX0Cruhv03IyfhpHLgQHFwv8Py7iiK0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas%E2%80%93Liquid+Two-Phase+Flow+Pattern+Identification+of+a+Centrifugal+Pump+Based+on+SMOTE+and+Artificial+Neural+Network&rft.jtitle=Micromachines+%28Basel%29&rft.au=He%2C+Denghui&rft.au=Li%2C+Ruilin&rft.au=Zhang%2C+Zhenduo&rft.au=Sun%2C+Shuaihui&rft.date=2021-12-21&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.3390%2Fmi13010002&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi13010002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |