Overview of Deep Learning in Gastrointestinal Endoscopy
Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected t...
Uložené v:
| Vydané v: | Gut and liver Ročník 13; číslo 4; s. 388 - 393 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Korea (South)
Editorial Office of Gut and Liver
11.01.2019
Gastroenterology Council for Gut and Liver 거트앤리버 소화기연관학회협의회 |
| Predmet: | |
| ISSN: | 1976-2283, 2005-1212, 2005-1212 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deep-learning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images,
infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings. |
|---|---|
| AbstractList | Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deeplearning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images, Helicobacter pylori infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings. KCI Citation Count: 7 Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deep-learning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images, Helicobacter pylori infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings. Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deep-learning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images, Helicobacter pylori infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings.Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deep-learning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images, Helicobacter pylori infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings. Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in gastroenterology practice is expected in the near future. Medical image-based diagnoses, such as pathology, radiology, and endoscopy, are expected to be the first in the medical field to be affected by artificial intelligence. A convolutional neural network, a kind of deep-learning method with multilayer perceptrons designed to use minimal preprocessing, was recently reported as being highly beneficial in the field of endoscopy, including esophagogastroduodenoscopy, colonoscopy, and capsule endoscopy. A convolutional neural network-based diagnostic program was challenged to recognize anatomical locations in esophagogastroduodenoscopy images, infection, and gastric cancer for esophagogastroduodenoscopy; to detect and classify colorectal polyps; to recognize celiac disease and hookworm; and to perform small intestine motility characterization of capsule endoscopy images. Artificial intelligence is expected to help endoscopists provide a more accurate diagnosis by automatically detecting and classifying lesions; therefore, it is essential that endoscopists focus on this novel technology. In this review, we describe the effects of artificial intelligence on gastroenterology with a special focus on automatic diagnosis, based on endoscopic findings. |
| Author | Kwak, Min Seob Min, Jun Ki Cha, Jae Myung |
| Author_xml | – sequence: 1 givenname: Jun Ki orcidid: 0000-0003-0354-855X surname: Min fullname: Min, Jun Ki organization: Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea – sequence: 2 givenname: Min Seob orcidid: 0000-0002-8988-7423 surname: Kwak fullname: Kwak, Min Seob organization: Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea – sequence: 3 givenname: Jae Myung orcidid: 0000-0001-9403-230X surname: Cha fullname: Cha, Jae Myung organization: Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30630221$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487569$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNplkk1rGzEQhkVJaZy00F9Q9tgeNtW3VpdCSNPUYAgU38WspHWVrCVXWrvk31ex47ShpwHNM88rpDlDJzFFj9B7gi8ExvrzKo6kYx1_hWYUY9ESSugJmhGtZEtpx07RWSl3GEtClXiDThmWDFNKZkjd7nzeBf-7SUPz1ftNs_CQY4irJsTmBsqUU4iTL1OIMDbX0aVi0-bhLXo9wFj8u6d6jpbfrpdX39vF7c386nLRWq7o1BIxgJfQeyodlbzvuZaaECuAEQceoKNywJjQnlgiHCeDII7XhrYWHLBz9OmgjXkw9zaYBGFfV8ncZ3P5Yzk3opOCalXZ-YF1Ce7MJoc15If9wP4g5ZWBPAU7emMHrBTj1vYeuJNMC62s4so6TZxVurq-HFybbb_2zvo4ZRhfSF92YvhZ77QzUlIqJK2Cj0-CnH5t6_OZdSjWjyNEn7bFUFJTGOeMVfTDv1nPIcdPqsDFAbA5lZL9YGyYYArpMTqMhmDzuAXmuAV_w58Hjs7_0D9z3bIN |
| CitedBy_id | crossref_primary_10_3390_jcm9061648 crossref_primary_10_1016_j_tgie_2019_150642 crossref_primary_10_1097_MCG_0000000000001423 crossref_primary_10_3389_fmed_2021_781256 crossref_primary_10_1002_cncr_35768 crossref_primary_10_1007_s10354_023_01020_w crossref_primary_10_3389_fonc_2021_673775 crossref_primary_10_1089_aipo_2024_0019 crossref_primary_10_1007_s00535_023_02001_x crossref_primary_10_3390_cancers14194834 crossref_primary_10_1109_TIM_2020_3038011 crossref_primary_10_1016_j_gie_2019_11_012 crossref_primary_10_1016_j_imed_2021_12_001 crossref_primary_10_1016_j_diii_2022_10_001 crossref_primary_10_21015_vtse_v10i3_1054 crossref_primary_10_1002_lary_29960 crossref_primary_10_4166_kjg_2024_126 crossref_primary_10_1186_s12935_025_03756_4 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_3390_s22239250 crossref_primary_10_1007_s12565_022_00681_8 crossref_primary_10_1049_htl2_12049 crossref_primary_10_3390_bioengineering9110632 crossref_primary_10_3748_wjg_v29_i5_879 crossref_primary_10_1177_00045632231154782 crossref_primary_10_1016_j_isci_2023_107463 crossref_primary_10_1093_ibd_izaa211 crossref_primary_10_3390_bioengineering12040413 crossref_primary_10_3390_info15010053 crossref_primary_10_1109_ACCESS_2020_3047544 crossref_primary_10_1016_j_gie_2021_03_013 crossref_primary_10_1186_s12880_023_01098_z crossref_primary_10_1016_j_iswa_2022_200149 crossref_primary_10_1093_ibd_izac226 crossref_primary_10_3390_biomimetics7020079 crossref_primary_10_1016_j_device_2025_100867 crossref_primary_10_4103_jpi_jpi_68_19 crossref_primary_10_3390_diagnostics13061038 crossref_primary_10_1007_s11042_024_19694_8 crossref_primary_10_1111_den_13769 crossref_primary_10_3390_jimaging11070243 crossref_primary_10_1055_a_1013_6593 crossref_primary_10_1002_lipd_12352 crossref_primary_10_1097_DCR_0000000000002295 crossref_primary_10_1038_s41598_021_93202_y crossref_primary_10_1063_5_0100192 crossref_primary_10_1038_s41598_022_25618_z crossref_primary_10_1136_bmjopen_2020_041139 crossref_primary_10_3748_wjg_v26_i35_5256 crossref_primary_10_1016_j_compbiomed_2024_109030 crossref_primary_10_1016_j_isci_2025_113045 crossref_primary_10_3748_wjg_v26_i37_5606 crossref_primary_10_1080_08820538_2021_1893763 crossref_primary_10_1016_j_bspc_2022_104504 crossref_primary_10_1093_ajcp_aqaa001 crossref_primary_10_1007_s00371_021_02322_z crossref_primary_10_1016_j_jds_2023_04_022 crossref_primary_10_4103_sjg_sjg_391_22 crossref_primary_10_1007_s11042_025_20627_2 crossref_primary_10_3748_wjg_v31_i36_111137 crossref_primary_10_4103_ijh_ijh_110_24 crossref_primary_10_1109_ACCESS_2020_2981765 crossref_primary_10_1007_s10151_022_02602_3 crossref_primary_10_3748_wjg_v29_i22_3561 crossref_primary_10_1080_17474124_2022_2020646 crossref_primary_10_1016_j_artmed_2022_102435 crossref_primary_10_4251_wjgo_v14_i1_124 crossref_primary_10_3233_THC_248004 crossref_primary_10_1007_s00464_022_09378_5 crossref_primary_10_1007_s00464_020_08150_x crossref_primary_10_3390_cancers15215126 crossref_primary_10_1016_j_gie_2021_12_020 crossref_primary_10_3390_electronics14101913 crossref_primary_10_7759_cureus_79472 crossref_primary_10_1007_s11042_022_12258_8 crossref_primary_10_1245_s10434_024_15311_y crossref_primary_10_3390_biomedicines11123171 crossref_primary_10_3390_diagnostics11091672 crossref_primary_10_1177_26317745241306562 crossref_primary_10_1038_s41598_024_84737_x crossref_primary_10_1038_s41598_022_05001_8 crossref_primary_10_3390_diagnostics15162009 crossref_primary_10_1038_s41598_022_08773_1 crossref_primary_10_3390_app14188115 crossref_primary_10_1016_j_neucom_2020_02_123 crossref_primary_10_3389_fmolb_2021_614277 crossref_primary_10_3390_diagnostics11091719 crossref_primary_10_1049_htl_2019_0066 crossref_primary_10_1186_s12911_020_01314_8 crossref_primary_10_1038_s41598_020_78556_z crossref_primary_10_1038_s41598_022_26372_y crossref_primary_10_1016_j_jcpo_2021_100295 crossref_primary_10_3390_diagnostics11071192 crossref_primary_10_1016_j_gie_2020_04_074 crossref_primary_10_3390_app10238501 crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_1007_s10489_022_04146_3 crossref_primary_10_1007_s00521_024_10287_y crossref_primary_10_1016_j_canlet_2023_216238 crossref_primary_10_4103_sjg_SJG_636_19 crossref_primary_10_1007_s11042_022_14177_0 crossref_primary_10_1136_bmjgast_2019_000371 crossref_primary_10_1186_s12876_023_03067_w crossref_primary_10_1038_s43856_025_01030_2 crossref_primary_10_3748_wjg_v31_i19_104897 crossref_primary_10_1177_03000605231200371 crossref_primary_10_1109_ACCESS_2023_3319068 crossref_primary_10_3389_fonc_2022_1001840 |
| Cites_doi | 10.1016/j.ebiom.2017.10.014 10.1001/jama.2017.18152 10.1038/srep46450 10.1136/gutjnl-2017-314547 10.1109/JBHI.2016.2635662 10.1055/s-0043-120830 10.1148/radiol.2017171928 10.1007/s10120-018-0793-2 10.1371/journal.pone.0171472 10.1038/s41598-017-05728-9 10.1159/000481227 10.1016/j.compbiomed.2016.10.011 10.1109/TIP.2018.2801119 10.1109/JBHI.2016.2637004 10.1038/s41598-018-25842-6 10.1109/TMI.2016.2527736 10.1148/radiol.2017170236 10.1001/jama.2016.17216 10.1016/j.compbiomed.2017.03.031 10.1038/nature21056 10.1016/j.canlet.2016.05.033 10.3348/kjr.2017.18.4.570 10.1148/radiol.2017170706 10.1001/jama.2017.14585 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 by The Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, Korean College of Helicobacter and Upper Gastrointestinal Research, Korean Association the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, Korean Pancreatobiliary Association, and Korean Society of Gastrointestinal Cancer. 2019 |
| Copyright_xml | – notice: Copyright © 2019 by The Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, Korean College of Helicobacter and Upper Gastrointestinal Research, Korean Association the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, Korean Pancreatobiliary Association, and Korean Society of Gastrointestinal Cancer. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA ACYCR |
| DOI | 10.5009/gnl18384 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2005-1212 |
| EndPage | 393 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_5865297 oai_doaj_org_article_cf07734ccbea4d639597c747cd91dc79 PMC6622562 30630221 10_5009_gnl18384 |
| Genre | Journal Article Review |
| GroupedDBID | --- 5-W 8JR AAKDD AAYXX ABDBF ACUHS ACYCR ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK E3Z EBD EF. F5P GROUPED_DOAJ GX1 HYE HZB OK1 RPM 9ZL CGR CUY CVF ECM EIF M~E NPM 7X8 5PM 53G 85H |
| ID | FETCH-LOGICAL-c472t-15fae6abe26d264bb496911c5a31daeaa826f0012b1c15d41f51d4aea9ccada3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474632100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1976-2283 2005-1212 |
| IngestDate | Tue Nov 21 21:40:35 EST 2023 Fri Oct 03 12:50:39 EDT 2025 Tue Nov 04 01:58:14 EST 2025 Thu Jul 10 18:07:02 EDT 2025 Thu Jan 02 22:59:16 EST 2025 Tue Nov 18 20:47:48 EST 2025 Sat Nov 29 01:46:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Diagnosis Endoscopy Artificial intelligence Convolutional neural network computer-assisted |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-15fae6abe26d264bb496911c5a31daeaa826f0012b1c15d41f51d4aea9ccada3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8988-7423 0000-0001-9403-230X 0000-0003-0354-855X |
| OpenAccessLink | https://doaj.org/article/cf07734ccbea4d639597c747cd91dc79 |
| PMID | 30630221 |
| PQID | 2179334433 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5865297 doaj_primary_oai_doaj_org_article_cf07734ccbea4d639597c747cd91dc79 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622562 proquest_miscellaneous_2179334433 pubmed_primary_30630221 crossref_citationtrail_10_5009_gnl18384 crossref_primary_10_5009_gnl18384 |
| PublicationCentury | 2000 |
| PublicationDate | 20190111 |
| PublicationDateYYYYMMDD | 2019-01-11 |
| PublicationDate_xml | – month: 1 year: 2019 text: 20190111 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | Korea (South) |
| PublicationPlace_xml | – name: Korea (South) |
| PublicationTitle | Gut and liver |
| PublicationTitleAlternate | Gut Liver |
| PublicationYear | 2019 |
| Publisher | Editorial Office of Gut and Liver Gastroenterology Council for Gut and Liver 거트앤리버 소화기연관학회협의회 |
| Publisher_xml | – name: Editorial Office of Gut and Liver – name: Gastroenterology Council for Gut and Liver – name: 거트앤리버 소화기연관학회협의회 |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1016/j.ebiom.2017.10.014 – ident: ref17 doi: 10.1001/jama.2017.18152 – ident: ref1 – ident: ref3 – ident: ref7 – ident: ref12 doi: 10.1038/srep46450 – ident: ref24 doi: 10.1136/gutjnl-2017-314547 – ident: ref25 doi: 10.1109/JBHI.2016.2635662 – ident: ref20 doi: 10.1055/s-0043-120830 – ident: ref10 doi: 10.1148/radiol.2017171928 – ident: ref22 doi: 10.1007/s10120-018-0793-2 – ident: ref19 – ident: ref2 – ident: ref5 doi: 10.1371/journal.pone.0171472 – ident: ref6 – ident: ref13 doi: 10.1038/s41598-017-05728-9 – ident: ref23 doi: 10.1159/000481227 – ident: ref29 doi: 10.1016/j.compbiomed.2016.10.011 – ident: ref28 doi: 10.1109/TIP.2018.2801119 – ident: ref26 doi: 10.1109/JBHI.2016.2637004 – ident: ref8 doi: 10.1038/s41598-018-25842-6 – ident: ref30 doi: 10.1109/TMI.2016.2527736 – ident: ref9 doi: 10.1148/radiol.2017170236 – ident: ref16 doi: 10.1001/jama.2016.17216 – ident: ref27 doi: 10.1016/j.compbiomed.2017.03.031 – ident: ref15 doi: 10.1038/nature21056 – ident: ref14 doi: 10.1016/j.canlet.2016.05.033 – ident: ref4 doi: 10.3348/kjr.2017.18.4.570 – ident: ref11 doi: 10.1148/radiol.2017170706 – ident: ref18 doi: 10.1001/jama.2017.14585 |
| SSID | ssj0061275 |
| Score | 2.5337222 |
| SecondaryResourceType | review_article |
| Snippet | Artificial intelligence is likely to perform several roles currently performed by humans, and the adoption of artificial intelligence-based medicine in... |
| SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 388 |
| SubjectTerms | artificial intelligence Capsule Endoscopy Celiac Disease - diagnosis Colonic Polyps - diagnosis Colonoscopy computer-assisted convolutional neural network Deep Learning diagnosis Diagnosis, Computer-Assisted endoscopy Endoscopy, Digestive System Endoscopy, Gastrointestinal Gastroenterology Gastrointestinal Motility Helicobacter Infections - diagnosis Hookworm Infections - diagnosis Humans Intestinal Polyps - diagnosis Review Stomach Neoplasms - diagnosis 내과학 |
| Title | Overview of Deep Learning in Gastrointestinal Endoscopy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30630221 https://www.proquest.com/docview/2179334433 https://pubmed.ncbi.nlm.nih.gov/PMC6622562 https://doaj.org/article/cf07734ccbea4d639597c747cd91dc79 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487569 |
| Volume | 13 |
| WOSCitedRecordID | wos000474632100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Gut and Liver, 2019, 13(4), , pp.388-393 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2005-1212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061275 issn: 1976-2283 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLKs8GShUQEier8Ts-ttACBwqHHvZm-bmsWjlVdlvEv2ecZFddVIkLp0ixEznzxTPfyPY3CL3XWlnSRIZ91A3m0bfYCesxTSKkwEiSzg7FJtTZWTub6R-3Sn2VPWGjPPBouEOfGqUY995FywPEU2DAHjiwD5oEr4aje43S62Rq9MGyyJYP68lK4iLwMsrOCiAUh_N8Cb9xy7cC0aDXD-El9-kuqvn3jslbIeh0Fz2euGN9NI75CboX81P08Nu0Ov4Mqe83ZebHX3WX6k8xXtWTeuq8XuT6s12u-q7IQ8CsLu85yaErh1J-P0fnpyfnH7_gqTAC9lzRFSYi2Siti1QGIDTOcS3BaXlhGQk2Wgs5QypExhFPROAkCRI4NGjAK1j2Au3kLsc9VPPkFY2S61Yk3lqpbQBKkkRqbNM44ir0YW0k4yfR8FK74tJA8lDMadbmrNDbTc-rUSjjjj7Hxc6b9iJtPdwAwM0EuPkX4BV6ByiZC78Yni_XeWcuegMJwFcjWimoVjCaNYgG5ktZBLE5dtdLQ4tHYpwzVqGXI6ib8bAiQEYpqZDagntrwNstefFz0OSWEhyjpK_-xxe-Ro-AlpVtbJiQfbSz6q_jG_TA36wWy_4A3Vez9mD43f8AsTQFcg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+Deep+Learning+in+Gastrointestinal+Endoscopy&rft.jtitle=Gut+and+liver&rft.au=Jun+Ki+Min&rft.au=Min+Seob+Kwak&rft.au=%EC%B0%A8%EC%9E%AC%EB%AA%85&rft.date=2019-01-11&rft.pub=%EA%B1%B0%ED%8A%B8%EC%95%A4%EB%A6%AC%EB%B2%84+%EC%86%8C%ED%99%94%EA%B8%B0%EC%97%B0%EA%B4%80%ED%95%99%ED%9A%8C%ED%98%91%EC%9D%98%ED%9A%8C&rft.issn=1976-2283&rft.eissn=2005-1212&rft.spage=388&rft.epage=393&rft_id=info:doi/10.5009%2Fgnl18384&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_5865297 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-2283&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-2283&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-2283&client=summon |