Advanced Chemical Looping Materials for CO2 Utilization: A Review
Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporal...
Uloženo v:
| Vydáno v: | Materials Ročník 11; číslo 7; s. 1187 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
10.07.2018
MDPI |
| Témata: | |
| ISSN: | 1996-1944, 1996-1944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping. |
|---|---|
| AbstractList | Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping. Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping. Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping. |
| Author | Marin, Guy B. Galvita, Vladimir V. Poelman, Hilde Hu, Jiawei |
| AuthorAffiliation | Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium; Jiawei.Hu@UGent.be (J.H.); Hilde.Poelman@UGent.be (H.P.); Guy.Marin@UGent.be (G.B.M.) |
| AuthorAffiliation_xml | – name: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium; Jiawei.Hu@UGent.be (J.H.); Hilde.Poelman@UGent.be (H.P.); Guy.Marin@UGent.be (G.B.M.) |
| Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0003-0792-054X surname: Hu fullname: Hu, Jiawei – sequence: 2 givenname: Vladimir V. orcidid: 0000-0001-9205-7917 surname: Galvita fullname: Galvita, Vladimir V. – sequence: 3 givenname: Hilde orcidid: 0000-0003-4267-7397 surname: Poelman fullname: Poelman, Hilde – sequence: 4 givenname: Guy B. surname: Marin fullname: Marin, Guy B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29996567$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU1LAzEQhoMottZe_AGy4EWEaib7kY0HoRS_oFIQew7ZbLZN2U1qdlvRX2-0rdbiXDLDPPPyZuYI7RtrFEIngC_DkOGrSgBgCpDSPdQGxpIesCja38pbqFvXM-wjDCEl7BC1CPPNOKFt1O_nS2GkyoPBVFVaijIYWjvXZhI8iUY5Lco6KKwLBiMSjBtd6g_RaGuug37wrJZavR2jg8JDqrt-O2h8d_syeOgNR_ePg_6wJyNKmh7gLMeqwILGMiVRFkNBKWQkJqTIWRSyVOJcFjLKcUHzGEJJmcgymvoilVSGHXSz0p0vskrlUpnGiZLPna6Ee-dWaP63Y_SUT-ySJ5iGkIAXOF8LOPu6UHXDK11LVZbCKLuoOcFJyoBENPbo2Q46swtn_Pc4AS8W45gxT51uO_qxstmuB_AKkM7WtVMFl7r5Xp83qEsOmH_dkP_e0I9c7IxsVP-BPwHHMJpa |
| CitedBy_id | crossref_primary_10_1515_revce_2020_0038 crossref_primary_10_3390_en16062865 crossref_primary_10_1021_jacs_0c04643 crossref_primary_10_1021_acs_energyfuels_4c02391 crossref_primary_10_3390_catal10010095 crossref_primary_10_3390_su132111625 crossref_primary_10_1016_j_jalmes_2023_100039 crossref_primary_10_1016_j_cej_2024_154984 crossref_primary_10_1016_j_energy_2019_115963 crossref_primary_10_1088_1755_1315_827_1_012012 crossref_primary_10_3390_catal9080668 crossref_primary_10_3390_ma11122424 crossref_primary_10_1016_j_cherd_2019_06_030 crossref_primary_10_1016_j_powtec_2024_119510 crossref_primary_10_1002_cjce_24547 crossref_primary_10_1002_er_7999 crossref_primary_10_1016_j_nanoen_2021_106379 crossref_primary_10_1016_j_jcou_2020_101216 crossref_primary_10_3390_catal10020194 crossref_primary_10_3390_catal11020266 crossref_primary_10_3390_ma16165625 crossref_primary_10_1007_s43938_023_00028_3 crossref_primary_10_1016_j_cjche_2020_11_024 crossref_primary_10_1016_j_enconman_2025_119617 crossref_primary_10_1016_j_jcou_2018_11_008 crossref_primary_10_3390_catal10050468 crossref_primary_10_1016_j_cej_2020_125849 crossref_primary_10_3390_pr6110205 crossref_primary_10_1016_j_cej_2022_135752 crossref_primary_10_1039_D4SU00395K crossref_primary_10_1016_j_apcatb_2023_122591 crossref_primary_10_1016_j_fuproc_2022_107313 crossref_primary_10_1016_j_fuproc_2021_106888 crossref_primary_10_1016_j_fuproc_2022_107614 crossref_primary_10_1016_j_apcatb_2019_01_084 crossref_primary_10_1016_j_jece_2024_115069 crossref_primary_10_3390_nano12213877 crossref_primary_10_1039_C9EE03793D crossref_primary_10_1002_adma_202201547 crossref_primary_10_1016_j_cjche_2020_11_034 crossref_primary_10_1016_j_gce_2024_09_009 crossref_primary_10_1016_j_cej_2021_131275 crossref_primary_10_1016_j_apcatb_2019_117946 crossref_primary_10_1016_j_cej_2020_124507 crossref_primary_10_1016_j_apcatb_2019_117944 crossref_primary_10_1002_er_4581 crossref_primary_10_1002_ese3_1303 crossref_primary_10_1007_s11814_025_00406_3 crossref_primary_10_3390_en16176375 crossref_primary_10_1016_j_cej_2021_132133 crossref_primary_10_1016_j_fuproc_2021_106917 crossref_primary_10_1016_j_apcatb_2024_123935 crossref_primary_10_1039_D4EE05328A crossref_primary_10_1016_j_apcatb_2023_123531 crossref_primary_10_1016_j_mtsust_2025_101128 crossref_primary_10_1016_j_fuel_2025_135258 crossref_primary_10_1016_j_fuproc_2021_107045 crossref_primary_10_1016_j_cej_2024_150369 crossref_primary_10_1016_j_renene_2019_10_111 crossref_primary_10_1016_j_fuel_2023_128208 crossref_primary_10_1016_j_apcatb_2021_120194 crossref_primary_10_1016_j_apcatb_2021_120472 crossref_primary_10_1016_j_fuproc_2025_108322 crossref_primary_10_1016_j_jaecs_2025_100365 crossref_primary_10_1016_j_powtec_2023_119260 crossref_primary_10_1016_j_cattod_2025_115207 crossref_primary_10_1016_j_enss_2022_09_001 crossref_primary_10_1016_j_cej_2023_146083 crossref_primary_10_1016_j_jcou_2023_102416 crossref_primary_10_1016_j_commatsci_2023_112690 crossref_primary_10_1016_j_cej_2021_132606 crossref_primary_10_1016_j_cogsc_2022_100721 |
| Cites_doi | 10.1016/j.cherd.2013.12.006 10.1016/j.apenergy.2015.04.017 10.1002/aic.14695 10.1016/j.cherd.2010.10.013 10.1007/s11244-011-9709-7 10.1002/pssb.200404935 10.1016/j.dental.2007.05.005 10.1002/anie.201000431 10.1016/j.jcou.2016.05.006 10.1016/j.fuel.2010.03.043 10.1016/j.energy.2012.08.006 10.1016/j.fuel.2013.12.027 10.1021/ef950173n 10.1016/j.apenergy.2015.10.121 10.1021/ie100432j 10.1021/ef301120r 10.1126/science.1172246 10.1016/S1001-0742(13)60546-X 10.1017/9781108157841 10.1016/j.ijggc.2014.12.022 10.1016/S0016-2361(01)00051-5 10.1021/ie4003574 10.1021/ef0504319 10.1021/ie400612g 10.1016/j.fuel.2004.03.003 10.1021/ie020184l 10.1016/j.pecs.2009.10.001 10.2109/jcersj2.116.1164 10.1002/ente.201500231 10.1088/0957-4484/21/22/225708 10.1016/j.apcatb.2018.03.004 10.1016/j.fuel.2008.02.016 10.1016/j.fuel.2017.08.022 10.1016/j.fuel.2006.02.004 10.1021/jp063490b 10.1016/j.rser.2015.12.007 10.1016/j.apenergy.2016.07.074 10.1016/S0926-860X(00)00728-6 10.1016/j.ijhydene.2015.11.066 10.1021/ie048978i 10.1021/acs.energyfuels.7b00208 10.1016/j.apcatb.2009.10.029 10.1016/j.nanoen.2016.04.038 10.1126/science.1176731 10.1007/978-3-319-06656-1 10.1016/j.apcatb.2013.10.034 10.1039/B809990C 10.1016/j.cattod.2013.12.025 10.1016/j.jcat.2012.01.004 10.1002/cctc.201301104 10.1016/j.apenergy.2013.10.064 10.1039/C5TA02289D 10.1021/ie050756c 10.1021/acs.energyfuels.5b01444 10.1016/j.fuel.2012.11.035 10.1039/b904370e 10.1016/0360-5442(87)90119-8 10.1021/ef020151i 10.1016/j.fuel.2015.10.049 10.1021/ef402203a 10.1039/b926193a 10.1021/ef401513p 10.1016/S0926-860X(02)00230-2 10.1016/j.apsusc.2012.12.023 10.4209/aaqr.2015.10.0603 10.1016/j.apcatb.2014.09.007 10.1016/j.cherd.2014.04.001 10.1021/ef980080g 10.1016/j.combustflame.2015.05.006 10.1016/j.ijhydene.2014.12.130 10.1021/ef0501389 10.1021/ef0301452 10.1016/j.apcatb.2017.09.067 10.1016/j.ijggc.2018.01.007 10.1016/j.cattod.2013.02.005 10.1002/aic.11188 10.1039/C6EE03718F 10.1021/cs501862h 10.1016/j.fuel.2016.04.110 10.1021/ef400184b 10.1016/j.ijhydene.2011.02.146 10.1021/ef060068l 10.1016/j.egypro.2014.11.003 10.1016/j.apcatb.2016.09.020 10.1016/j.pecs.2011.09.001 10.1038/ngeo2668 10.1016/j.apcata.2008.05.018 10.1002/ghg.1763 10.1021/cm201182d 10.1021/ie900638p 10.1021/cs401027p 10.2516/ogst/2010038 10.1016/j.ijggc.2014.06.026 10.1016/j.egypro.2011.01.068 10.1016/j.apenergy.2015.06.028 10.1016/0021-9797(68)90272-5 10.1016/j.ces.2011.06.025 10.1016/j.rser.2016.01.003 10.1016/j.apcatb.2015.04.039 10.1039/C2CC37109J 10.1016/j.fuproc.2013.05.013 10.1002/ceat.201100649 10.1021/nn9015423 10.1126/science.aah7161 10.1021/ie049813c 10.1016/j.apenergy.2012.09.009 10.1016/j.powtec.2008.06.003 10.1039/C4TA03550J 10.1021/cm052580a 10.1016/S1003-9953(07)60041-3 10.1073/pnas.1700104114 10.1016/j.fuel.2006.05.026 10.1016/j.apsusc.2012.06.067 10.1016/j.ijhydene.2015.09.128 10.1016/j.cej.2008.06.004 10.1016/j.apenergy.2015.01.056 10.1016/j.jcou.2016.11.003 10.3390/catal8010027 10.1021/ef3003137 10.1002/aic.12143 10.1002/ente.201600177 10.1002/9783527621705 10.1021/acscatal.5b00357 10.1016/j.rser.2015.08.068 10.1021/acs.jpcc.5b09876 10.1021/ef501981g 10.2298/PAC1302045S 10.1021/ie100651d 10.1016/j.apcatb.2015.05.018 10.1016/j.cattod.2015.10.027 10.1016/j.cej.2016.11.143 10.1016/j.apenergy.2016.10.114 10.1016/j.ijhydene.2010.08.126 10.1039/c0ce00989j 10.1021/acs.iecr.6b00963 10.1016/j.fuel.2009.09.028 10.1016/j.fuproc.2016.04.032 10.1205/cherd.05206 10.1016/j.apcatb.2014.09.023 10.1002/chem.201001827 10.1002/9780470872888 10.1016/j.cej.2015.04.105 10.1039/c3ra43965h 10.1021/ie200802y 10.1021/ie302626x 10.1039/B918446E 10.1021/es5046309 10.1016/j.egypro.2014.11.010 10.1016/j.ces.2008.02.021 10.1016/S0167-2991(04)80051-X 10.1016/j.jaap.2011.01.010 10.1002/ente.201500035 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/ma11071187 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | PMC6073161 29996567 10_3390_ma11071187 |
| Genre | Journal Article Review |
| GeographicLocations | Ceram |
| GeographicLocations_xml | – name: Ceram |
| GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IPNFZ KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RIG RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c472t-10bd0ef0a75c824b51f771b2522fd94398c0dcfc4d0f7d513c79abb787d58c7c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442117300138&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Tue Nov 04 01:59:11 EST 2025 Sun Nov 09 13:23:24 EST 2025 Fri Jul 25 12:08:43 EDT 2025 Wed Feb 19 02:42:55 EST 2025 Sat Nov 29 07:13:33 EST 2025 Tue Nov 18 21:37:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | structured nanomaterials metal oxides CH4 reforming catalyst-assisted chemical looping oxygen carrier bifunctional materials core-shell |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-10bd0ef0a75c824b51f771b2522fd94398c0dcfc4d0f7d513c79abb787d58c7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4267-7397 0000-0001-9205-7917 0000-0003-0792-054X |
| OpenAccessLink | https://www.proquest.com/docview/2131650599?pq-origsite=%requestingapplication% |
| PMID | 29996567 |
| PQID | 2131650599 |
| PQPubID | 2032366 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6073161 proquest_miscellaneous_2068912475 proquest_journals_2131650599 pubmed_primary_29996567 crossref_citationtrail_10_3390_ma11071187 crossref_primary_10_3390_ma11071187 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-10 |
| PublicationDateYYYYMMDD | 2018-07-10 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Materials |
| PublicationTitleAlternate | Materials (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Baktash (ref_118) 2015; 179 Qin (ref_83) 2013; 266 Ishida (ref_24) 1987; 12 Machida (ref_98) 2015; 119 ref_90 Fink (ref_155) 1968; 26 ref_131 Lyngfelt (ref_52) 2011; 66 Readman (ref_72) 2006; 20 ref_10 Sedor (ref_64) 2008; 63 Johansson (ref_70) 2009; 2 Datta (ref_82) 2016; 4 Keller (ref_48) 2014; 92 Adanez (ref_2) 2012; 38 Sarshar (ref_123) 2012; 26 Feyen (ref_147) 2011; 17 Yoo (ref_153) 2014; 2 Cleverstam (ref_54) 2010; 56 Hu (ref_40) 2017; 17 Dou (ref_28) 2016; 53 Pishahang (ref_134) 2016; 4 Jackson (ref_148) 2015; 5 Gao (ref_145) 2011; 13 Corbella (ref_84) 2007; 86 Li (ref_140) 2012; 288 Quddus (ref_66) 2013; 210 Zhao (ref_39) 2017; 10 Li (ref_142) 2013; 49 Wei (ref_111) 2017; 31 ref_127 Azimi (ref_105) 2012; 27 He (ref_6) 2015; 49 ref_25 Yu (ref_27) 2011; 51 Abad (ref_53) 2014; 28 Dharanipragada (ref_100) 2016; 55 Zafar (ref_87) 2005; 44 Ryden (ref_74) 2006; 85 Theofanidis (ref_51) 2015; 5 ref_29 Solunke (ref_137) 2010; 49 Zhao (ref_144) 2008; 116 Ushakov (ref_143) 2004; 241 Bhavsar (ref_14) 2014; 228 Tian (ref_124) 2017; 209 Pengpanich (ref_129) 2002; 234 Johansson (ref_133) 2006; 20 Pans (ref_108) 2013; 115 Galvita (ref_22) 2013; 52 Galvita (ref_23) 2015; 164 Cabello (ref_76) 2014; 147 Bhavsar (ref_109) 2013; 52 Tang (ref_1) 2015; 151 Buelens (ref_15) 2016; 354 Park (ref_119) 2010; 21 Romeo (ref_45) 2016; 162 Abad (ref_75) 2008; 87 Wang (ref_151) 2017; 312 Gu (ref_50) 2015; 277 Tian (ref_132) 2018; 8 Galinsky (ref_149) 2015; 164 Mihai (ref_113) 2011; 50 Yang (ref_154) 2011; 23 Sun (ref_99) 2015; 29 Srdic (ref_152) 2013; 7 He (ref_115) 2013; 108 Neal (ref_122) 2015; 157 Tian (ref_56) 2009; 48 Hossain (ref_102) 2007; 53 Haszeldine (ref_18) 2009; 325 Dharanipragada (ref_89) 2015; 3 Ismail (ref_92) 2014; 63 Park (ref_139) 2010; 20 Jin (ref_62) 1998; 12 Antigoni (ref_114) 2010; 89 Chen (ref_31) 2017; 185 He (ref_78) 2007; 16 Bao (ref_136) 2004; Volume 147 (ref_42) 2016; 56 Mattisson (ref_73) 2011; 66 Hu (ref_126) 2018; 231 Rogelj (ref_9) 2016; 9 Lori (ref_116) 2011; 36 Frick (ref_107) 2016; 150 Smit (ref_16) 2010; 49 Abad (ref_58) 2004; 18 Jacobs (ref_91) 2018; 70 Xu (ref_141) 2015; 162 Tobias (ref_130) 2001; 80 Shafiefarhood (ref_121) 2014; 6 Liu (ref_47) 2013; 27 Cabello (ref_81) 2014; 121 Li (ref_3) 2013; 102 Jin (ref_101) 2002; 41 Mondal (ref_7) 2012; 46 Dean (ref_44) 2011; 89 Rao (ref_37) 2017; 114 Kenarsari (ref_8) 2013; 3 Erans (ref_46) 2016; 180 Fan (ref_21) 2015; 61 Tan (ref_95) 2012; 258 Cebrucean (ref_12) 2014; 63 Wang (ref_103) 2010; 3 Zhu (ref_128) 2001; 208 Protasova (ref_38) 2016; 181 Mei (ref_80) 2014; 28 Rochelle (ref_17) 2009; 325 Chen (ref_34) 2010; 35 Azimi (ref_106) 2015; 34 Blamey (ref_41) 2011; 4 Zhang (ref_138) 2015; 176–177 Evdou (ref_150) 2016; 165 Johansson (ref_88) 2004; 43 Bhavsar (ref_120) 2012; 35 Johansson (ref_61) 2006; 84 Kelly (ref_60) 2008; 24 Ishida (ref_71) 1996; 10 Wang (ref_57) 2014; 26 ref_36 Mungse (ref_104) 2015; 3 Wang (ref_79) 2011; 91 Kang (ref_96) 2014; 92 Ksepko (ref_85) 2014; 115 Lin (ref_49) 2009; 189 Nandy (ref_26) 2016; 59 Chen (ref_33) 2016; 162 Dai (ref_135) 2006; 110 Arnal (ref_146) 2006; 18 Zafar (ref_59) 2006; 20 Corbella (ref_67) 2006; 45 Zhu (ref_97) 2014; 28 Mattisson (ref_63) 2003; 17 Galvita (ref_30) 2011; 54 Blamey (ref_43) 2010; 36 Silvester (ref_69) 2015; 40 Guo (ref_5) 2016; 25 Kohn (ref_35) 2010; 94 Ortiz (ref_19) 2008; 144 Hu (ref_20) 2016; 16 Lim (ref_112) 2017; 202 Holmen (ref_32) 2008; 346 Dharanipragada (ref_125) 2018; 222 Abad (ref_55) 2004; 83 Antzara (ref_68) 2016; 272 Dueso (ref_65) 2010; 89 Ismail (ref_93) 2016; 41 Liu (ref_86) 2016; 16 Liu (ref_94) 2012; 51 Wei (ref_110) 2015; 40 Bhavsar (ref_77) 2013; 27 ref_4 Jacobson (ref_11) 2009; 2 Roy (ref_13) 2010; 4 Li (ref_117) 2014; 4 23124111 - Chem Commun (Camb). 2013 May 14;49(39):4226-8 28522461 - Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13385-13393 19779187 - Science. 2009 Sep 25;325(5948):1647-52 20453272 - Nanotechnology. 2010 Jun 4;21(22):225708 20141175 - ACS Nano. 2010 Mar 23;4(3):1259-78 17624420 - Dent Mater. 2008 Mar;24(3):289-98 21207578 - Chemistry. 2011 Jan 10;17(2):598-605 25485763 - Environ Sci Technol. 2015 Jan 6;49(1):649-56 27738013 - Science. 2016 Oct 28;354(6311):449-452 20652916 - Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6058-82 19779188 - Science. 2009 Sep 25;325(5948):1652-4 25079636 - J Environ Sci (China). 2014 May 1;26(5):1062-70 17091997 - J Phys Chem B. 2006 Nov 16;110(45):22525-31 |
| References_xml | – volume: 92 start-page: 1753 year: 2014 ident: ref_48 article-title: Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC) publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.12.006 – volume: 151 start-page: 143 year: 2015 ident: ref_1 article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.017 – volume: 61 start-page: 2 year: 2015 ident: ref_21 article-title: Chemical-looping technology platform publication-title: AIChE J. doi: 10.1002/aic.14695 – volume: 89 start-page: 836 year: 2011 ident: ref_44 article-title: The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.10.013 – volume: 54 start-page: 907 year: 2011 ident: ref_30 article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping publication-title: Top. Catal. doi: 10.1007/s11244-011-9709-7 – volume: 241 start-page: 2268 year: 2004 ident: ref_143 article-title: Crystallization in hafnia- and zirconia-based systems publication-title: Phys. Status Solidi doi: 10.1002/pssb.200404935 – volume: 24 start-page: 289 year: 2008 ident: ref_60 article-title: Stabilized zirconia as a structural ceramic: An overview publication-title: Dent. Mater. doi: 10.1016/j.dental.2007.05.005 – volume: 49 start-page: 6058 year: 2010 ident: ref_16 article-title: Carbon dioxide capture: Prospects for new materials publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201000431 – volume: 16 start-page: 8 year: 2016 ident: ref_20 article-title: CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.05.006 – volume: 89 start-page: 3399 year: 2010 ident: ref_65 article-title: Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2010.03.043 – volume: 46 start-page: 431 year: 2012 ident: ref_7 article-title: Progress and trends in CO2 capture/separation technologies: A review publication-title: Energy doi: 10.1016/j.energy.2012.08.006 – volume: 121 start-page: 117 year: 2014 ident: ref_81 article-title: Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit publication-title: Fuel doi: 10.1016/j.fuel.2013.12.027 – volume: 10 start-page: 958 year: 1996 ident: ref_71 article-title: A fundamental study of a new kind of medium material for chemical-looping combustion publication-title: Energy Fuels doi: 10.1021/ef950173n – volume: 162 start-page: 787 year: 2016 ident: ref_45 article-title: The calcium-looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.121 – volume: 49 start-page: 11037 year: 2010 ident: ref_137 article-title: Hydrogen production via chemical looping steam reforming in a periodically operated fixed-bed reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100432j – volume: 27 start-page: 367 year: 2012 ident: ref_105 article-title: Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU) publication-title: Energy Fuels doi: 10.1021/ef301120r – volume: 325 start-page: 1647 year: 2009 ident: ref_18 article-title: Carbon capture and storage: How green can black be? publication-title: Science doi: 10.1126/science.1172246 – volume: 26 start-page: 1062 year: 2014 ident: ref_57 article-title: Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(13)60546-X – ident: ref_29 doi: 10.1017/9781108157841 – volume: 34 start-page: 12 year: 2015 ident: ref_106 article-title: Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU) publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2014.12.022 – volume: 80 start-page: 1953 year: 2001 ident: ref_130 article-title: The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2 publication-title: Fuel doi: 10.1016/S0016-2361(01)00051-5 – volume: 52 start-page: 8416 year: 2013 ident: ref_22 article-title: CeO2-modified Fe2O3 for CO2 utilization via chemical looping publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4003574 – volume: 20 start-page: 1382 year: 2006 ident: ref_72 article-title: Chemical looping combustion using NiO/NiAl2O4: Mechanisms and kinetics of reduction−oxidation (red-ox) reactions from in situ powder X-ray diffraction and thermogravimetry experiments publication-title: Energy Fuels doi: 10.1021/ef0504319 – volume: 52 start-page: 15342 year: 2013 ident: ref_109 article-title: Bimetallic Fe–Ni oxygen carriers for chemical looping combustion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400612g – volume: 83 start-page: 1749 year: 2004 ident: ref_55 article-title: Development of Cu-based oxygen carriers for chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2004.03.003 – volume: 41 start-page: 4004 year: 2002 ident: ref_101 article-title: Reactivity study on natural-gas-fueled chemical-looping combustion by a fixed-bed reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020184l – volume: 36 start-page: 260 year: 2010 ident: ref_43 article-title: The calcium looping cycle for large-scale CO2 capture publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.10.001 – volume: 116 start-page: 1164 year: 2008 ident: ref_144 article-title: Nanocoating Fe2O3 powders with a homogeneous ultrathin ZrO2 shell publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.116.1164 – ident: ref_10 – volume: 4 start-page: 304 year: 2016 ident: ref_82 article-title: Hydrogen and carbon monoxide production by chemical looping over iron-aluminium oxides publication-title: Energy Technol. doi: 10.1002/ente.201500231 – volume: 21 start-page: 225708 year: 2010 ident: ref_119 article-title: Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion publication-title: Nanotechnology doi: 10.1088/0957-4484/21/22/225708 – volume: 231 start-page: 123 year: 2018 ident: ref_126 article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: Spatial structuring effects on process efficiency publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.004 – volume: 87 start-page: 2641 year: 2008 ident: ref_75 article-title: Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2008.02.016 – volume: 209 start-page: 402 year: 2017 ident: ref_124 article-title: Evaluation of a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping with oxygen uncoupling publication-title: Fuel doi: 10.1016/j.fuel.2017.08.022 – volume: 85 start-page: 1631 year: 2006 ident: ref_74 article-title: Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor publication-title: Fuel doi: 10.1016/j.fuel.2006.02.004 – volume: 110 start-page: 22525 year: 2006 ident: ref_135 article-title: Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage publication-title: J. Phys. Chem. B doi: 10.1021/jp063490b – volume: 56 start-page: 1387 year: 2016 ident: ref_42 article-title: Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.007 – volume: 180 start-page: 722 year: 2016 ident: ref_46 article-title: Calcium looping sorbents for CO2 capture publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.074 – volume: 208 start-page: 403 year: 2001 ident: ref_128 article-title: Catalytic partial oxidation of methane to syngas over Ni-CeO2 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(00)00728-6 – volume: 41 start-page: 4073 year: 2016 ident: ref_93 article-title: Development and performance of iron based oxygen carriers containing calcium ferrites for chemical looping combustion and production of hydrogen publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.11.066 – volume: 44 start-page: 3485 year: 2005 ident: ref_87 article-title: Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie048978i – volume: 31 start-page: 5174 year: 2017 ident: ref_111 article-title: Experimental investigation of Fe–Ni–Al oxygen carrier derived from hydrotalcite-like precursors for the chemical looping gasification of biomass char publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00208 – volume: 94 start-page: 125 year: 2010 ident: ref_35 article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al2O3 monolith catalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.10.029 – volume: 25 start-page: 1 year: 2016 ident: ref_5 article-title: CO2 removal from flue gas with amine-impregnated titanate nanotubes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.038 – volume: 325 start-page: 1652 year: 2009 ident: ref_17 article-title: Amine scrubbing for CO2 capture publication-title: Science doi: 10.1126/science.1176731 – ident: ref_4 doi: 10.1007/978-3-319-06656-1 – volume: 147 start-page: 980 year: 2014 ident: ref_76 article-title: Relevance of the catalytic activity on the performance of a NiO/CaAl2O4 oxygen carrier in a CLC process publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.10.034 – volume: 2 start-page: 148 year: 2009 ident: ref_11 article-title: Review of solutions to global warming, air pollution, and energy security publication-title: Energy Environ. Sci. doi: 10.1039/B809990C – volume: 228 start-page: 96 year: 2014 ident: ref_14 article-title: Chemical looping: To combustion and beyond publication-title: Catal. Today doi: 10.1016/j.cattod.2013.12.025 – volume: 288 start-page: 54 year: 2012 ident: ref_140 article-title: Fine-tunable Ni@porous silica core–shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas publication-title: J. Catal. doi: 10.1016/j.jcat.2012.01.004 – volume: 6 start-page: 790 year: 2014 ident: ref_121 article-title: Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for methane partial oxidation publication-title: ChemCatChem doi: 10.1002/cctc.201301104 – volume: 115 start-page: 374 year: 2014 ident: ref_85 article-title: Studies on the redox reaction kinetics of Fe2O3-CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.064 – volume: 3 start-page: 16251 year: 2015 ident: ref_89 article-title: Mg–Fe–Al–O for advanced CO2 to CO conversion: Carbon monoxide yield vs. oxygen storage capacity publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02289D – volume: 45 start-page: 157 year: 2006 ident: ref_67 article-title: Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane in multicycle tests publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050756c – volume: 29 start-page: 7612 year: 2015 ident: ref_99 article-title: Performance of CeO2-modified iron-based oxygen carrier in the chemical looping hydrogen generation process publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01444 – volume: 108 start-page: 465 year: 2013 ident: ref_115 article-title: The use of La1−xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane publication-title: Fuel doi: 10.1016/j.fuel.2012.11.035 – volume: 2 start-page: 970 year: 2009 ident: ref_70 article-title: NiO supported on Mg-ZrO2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming publication-title: Energy Environ. Sci. doi: 10.1039/b904370e – volume: 12 start-page: 147 year: 1987 ident: ref_24 article-title: Evaluation of a chemical-looping combustion power-generation system by graphic exergy analysis publication-title: Energy doi: 10.1016/0360-5442(87)90119-8 – volume: 17 start-page: 643 year: 2003 ident: ref_63 article-title: Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical-looping combustion publication-title: Energy Fuels doi: 10.1021/ef020151i – volume: 165 start-page: 367 year: 2016 ident: ref_150 article-title: Ferrites as redox catalysts for chemical looping processes publication-title: Fuel doi: 10.1016/j.fuel.2015.10.049 – volume: 28 start-page: 754 year: 2014 ident: ref_97 article-title: Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier: Evolution of its structure and reducibility publication-title: Energy Fuels doi: 10.1021/ef402203a – volume: 3 start-page: 1353 year: 2010 ident: ref_103 article-title: Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier publication-title: Energy Environ. Sci. doi: 10.1039/b926193a – volume: 27 start-page: 5987 year: 2013 ident: ref_47 article-title: Investigation of a canadian ilmenite as an oxygen carrier for chemical looping combustion publication-title: Energy Fuels doi: 10.1021/ef401513p – volume: 234 start-page: 221 year: 2002 ident: ref_129 article-title: Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(02)00230-2 – volume: 266 start-page: 350 year: 2013 ident: ref_83 article-title: Theoretical study of oxidation–reduction reaction of Fe2O3 supported on MgO during chemical looping combustion publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.12.023 – volume: 16 start-page: 2023 year: 2016 ident: ref_86 article-title: Fabrication of Fe2O3/TiO2 oxygen carriers for chemical looping combustion and hydrogen generation publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2015.10.0603 – volume: 164 start-page: 184 year: 2015 ident: ref_23 article-title: Catalyst-assisted chemical looping for CO2 conversion to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.09.007 – volume: 92 start-page: 2584 year: 2014 ident: ref_96 article-title: Reduction and oxidation properties of Fe2O3/ZrO2 oxygen carrier for hydrogen production publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.04.001 – volume: 12 start-page: 1272 year: 1998 ident: ref_62 article-title: Development of a novel chemical-looping combustion synthesis of a looping material with a double metal oxide of CoO-NiO publication-title: Energy Fuels doi: 10.1021/ef980080g – volume: 162 start-page: 3030 year: 2015 ident: ref_141 article-title: Self-assembly template combustion synthesis of a core–shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.05.006 – volume: 40 start-page: 7490 year: 2015 ident: ref_69 article-title: NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.12.130 – volume: 20 start-page: 34 year: 2006 ident: ref_59 article-title: Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4 publication-title: Energy Fuels doi: 10.1021/ef0501389 – volume: 18 start-page: 371 year: 2004 ident: ref_58 article-title: Selection of oxygen carriers for chemical-looping combusion publication-title: Energy Fuels doi: 10.1021/ef0301452 – volume: 222 start-page: 59 year: 2018 ident: ref_125 article-title: Bifunctional Co- and Ni-ferrites for catalyst-assisted chemical looping with alcohols publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.067 – volume: 70 start-page: 12 year: 2018 ident: ref_91 article-title: Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2018.01.007 – volume: 210 start-page: 124 year: 2013 ident: ref_66 article-title: Ni based oxygen carrier over γ-Al2O3 for chemical looping combustion: Effect of preparation method on metal support interaction publication-title: Catal. Today doi: 10.1016/j.cattod.2013.02.005 – volume: 53 start-page: 1817 year: 2007 ident: ref_102 article-title: Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC publication-title: AIChE J. doi: 10.1002/aic.11188 – volume: 10 start-page: 1885 year: 2017 ident: ref_39 article-title: Biomass-based chemical looping technologies: The good, the bad and the future publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03718F – volume: 5 start-page: 1804 year: 2015 ident: ref_148 article-title: Catalyst design with atomic layer deposition publication-title: ACS Catal. doi: 10.1021/cs501862h – volume: 181 start-page: 75 year: 2016 ident: ref_38 article-title: Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes publication-title: Fuel doi: 10.1016/j.fuel.2016.04.110 – volume: 27 start-page: 2073 year: 2013 ident: ref_77 article-title: Reducible supports for Ni-based oxygen carriers in chemical looping combustion publication-title: Energy Fuels doi: 10.1021/ef400184b – volume: 36 start-page: 6657 year: 2011 ident: ref_116 article-title: La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.02.146 – volume: 20 start-page: 2399 year: 2006 ident: ref_133 article-title: Creating a synergy effect by using mixed oxides of iron- and nickel oxides in the combustion of methane in a chemical-looping combustion reactor publication-title: Energy Fuels doi: 10.1021/ef060068l – volume: 63 start-page: 18 year: 2014 ident: ref_12 article-title: CO2 capture and storage from fossil fuel power plants publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.003 – volume: 202 start-page: 175 year: 2017 ident: ref_112 article-title: Phase transition of Fe2O3–NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.09.020 – volume: 38 start-page: 215 year: 2012 ident: ref_2 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2011.09.001 – volume: 9 start-page: 187 year: 2016 ident: ref_9 article-title: Geosciences after Paris publication-title: Nat. Geosci. doi: 10.1038/ngeo2668 – volume: 346 start-page: 1 year: 2008 ident: ref_32 article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.05.018 – volume: 8 start-page: 1 year: 2018 ident: ref_132 article-title: Performance of a Cu-Fe-based oxygen carrier combined with a Ni-based oxygen carrier in a chemical-looping combustion process based on fixed-bed reactors publication-title: Greenh. Gas Sci. Technol. doi: 10.1002/ghg.1763 – volume: 23 start-page: 3676 year: 2011 ident: ref_154 article-title: Organosilane-assisted transformation from core–shell to yolk–shell nanocomposites publication-title: Chem. Mater. doi: 10.1021/cm201182d – volume: 48 start-page: 8418 year: 2009 ident: ref_56 article-title: Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900638p – volume: 4 start-page: 1526 year: 2014 ident: ref_117 article-title: Yolk–satellite–shell structured Ni–yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction publication-title: ACS Catal. doi: 10.1021/cs401027p – ident: ref_127 – volume: 66 start-page: 161 year: 2011 ident: ref_52 article-title: Oxygen carriers for chemical looping combustion—4000 h of operational experience publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2010038 – volume: 28 start-page: 168 year: 2014 ident: ref_53 article-title: Performance of Cu- and Fe-based oxygen carriers in a 500 Wth CLC unit for sour gas combustion with high H2S content publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2014.06.026 – volume: 4 start-page: 402 year: 2011 ident: ref_41 article-title: Calcium looping for CO2 capture: Sorbent enhancement through doping publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.01.068 – volume: 157 start-page: 391 year: 2015 ident: ref_122 article-title: Effect of core and shell compositions on MeOx@LaySr1−yFeO3 core–shell redox catalysts for chemical looping reforming of methane publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.06.028 – volume: 26 start-page: 62 year: 1968 ident: ref_155 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 66 start-page: 4636 year: 2011 ident: ref_73 article-title: Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.06.025 – volume: 59 start-page: 597 year: 2016 ident: ref_26 article-title: Present status and overview of chemical looping combustion technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.01.003 – volume: 176–177 start-page: 513 year: 2015 ident: ref_138 article-title: Coke-resistant Ni@SiO2 catalyst for dry reforming of methane publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.04.039 – volume: 49 start-page: 4226 year: 2013 ident: ref_142 article-title: A Ni@ZrO2 nanocomposite for ethanol steam reforming: Enhanced stability via strong metal-oxide interaction publication-title: Chem. Commun. (Camb.) doi: 10.1039/C2CC37109J – volume: 115 start-page: 152 year: 2013 ident: ref_108 article-title: Use of chemically and physically mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.05.013 – volume: 35 start-page: 1281 year: 2012 ident: ref_120 article-title: Chemical looping dry reforming as novel, intensified process for CO2 activation publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100649 – volume: 4 start-page: 1259 year: 2010 ident: ref_13 article-title: Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons publication-title: ACS Nano doi: 10.1021/nn9015423 – volume: 354 start-page: 449 year: 2016 ident: ref_15 article-title: Super-dry reforming of methane intensifies CO2 utilization via le chatelier’s principle publication-title: Science doi: 10.1126/science.aah7161 – volume: 43 start-page: 6978 year: 2004 ident: ref_88 article-title: Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049813c – volume: 102 start-page: 1439 year: 2013 ident: ref_3 article-title: Advances in CO2 capture technology: A patent review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.009 – volume: 189 start-page: 57 year: 2009 ident: ref_49 article-title: Inhibition and promotion: The effect of earth alkali metals and operating temperature on particle agglomeration/defluidization during incineration in fluidized bed publication-title: Powder Technol. doi: 10.1016/j.powtec.2008.06.003 – volume: 2 start-page: 18929 year: 2014 ident: ref_153 article-title: Hollow nickel-coated silica microspheres containing rhodium nanoparticles for highly selective production of hydrogen from hydrous hydrazine publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03550J – volume: 18 start-page: 2733 year: 2006 ident: ref_146 article-title: Highly monodisperse zirconia-coated silica spheres and zirconia-silica hollow spheres with remarkable textural properties publication-title: Chem. Mater. doi: 10.1021/cm052580a – volume: 16 start-page: 155 year: 2007 ident: ref_78 article-title: Application of Fe2O3/Al2O3 composite particles as oxygen carrier of chemical looping combustion publication-title: J. Nat. Gas Chem. doi: 10.1016/S1003-9953(07)60041-3 – volume: 114 start-page: 13385 year: 2017 ident: ref_37 article-title: Solar thermochemical splitting of water to generate hydrogen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1700104114 – volume: 86 start-page: 113 year: 2007 ident: ref_84 article-title: Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane publication-title: Fuel doi: 10.1016/j.fuel.2006.05.026 – volume: 258 start-page: 10022 year: 2012 ident: ref_95 article-title: Synergetic effect of ZrO2 on the oxidation–reduction reaction of Fe2O3 during chemical looping combustion publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.06.067 – volume: 40 start-page: 16021 year: 2015 ident: ref_110 article-title: Performance of Fe–Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10 kwth interconnected circulating fluidized bed reactor publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.09.128 – ident: ref_131 – volume: 144 start-page: 289 year: 2008 ident: ref_19 article-title: Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.004 – volume: 162 start-page: 1141 year: 2016 ident: ref_33 article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.056 – volume: 17 start-page: 20 year: 2017 ident: ref_40 article-title: A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.11.003 – ident: ref_90 doi: 10.3390/catal8010027 – volume: 26 start-page: 3091 year: 2012 ident: ref_123 article-title: Development of sinter-resistant core–shell LaMnxFe1–xO3@mSiO2 oxygen carriers for chemical looping combustion publication-title: Energy Fuels doi: 10.1021/ef3003137 – volume: 56 start-page: 2211 year: 2010 ident: ref_54 article-title: Fe2O3 on Ce-, Ca-, or Mg-stabilized ZrO2 as oxygen carrier for chemical-looping combustion using NiO as additive publication-title: AIChE J. doi: 10.1002/aic.12143 – volume: 4 start-page: 1305 year: 2016 ident: ref_134 article-title: Performance of perovskite-type oxides as oxygen-carrier materials for chemical looping combustion in the presence of H2S publication-title: Energy Technol. doi: 10.1002/ente.201600177 – ident: ref_36 doi: 10.1002/9783527621705 – volume: 5 start-page: 3028 year: 2015 ident: ref_51 article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe publication-title: ACS Catal. doi: 10.1021/acscatal.5b00357 – volume: 53 start-page: 536 year: 2016 ident: ref_28 article-title: Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.08.068 – volume: 119 start-page: 24932 year: 2015 ident: ref_98 article-title: The role of CeO2 as a gateway for oxygen storage over CeO2-grafted Fe2O3 composite materials publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09876 – volume: 28 start-page: 7043 year: 2014 ident: ref_80 article-title: On a highly reactive Fe2O3/Al2O3 oxygen carrier for in situ gasification chemical looping combustion publication-title: Energy Fuels doi: 10.1021/ef501981g – volume: 7 start-page: 45 year: 2013 ident: ref_152 article-title: Recent progress on synthesis of ceramics core/shell nanostructures publication-title: Process. Appl. Ceram. doi: 10.2298/PAC1302045S – volume: 50 start-page: 2613 year: 2011 ident: ref_113 article-title: Catalytic consequence of oxygen of lanthanum ferrite perovskite in chemical looping reforming of methane publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100651d – volume: 179 start-page: 122 year: 2015 ident: ref_118 article-title: Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.05.018 – volume: 272 start-page: 32 year: 2016 ident: ref_68 article-title: Activity study of NiO-based oxygen carriers in chemical looping steam methane reforming publication-title: Catal. Today doi: 10.1016/j.cattod.2015.10.027 – volume: 312 start-page: 252 year: 2017 ident: ref_151 article-title: Chemical looping combustion of biomass using metal ferrites as oxygen carriers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.143 – volume: 185 start-page: 687 year: 2017 ident: ref_31 article-title: Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.114 – volume: 35 start-page: 11787 year: 2010 ident: ref_34 article-title: Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.08.126 – volume: 13 start-page: 3511 year: 2011 ident: ref_145 article-title: Synthesis and characterization of ZrO2 capsules and crystalline ZrO2 thin layers on Fe2O3 powders publication-title: CrystEngComm doi: 10.1039/c0ce00989j – volume: 55 start-page: 5911 year: 2016 ident: ref_100 article-title: Deactivation study of Fe2O3–CeO2 during redox cycles for CO production from CO2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b00963 – volume: 89 start-page: 1265 year: 2010 ident: ref_114 article-title: La1−xSrxFeO3−δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas publication-title: Fuel doi: 10.1016/j.fuel.2009.09.028 – volume: 150 start-page: 30 year: 2016 ident: ref_107 article-title: Investigation of Cu–Fe and Mn–Ni oxides as oxygen carriers for chemical-looping combustion publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.04.032 – volume: 84 start-page: 807 year: 2006 ident: ref_61 article-title: Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd.05206 – volume: 164 start-page: 371 year: 2015 ident: ref_149 article-title: Effect of support on redox stability of iron oxide for chemical looping conversion of methane publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.09.023 – volume: 17 start-page: 598 year: 2011 ident: ref_147 article-title: High-temperature stable, iron-based core-shell catalysts for ammonia decomposition publication-title: Chemistry doi: 10.1002/chem.201001827 – ident: ref_25 doi: 10.1002/9780470872888 – volume: 277 start-page: 70 year: 2015 ident: ref_50 article-title: Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.105 – volume: 3 start-page: 22739 year: 2013 ident: ref_8 article-title: Review of recent advances in carbon dioxide separation and capture publication-title: RSC Adv. doi: 10.1039/c3ra43965h – volume: 51 start-page: 2133 year: 2011 ident: ref_27 article-title: Activation strategies for calcium-based sorbents for CO2 capture: A perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200802y – volume: 51 start-page: 16597 year: 2012 ident: ref_94 article-title: The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302626x – volume: 20 start-page: 1239 year: 2010 ident: ref_139 article-title: Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability publication-title: J. Mater. Chem. doi: 10.1039/B918446E – volume: 49 start-page: 649 year: 2015 ident: ref_6 article-title: New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel publication-title: Environ. Sci. Technol. doi: 10.1021/es5046309 – volume: 63 start-page: 87 year: 2014 ident: ref_92 article-title: The performance of Fe2O3-CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.010 – volume: 63 start-page: 2994 year: 2008 ident: ref_64 article-title: Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC) publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.02.021 – volume: Volume 147 start-page: 199 year: 2004 ident: ref_136 article-title: Methane oxidation to synthesis gas using lattice oxygen publication-title: Studies in Surface Science and Catalysis doi: 10.1016/S0167-2991(04)80051-X – volume: 91 start-page: 105 year: 2011 ident: ref_79 article-title: Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.01.010 – volume: 3 start-page: 856 year: 2015 ident: ref_104 article-title: Mixed oxides of iron and manganese as potential low-cost oxygen carriers for chemical looping combustion publication-title: Energy Technol. doi: 10.1002/ente.201500035 – reference: 17091997 - J Phys Chem B. 2006 Nov 16;110(45):22525-31 – reference: 27738013 - Science. 2016 Oct 28;354(6311):449-452 – reference: 25485763 - Environ Sci Technol. 2015 Jan 6;49(1):649-56 – reference: 20141175 - ACS Nano. 2010 Mar 23;4(3):1259-78 – reference: 28522461 - Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13385-13393 – reference: 20453272 - Nanotechnology. 2010 Jun 4;21(22):225708 – reference: 19779188 - Science. 2009 Sep 25;325(5948):1652-4 – reference: 19779187 - Science. 2009 Sep 25;325(5948):1647-52 – reference: 21207578 - Chemistry. 2011 Jan 10;17(2):598-605 – reference: 23124111 - Chem Commun (Camb). 2013 May 14;49(39):4226-8 – reference: 25079636 - J Environ Sci (China). 2014 May 1;26(5):1062-70 – reference: 20652916 - Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6058-82 – reference: 17624420 - Dent Mater. 2008 Mar;24(3):289-98 |
| SSID | ssj0000331829 |
| Score | 2.5328078 |
| SecondaryResourceType | review_article |
| Snippet | Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the... Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1187 |
| SubjectTerms | Carbon dioxide Carbon sequestration Catalysts Catalytic converters Chemicals Climate change Conversion Decomposition Efficiency Emissions Energy resources Fluidized bed combustion Fossil fuels Fuels Greenhouse gases Industrial applications Industrial plant emissions Iron Materials selection Metal oxides Nanomaterials Natural gas Nickel Nuclear power plants Organic chemistry Oxygen Reduction Reforming Review Stability Synthesis gas Utilization Value added |
| Title | Advanced Chemical Looping Materials for CO2 Utilization: A Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29996567 https://www.proquest.com/docview/2131650599 https://www.proquest.com/docview/2068912475 https://pubmed.ncbi.nlm.nih.gov/PMC6073161 |
| Volume | 11 |
| WOSCitedRecordID | wos000442117300138&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VhQM99MGjbEuRq3LpIcVO4tjupVoQCFRYVgjQ9hTZjiNWgixlQ39_xxtvYNuKC0fLo8TyjO1vxuNvALYz7UqthYpkluoodYZGimY6srHjJpGiZNPk8ctj0e_L4VANQsBtEtIqZ3vidKMuxtbHyHdiljBEE1yp77e_Il81yt-uhhIaC7DomcrSDizu7vcHZ22UhSZos7FqeEkT9O93brT3eHyR7fmT6B94-XeW5KNj5-D1cwf8Bl4FwEl6jYW8hReuWoGXj2gIV6HXC4kAZEYfQI7H04dU5ETXjYkSBLdk7zQmF_XoOrzd_EZ6pLlbWIOLg_3zvcMolFaIbCriGjdfU1BXUi24lXFqOCuFYCZGNFYWCkGKtLSwpU0LWoqCs8QKpY3B1V1waYVN1qFTjSu3ASQzXKJrWzI85lJh0eFCCGdMatEGjCuSLnyZTXNuA--4L39xnaP_4VWSP6ikC59b2duGbeO_UpuzGc_DipvkD9PdhU9tN64VfwGiKze-RxmaSYWARvAuvGuU2_4m9p4fz_DjYk7trYDn4Z7vqUZXUz7ujPryX-z908P6AMsItqSPCzO6CZ367t59hCX7ux5N7rZgQQzlVjBfbP3Y_YqtwdHJ4Ocf-EP8Qg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk48H4EChgBBw6r2t712kZCKCpUjZqEHFrUnhbb6xWRyqY0WxB_it_IOPtoA4hbD5w98j7mm_E39ngG4EVqfGGM1JFKExMl3tJI09REjnthYyULtkwe_ziSk4k6ONDTNfjZ3oUJaZWtT1w66nzuwh75JmcxQzYhtH57_DUKXaPC6WrbQqOGxa7_8R1DtsWb4TvU70vOt9_vbe1ETVeByCWSV-h3bE59QY0UTvHEClZIySxHIlLkGtdn5WjuCpfktJC5YLGT2liLwM6FctLFOO8lWE8Q7KoH69PheHrY7erQGG2E67oOahxruvnFhAgrNPVeXfn-oLO_Z2WeW-a2b_xvP-gmXG8INRnUFnAL1nx5G66dK7N4BwaDJtGBtOURyGi-vChGxqaqTZAgeSdbHzjZr2ZHzd3U12RA6rOTu7B_Id9wD3rlvPQPgKRWKAzdC4bLeCIdBpRIUa1NHGLc-jzuw6tWrZlr6qqH9h5HGcZXAQLZGQT68LyTPa6rifxVaqPVcNZ4lEV2pt4-POuG0ReEAx5T-vkpytBUaSRsUvThfg2m7jE8RLYixcnlCsw6gVBnfHWknH1e1htPaWhvxh7--7WewpWdvfEoGw0nu4_gKhJLFfbAGd2AXnVy6h_DZfetmi1OnjRGQ-DTRcPwFxSuVtA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFiE48KYEChgBBw6r2N712kZCKGqJiJqGHCgqp8X2etVIZVOaLYi_xq9jnH20AcStB84eeR_zzfgbezwD8Dw1vjBG6kiliYkSb2mkaWoix72wsZIFWyaPfxzLyUQdHOjpGvxs78KEtMrWJy4ddT53YY-8z1nMkE0IrftFkxYx3Rm-Of4ahQ5S4aS1badRQ2TX__iO4dvi9WgHdf2C8-HbD9vvoqbDQOQSySv0QTanvqBGCqd4YgUrpGSWIykpco1rtXI0d4VLclrIXLDYSW2sRZDnQjnpYpz3EmwgJU_Qxjamo73pp26Hh8ZoL1zXNVHjWNP-FxOirdDge3UV_IPa_p6heW7JG974n3_WTbjeEG0yqC3jFqz58jZcO1d-8Q4MBk0CBGnLJpDxfHmBjOyZqjZNgqSebL_nZL-aHTV3Vl-RAanPVO7C_oV8wz1YL-elvw8ktUJhSF8wXN4T6TDQROpqbeIQ-9bncQ9etirOXFNvPbT9OMow7gpwyM7g0INnnexxXWXkr1JbrbazxtMssjNV9-BpN4w-Ihz8mNLPT1GGpkojkZOiB5s1sLrH8BDxihQnlyuQ6wRC_fHVkXJ2uKxDntLQ9ow9-PdrPYEriL1sPJrsPoSryDdV2BpndAvWq5NT_wguu2_VbHHyuLEfAp8vGoW_AF8QX5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Chemical+Looping+Materials+for+CO2+Utilization%3A+A+Review&rft.jtitle=Materials&rft.au=Hu%2C+Jiawei&rft.au=Galvita%2C+Vladimir+V.&rft.au=Poelman%2C+Hilde&rft.au=Marin%2C+Guy+B.&rft.date=2018-07-10&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=11&rft.issue=7&rft_id=info:doi/10.3390%2Fma11071187&rft_id=info%3Apmid%2F29996567&rft.externalDocID=PMC6073161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |