Cluster validity index for adaptive clustering algorithms

Everyday a large number of records of surfing internet are generated. In various situations when the authors are analysing internet data they do not know the cluster structure of the author's database of traffic features, such as when the border of cluster members is vague, and the clusters’ pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 8; číslo 13; s. 2256 - 2263
Hlavní autoři: Cui, Hongyan, Xie, Mingzhi, Cai, Yunlong, Huang, Xu, Liu, Yunjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.09.2014
John Wiley & Sons, Inc
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Everyday a large number of records of surfing internet are generated. In various situations when the authors are analysing internet data they do not know the cluster structure of the author's database of traffic features, such as when the border of cluster members is vague, and the clusters’ partitions have different shapes, how to establish an algorithm to solve the clustering problem? Adaptive clustering algorithms can meet this challenge. Moreover, how to determinate the number of clusters when not only fuzzy cluster but also hard cluster are used? To address those problems, a new cluster validity index is proposed in this study. The proposed index focuses on the information of the geometrical structure of dataset by analysing the neighbourhood of data objects, which makes the index independent of the traditional fuzzy membership matrix. The new index consists of two parts, namely the ‘compactness’ and ‘separation measure’. The compactness indicates the degree of the similarity among the data objects in the same cluster. The separation measure indicates the degree of dissimilarity among the data objects in different clusters. The performance of their proposed index is excellent underpinned by the outcomes from the experiments based on both artificial datasets and real world datasets.
AbstractList Everyday a large number of records of surfing internet are generated. In various situations when the authors are analysing internet data they do not know the cluster structure of the author's database of traffic features, such as when the border of cluster members is vague, and the clusters’ partitions have different shapes, how to establish an algorithm to solve the clustering problem? Adaptive clustering algorithms can meet this challenge. Moreover, how to determinate the number of clusters when not only fuzzy cluster but also hard cluster are used? To address those problems, a new cluster validity index is proposed in this study. The proposed index focuses on the information of the geometrical structure of dataset by analysing the neighbourhood of data objects, which makes the index independent of the traditional fuzzy membership matrix. The new index consists of two parts, namely the ‘compactness’ and ‘separation measure’. The compactness indicates the degree of the similarity among the data objects in the same cluster. The separation measure indicates the degree of dissimilarity among the data objects in different clusters. The performance of their proposed index is excellent underpinned by the outcomes from the experiments based on both artificial datasets and real world datasets.
Everyday a large number of records of surfing internet are generated. In various situations, when the authors are analysing internet data they do not know the cluster structure of the author's database of traffic features, such as when the border of cluster members is vague, and the clusters' partitions have different shapes, how to establish an algorithm to solve the clustering problem; adaptive clustering algorithms can meet this challenge. To address those problems, a new cluster validity index is proposed in this study. The proposed index focuses on the information of the geometrical structure of dataset by analysing the neighbourhood of data objects, which makes the index independent of the traditional fuzzy membership matrix. The new index consists of two parts, namely the 'compactness' and 'separation measure'. The compactness indicates the degree of the similarity among the data objects in the same cluster. The separation measure indicates the degree of dissimilarity among the data objects in different clusters. The performance of their proposed index is excellent underpinned by the outcomes from the experiments based on both artificial datasets and real world datasets.
Author Liu, Yunjie
Huang, Xu
Xie, Mingzhi
Cui, Hongyan
Cai, Yunlong
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Cui
  fullname: Cui, Hongyan
  email: Cuihy@bupt.edu.cn
  organization: 2Key Laboratory of Network System Architecture and Convergence, Beijing University of Post and Telecommunications, Beijing 100876, People's Republic of China
– sequence: 2
  givenname: Mingzhi
  surname: Xie
  fullname: Xie, Mingzhi
  organization: 2Key Laboratory of Network System Architecture and Convergence, Beijing University of Post and Telecommunications, Beijing 100876, People's Republic of China
– sequence: 3
  givenname: Yunlong
  surname: Cai
  fullname: Cai, Yunlong
  organization: 3Communication Lab of Huawei Technologies co. Ltd, Beijing 100085, People's Republic of China
– sequence: 4
  givenname: Xu
  surname: Huang
  fullname: Huang, Xu
  organization: 4Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra 2601, Australia
– sequence: 5
  givenname: Yunjie
  surname: Liu
  fullname: Liu, Yunjie
  organization: 2Key Laboratory of Network System Architecture and Convergence, Beijing University of Post and Telecommunications, Beijing 100876, People's Republic of China
BookMark eNqFkMtOxCAUQInRxOcHuGviRhcdebQU3GnjK9G40TWhcKuYThmBGZ2_t5MaNcboChbncLlnG633vgeE9gmeEFzIYwcpN346oZiwCRZSrqEtUpUkF5zx9c87FZtoO8ZnjMuSF8UWknU3jwlCttCdsy4tM9dbeMtaHzJt9Sy5BWRmZFz_mOnu0QeXnqZxF220uouw93HuoIeL8_v6Kr-5u7yuT29yU1RU5FKDpES2EihgjaGyVEjTkLKxDdiqZYbJggA0lvOiEYxzJjAvDdHUYmlKtoMOx3dnwb_MISY1ddFA1-ke_DwqwqlkBeVVNaAHP9BnPw_98LuBIrRgQmA8UNVImeBjDNAq45JOzvcpaNcpgtUqqRqSqiGpWiVVq6SDSX6Ys-CmOiz_dE5G59V1sPxfUPXtAz27wFgyMcj5KK-wr13-GHb0C399fq_qu9tvM2a2Ze_kb6vA
CitedBy_id crossref_primary_10_1111_itor_13288
crossref_primary_10_1016_j_eswa_2019_04_048
Cites_doi 10.1016/j.patcog.2009.09.018
10.1016/j.eswa.2012.05.049
10.1016/j.eswa.2010.06.032
10.1002/sam.10080
10.1109/ICDM.2010.35
10.1080/01969727408546059
10.1109/TFUZZ.2010.2087382
10.1080/01969727308546047
10.1109/TFUZZ.2010.2048114
10.1016/j.patcog.2004.04.007
10.1109/TKDE.2011.205
10.1016/j.ins.2009.11.005
10.1016/j.patrec.2009.07.009
10.1016/j.patrec.2010.08.007
10.1016/j.fss.2010.07.005
10.1016/j.patrec.2010.11.006
10.1007/BF02339490
10.1016/j.csda.2011.01.011
10.1007/978-1-4757-0450-1
10.1109/TSMCB.2010.2104319
10.1016/0165-0114(78)90016-7
10.1016/S0167-8655(97)00168-2
10.1016/j.patcog.2011.12.017
10.1049/iet-cvi.2012.0187
10.1016/S0031-3203(98)00157-5
10.1109/TFUZZ.2011.2106216
10.1109/34.85677
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright The Institution of Engineering & Technology Sep 2014
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
– notice: Copyright The Institution of Engineering & Technology Sep 2014
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1049/iet-com.2013.0899
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
CrossRef
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 2263
ExternalDocumentID 3462551671
10_1049_iet_com_2013_0899
CMU2BF00938
Genre article
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61201153
– fundername: National Natural Science Foundation of China
  funderid: 61201153
– fundername: National 973 Program of China
  funderid: 2012CB315805
– fundername: National Key Science and Technology Projects
  funderid: 2010ZX03004‐002‐02
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
ESX
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
LOTEE
LXI
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
4.4
6OB
96U
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
ROL
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4728-9ae9219f9e2e0a0e7d289cb15bdbed7f3c3941eebd664b836638065c1a2d09c53
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341647300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Sun Nov 09 10:26:44 EST 2025
Wed Aug 13 11:04:25 EDT 2025
Wed Oct 29 21:09:41 EDT 2025
Tue Nov 18 22:41:39 EST 2025
Wed Jan 22 16:30:28 EST 2025
Tue Jan 05 21:53:10 EST 2021
Thu May 09 18:30:18 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords artificial datasets
traffic features
data analysis
data objects
hard cluster
index separation measure
index compactness
author database
cluster members
adaptive clustering algorithms
Internet data analysis
pattern clustering
cluster partitions
cluster structure
cluster validity index
Internet
real world datasets
dataset geometrical structure
fuzzy membership matrix
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4728-9ae9219f9e2e0a0e7d289cb15bdbed7f3c3941eebd664b836638065c1a2d09c53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-com.2013.0899
PQID 1612438800
PQPubID 1936360
PageCount 8
ParticipantIDs proquest_journals_1612438800
proquest_miscellaneous_1629342677
iet_journals_10_1049_iet_com_2013_0899
crossref_citationtrail_10_1049_iet_com_2013_0899
crossref_primary_10_1049_iet_com_2013_0899
wiley_primary_10_1049_iet_com_2013_0899_CMU2BF00938
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET communications
PublicationYear 2014
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Skabar, A.; Abdalgader, K. (C8) 2013; 25
Roubens, M. (C11) 1978; 1
Rezaee, M.R.; Lelieveldt, B.P.F.; Reiber, J.H.C. (C16) 1998; 19
Bezdek, J.C. (C9) 1974; 1
Zahid, N.; Limouri, M.; Essaid, A. (C17) 1999; 32
Tasdemir, K.; Merényi, E. (C24) 2011; 41
Kim, J.; Billard, L. (C21) 2011; 55
Liang, J.; Zhao, X.; Li, D. (C22) 2012; 45
Kim, D.W.; Lee, K.H.; Lee, D. (C18) 2004; 37
Liu, C.; Zhou, A.; Zhang, G. (C34) 2013; 7
Rezaee, B. (C19) 2010; 161
Yue, S.; Wang, J.S.; Wu, T. (C29) 2010; 180
Bahar Baskir, M.; Burhan Türksen, I. (C27) 2012; 40
Dunn, J.C. (C12) 1974; 4
Le Capitaine, H. (C20) 2011; 19
Xie, X.L.; Beni, G. (C15) 1991; 13
Gurrutxaga, I.; Muguerza, J.; Arbelaitz, O. (C32) 2011; 32
Zalik, K.R.; Zalik, B. (C23) 2011; 32
Sledge, I.J.; Bezdek, J.C.; Havens, T.C. (C33) 2010; 18
Vendramin, L.; Campello, R.J.G.B.; Hruschka, E.R. (C31) 2010; 3
Yang, X. (C7) 2011; 19
Bezdek, J.C. (C10) 1974; 3
Davies, D.L.; Bouldin, W. (C13) 1970; 1
Lago-Fernández, L.F.; Corbacho, F. (C26) 2010; 43
Huang, K.Y. (C28) 2010; 37
Pascual, D.; Pla, F.; Sánchez, J.S. (C25) 2010; 31
2010; 31
2013; 25
2010; 37
1991; 13
2010
2010; 18
1975
1997
1996
1974; 1
2011; 55
2011; 32
2010; 161
1978; 1
1970; 1
2013; 7
2010; 180
2011; 19
1974; 3
1979
1974; 4
2010; 43
1998; 19
1967; 1
2004; 37
2011; 41
1999; 32
1981
2013
2010; 3
2012; 45
1989
2012; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
MacQueen J. (e_1_2_7_3_1) 1967
Cui H. (e_1_2_7_36_1) 2013
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
Davies D.L. (e_1_2_7_14_1) 1970; 1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Hartigan J. (e_1_2_7_2_1) 1975
References_xml – volume: 41
  start-page: 1039
  issue: 4
  year: 2011
  end-page: 1053
  ident: C24
  article-title: A validity index for prototype-based clustering of data sets with complex cluster structures
  publication-title: IEEE Trans. Syst. Man Cybern. B, Cybern.
– volume: 25
  start-page: 62
  issue: 1
  year: 2013
  end-page: 75
  ident: C8
  article-title: Clustering sentence-level text using a novel
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 31
  start-page: 454
  issue: 6
  year: 2010
  end-page: 461
  ident: C25
  article-title: Cluster validation using information stability measures[J]
  publication-title: Pattern Recognit. Lett.
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  end-page: 847
  ident: C15
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 180
  start-page: 748
  issue: 5
  year: 2010
  end-page: 764
  ident: C29
  article-title: A new separation measure for improving the effectiveness of validity indices[J]
  publication-title: Inf. Sci.
– volume: 32
  start-page: 1089
  year: 1999
  end-page: 1097
  ident: C17
  article-title: A new cluster validity for fuzzy clustering
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 258
  issue: 4
  year: 2013
  end-page: 271
  ident: C34
  article-title: Automatic clustering method based on evolutionary optimisation
  publication-title: IET Comput. Vis.
– volume: 19
  start-page: 105
  issue: 1
  year: 2011
  end-page: 115
  ident: C7
  article-title: A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 1
  start-page: 224
  year: 1970
  end-page: 227
  ident: C13
  article-title: A cluster separation measure
  publication-title: IEEE PAMI
– volume: 43
  start-page: 782
  issue: 3
  year: 2010
  end-page: 795
  ident: C26
  article-title: Normality-based validation for crisp clustering[J]
  publication-title: Pattern Recognit.
– volume: 19
  start-page: 580
  issue: 3
  year: 2011
  end-page: 588
  ident: C20
  article-title: A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 32
  start-page: 221
  issue: 2
  year: 2011
  end-page: 234
  ident: C23
  article-title: Validity index for clusters of different sizes and densities
  publication-title: Pattern Recognit. Lett.
– volume: 37
  start-page: 2009
  year: 2004
  end-page: 2025
  ident: C18
  article-title: On cluster validity index for estimation of the optimal number of fuzzy clusters
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 209
  issue: 4
  year: 2010
  end-page: 235
  ident: C31
  article-title: Relative clustering validity criteria: a comparative overview[J]
  publication-title: Stat. Anal. Data Mining
– volume: 55
  start-page: 2250
  issue: 7
  year: 2011
  end-page: 2262
  ident: C21
  article-title: A polythetic clustering process and cluster validity indexes for histogram-valued objects[J]
  publication-title: Comput. Stat. Data Anal.
– volume: 45
  start-page: 2251
  year: 2012
  end-page: 2265
  ident: C22
  article-title: Determining the number of clusters using information entropy for mixed data[J]
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 239
  year: 1978
  end-page: 253
  ident: C11
  article-title: Pattern classification problems with fuzzy sets
  publication-title: Fuzzy Sets Syst.
– volume: 1
  start-page: 57
  year: 1974
  end-page: 71
  ident: C9
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: J. Math. Biol.
– volume: 37
  start-page: 8757
  issue: 12
  year: 2010
  end-page: 8769
  ident: C28
  article-title: Applications of an enhanced cluster validity index method based on the fuzzy C-means and rough set theories to partition and classification[J]
  publication-title: Expert Syst. Appl.
– volume: 161
  start-page: 3014
  issue: 23
  year: 2010
  end-page: 3025
  ident: C19
  article-title: A cluster validity index for fuzzy clustering
  publication-title: Fuzzy Sets Syst.
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: C12
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– volume: 19
  start-page: 237
  year: 1998
  end-page: 246
  ident: C16
  article-title: A new cluster validity index for the fuzzy c-mean
  publication-title: Pattern Recognit. Lett.
– volume: 40
  start-page: 929
  issue: 3
  year: 2012
  end-page: 937
  ident: C27
  article-title: Enhanced fuzzy clustering algorithm and cluster validity index for human perception[J]
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 505
  issue: 3
  year: 2011
  end-page: 515
  ident: C32
  article-title: Towards a standard methodology to evaluate internal cluster validity indices[J]
  publication-title: Pattern Recognit. Lett.
– volume: 18
  start-page: 771
  issue: 4
  year: 2010
  end-page: 786
  ident: C33
  article-title: Relational generalizations of cluster validity indices
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 3
  start-page: 58
  year: 1974
  end-page: 73
  ident: C10
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
– volume: 32
  start-page: 1089
  year: 1999
  end-page: 1097
  article-title: A new cluster validity for fuzzy clustering
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
– start-page: 186
  year: 1997
  end-page: 195
– volume: 43
  start-page: 782
  issue: 3
  year: 2010
  end-page: 795
  article-title: Normality‐based validation for crisp clustering[J]
  publication-title: Pattern Recognit.
– year: 1981
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  end-page: 847
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 237
  year: 1998
  end-page: 246
  article-title: A new cluster validity index for the fuzzy c‐mean
  publication-title: Pattern Recognit. Lett.
– start-page: 247
  year: 1989
  end-page: 250
– volume: 37
  start-page: 2009
  year: 2004
  end-page: 2025
  article-title: On cluster validity index for estimation of the optimal number of fuzzy clusters
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 8757
  issue: 12
  year: 2010
  end-page: 8769
  article-title: Applications of an enhanced cluster validity index method based on the fuzzy C‐means and rough set theories to partition and classification[J]
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 221
  issue: 2
  year: 2011
  end-page: 234
  article-title: Validity index for clusters of different sizes and densities
  publication-title: Pattern Recognit. Lett.
– volume: 32
  start-page: 505
  issue: 3
  year: 2011
  end-page: 515
  article-title: Towards a standard methodology to evaluate internal cluster validity indices[J]
  publication-title: Pattern Recognit. Lett.
– year: 1975
– start-page: 761
  year: 1979
  end-page: 766
– volume: 1
  start-page: 239
  year: 1978
  end-page: 253
  article-title: Pattern classification problems with fuzzy sets
  publication-title: Fuzzy Sets Syst.
– volume: 45
  start-page: 2251
  year: 2012
  end-page: 2265
  article-title: Determining the number of clusters using information entropy for mixed data[J]
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 209
  issue: 4
  year: 2010
  end-page: 235
  article-title: Relative clustering validity criteria: a comparative overview[J]
  publication-title: Stat. Anal. Data Mining
– volume: 31
  start-page: 454
  issue: 6
  year: 2010
  end-page: 461
  article-title: Cluster validation using information stability measures[J]
  publication-title: Pattern Recognit. Lett.
– volume: 19
  start-page: 105
  issue: 1
  year: 2011
  end-page: 115
  article-title: A kernel fuzzy c‐means clustering‐based fuzzy support vector machine algorithm for classification problems with outliers or noises
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 3
  start-page: 58
  year: 1974
  end-page: 73
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
– start-page: 911
  year: 2010
  end-page: 916
– volume: 19
  start-page: 580
  issue: 3
  year: 2011
  end-page: 588
  article-title: A cluster‐validity index combining an overlap measure and a separation measure based on fuzzy‐aggregation operators
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 41
  start-page: 1039
  issue: 4
  year: 2011
  end-page: 1053
  article-title: A validity index for prototype‐based clustering of data sets with complex cluster structures
  publication-title: IEEE Trans. Syst. Man Cybern. B, Cybern.
– volume: 1
  start-page: 224
  year: 1970
  end-page: 227
  article-title: A cluster separation measure
  publication-title: IEEE PAMI
– volume: 40
  start-page: 929
  issue: 3
  year: 2012
  end-page: 937
  article-title: Enhanced fuzzy clustering algorithm and cluster validity index for human perception[J]
  publication-title: Expert Syst. Appl.
– start-page: 226
  year: 1996
  end-page: 231
– volume: 1
  start-page: 57
  year: 1974
  end-page: 71
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: J. Math. Biol.
– volume: 55
  start-page: 2250
  issue: 7
  year: 2011
  end-page: 2262
  article-title: A polythetic clustering process and cluster validity indexes for histogram‐valued objects[J]
  publication-title: Comput. Stat. Data Anal.
– volume: 161
  start-page: 3014
  issue: 23
  year: 2010
  end-page: 3025
  article-title: A cluster validity index for fuzzy clustering
  publication-title: Fuzzy Sets Syst.
– volume: 180
  start-page: 748
  issue: 5
  year: 2010
  end-page: 764
  article-title: A new separation measure for improving the effectiveness of validity indices[J]
  publication-title: Inf. Sci.
– start-page: 1
  year: 2013
  end-page: 5
– volume: 25
  start-page: 62
  issue: 1
  year: 2013
  end-page: 75
  article-title: Clustering sentence‐level text using a novel
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 18
  start-page: 771
  issue: 4
  year: 2010
  end-page: 786
  article-title: Relational generalizations of cluster validity indices
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 7
  start-page: 258
  issue: 4
  year: 2013
  end-page: 271
  article-title: Automatic clustering method based on evolutionary optimisation
  publication-title: IET Comput. Vis.
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– ident: e_1_2_7_27_1
  doi: 10.1016/j.patcog.2009.09.018
– ident: e_1_2_7_28_1
  doi: 10.1016/j.eswa.2012.05.049
– ident: e_1_2_7_29_1
  doi: 10.1016/j.eswa.2010.06.032
– ident: e_1_2_7_32_1
  doi: 10.1002/sam.10080
– ident: e_1_2_7_31_1
  doi: 10.1109/ICDM.2010.35
– ident: e_1_2_7_13_1
  doi: 10.1080/01969727408546059
– ident: e_1_2_7_8_1
  doi: 10.1109/TFUZZ.2010.2087382
– ident: e_1_2_7_11_1
  doi: 10.1080/01969727308546047
– ident: e_1_2_7_34_1
  doi: 10.1109/TFUZZ.2010.2048114
– ident: e_1_2_7_19_1
  doi: 10.1016/j.patcog.2004.04.007
– ident: e_1_2_7_9_1
  doi: 10.1109/TKDE.2011.205
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ins.2009.11.005
– ident: e_1_2_7_26_1
  doi: 10.1016/j.patrec.2009.07.009
– ident: e_1_2_7_4_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.patrec.2010.08.007
– ident: e_1_2_7_20_1
  doi: 10.1016/j.fss.2010.07.005
– ident: e_1_2_7_33_1
  doi: 10.1016/j.patrec.2010.11.006
– ident: e_1_2_7_10_1
  doi: 10.1007/BF02339490
– ident: e_1_2_7_22_1
  doi: 10.1016/j.csda.2011.01.011
– start-page: 281
  volume-title: Proc. of the fifth Berkeley symposium on mathematical statistics and probability
  year: 1967
  ident: e_1_2_7_3_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_6_1
  doi: 10.1007/978-1-4757-0450-1
– ident: e_1_2_7_25_1
  doi: 10.1109/TSMCB.2010.2104319
– volume: 1
  start-page: 224
  year: 1970
  ident: e_1_2_7_14_1
  article-title: A cluster separation measure
  publication-title: IEEE PAMI
– volume-title: Clustering algorithms
  year: 1975
  ident: e_1_2_7_2_1
– ident: e_1_2_7_12_1
  doi: 10.1016/0165-0114(78)90016-7
– ident: e_1_2_7_17_1
  doi: 10.1016/S0167-8655(97)00168-2
– start-page: 1
  volume-title: A cluster validity index based on frequent pattern
  year: 2013
  ident: e_1_2_7_36_1
– ident: e_1_2_7_23_1
  doi: 10.1016/j.patcog.2011.12.017
– ident: e_1_2_7_35_1
  doi: 10.1049/iet-cvi.2012.0187
– ident: e_1_2_7_18_1
  doi: 10.1016/S0031-3203(98)00157-5
– ident: e_1_2_7_21_1
  doi: 10.1109/TFUZZ.2011.2106216
– ident: e_1_2_7_16_1
  doi: 10.1109/34.85677
– ident: e_1_2_7_15_1
SSID ssj0055644
Score 2.0698795
Snippet Everyday a large number of records of surfing internet are generated. In various situations when the authors are analysing internet data they do not know the...
Everyday a large number of records of surfing internet are generated. In various situations, when the authors are analysing internet data they do not know the...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2256
SubjectTerms Adaptive algorithms
adaptive clustering algorithms
Algorithms
artificial datasets
author database
cluster members
cluster partitions
cluster structure
cluster validity index
Clustering
Clusters
data analysis
data objects
dataset geometrical structure
fuzzy membership matrix
hard cluster
index compactness
index separation measure
Internet
Internet data analysis
pattern clustering
Performance indices
real world datasets
Separation
traffic features
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NxsN4gMGGCB9TmBAPkzwSx0nsJwQV1XgAJg0k3izHdqBSaQtt-fu5c9Oufeke9hqfY8t3vvv57nQHcJz7pKjy3DIpXc0IozNljGDSZpmtJK85N6HZRHlzIx8e1O_G4TZs0iqnOjEoate35CM_RWTCBVUuSc4GL4y6RlF0tWmhsQIfqUpCGlL3_kw1cZ4XoZkrWsiUIXKXs6imOu34EaN0EbR_2U8KfS3YpRUcXoCc88A1WJ725v_u-TNsNJgzPp8IyRZ88L1tWJ-rRPgFVKs7ppIJMQpexyEyj0MZxRghbWycGZBSjO2EBifEpvuIC42enodf4b59edf6xZquCsyKkqN2M16hmqqV5z4xiS8dvrlsleaVq7wr68xmSqTeV64oRCUzhCQUfLWp4S5RNs92YLXX7_ldiCU31iRW1ALZ6_JClaaoU55IfKErfDdGkEzPVNum5Dh1vujqEPoWSuM5azwxTWzQxIYIfsymDCb1NpYRn9C35tYNlxF-XyC8urzTrdvrvwR64OoIDqZcnPvljIURHM2G8QpSXMX0fH9MNIiZUMzLMoIsCMq_t65b1_f8ok0OJbm3fOF9-ITTxCSx7QBWR69jfwhr9m3UGb5-CxL_Do6wBho
  priority: 102
  providerName: ProQuest
Title Cluster validity index for adaptive clustering algorithms
URI http://digital-library.theiet.org/content/journals/10.1049/iet-com.2013.0899
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2013.0899
https://www.proquest.com/docview/1612438800
https://www.proquest.com/docview/1629342677
Volume 8
WOSCitedRecordID wos000341647300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: P5Z
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: M7S
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: BENPR
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tgwMcWJ4isFsFhDgghU38SOwjG7ViD1sq2BUrLpZjO1CptFUf_H5mkrbbaqVFQlx8cMaWNZ7HZ48zA_BWhjSvpHSJUr5OCKMn2lqRKMe5qxSrGbNNsYmi31fX13qwB-X6X5g2P8Tmwo00o7HXpOC2aquQIKjFTRyGRUIPPtCD8Q8UvNqHwyzjBYk2E4O1OZYybyq6opvMEoTvahPa1Ke3pthxTvv4eQd3bqPXxv30jv7Lwh_BwxX6jD-24vIY9sL4CTzYykn4FHQ5WlLyhBhFcOgRo8dNQsUYwW1svZ2SeYxdS4MDYjv6MZkNFz9_zZ_BVa97WX5KVvUVEicKhnbOBo0Gq9aBhdSmofB4-nJVJitfBV_U3HEtshAqn-eiUhzBCYVhXWaZT7WT_DkcjCfj8AJixayzqRO1wI32MteFzeuMpQrP6hpPkBGka8Yat0o-TjUwRqYJggttkCsGuWKIK4a4EsH7zZBpm3njLuJ31LfSv_ldhG92CM-7l6b8fHFDYKa-juB4vetbUyIWFJQ6J43g9eYzKiNFWOw4TJZEg-gJBb4oIuCNDPx96aa8uGJnPbpaUi__adQruI_9on35dgwHi9kynMA993sxnM86jTZ04PCs2x986dDb1q_YDuR3bL-d9_8AaSoQDg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgQR74HOIwACDgAekbInjJPYDQlBWrdpakOikvRnHdqBSabu1BfFP8TdylzSlfSlPe-A1Pjsf9_U7n3MH8CL1UVakqQ2ldGVIGD1UxohQ2iSxheQl56ZqNpH3evLsTH3agt_NvzB0rLKxiZWhdmNLe-QHiEy4oMol0dvJeUhdoyi72rTQqMXi2P_6iSHb9E3nA_L3Jeftw37rKFx0FQityDlqt_EK1bRUnvvIRD53GHPYIk4LV3iXl4lNlIi9L1yWiUIm6JIp-Whjw12kLHWJQJN_FWEEV9VRwc-N5U_TrGoeix45DjFSkMssqjoY-FlIx1PQ3yb7lGpb84NXcHgN4q4C5crTtW_9b9_oNtxcYGr2rlaCO7DlR3dhZ6XS4j1QreGcSkIwVKyBw8iDVWUiGUJ2ZpyZkNFntqbBCcwMv-KLzb59n-7C6aU8-33YHo1H_gEwyY01kRWlQPF1aaZyk5Uxj6QvEoVxcQBRw0NtFyXVqbPHUFepfaE08lUjhzSxXRPbA3i9nDKp64lsIn5F1xZWZbqJ8PkaYeewr1sfu38J9MSVAew1UrOy5FJkAni2HEYTQ3kjM_LjOdEgJkQ1zvMAkkow__3outU95e_btGEmH26-8VO4ftTvnuiTTu_4EdzAJUR9iG8PtmcXc_8Yrtkfs8H04kmlbQy-XLbo_gEBTGNH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0Jw4I0ILBAQcEAyTRwnsQ8IQXcrqmVLD7vSiotxbAcqlbZsWxB_jV_HTB6lvZTTHrjGY-fhb16eyQzAs9RHWZGmlknpSkY2OlPGCCZtkthC8pJzUzWbyAcDeXqqhjvwu_0XhtIqW5lYCWo3tXRG3kHLhAuqXBJ1yiYtYrjfezP7zqiDFEVa23YaNUQO_a-f6L7NX_f3ca-fc947OO6-Z02HAWZFzpHTjVfIsqXy3Ecm8rlD_8MWcVq4wru8TGyiROx94bJMFDJB9UyBSBsb7iJlqWMEiv-LOfqYlE44TD-1WiBNs6qRLGrnmKHXIFcRVdUZ-QWjVBXUvckrCrtt6MQLOLxh7q4bzZXW613_n7_XDbjW2Nrh25o5bsKOn9yCq2sVGG-D6o6XVCoiRIYbOfRIwqp8ZIimfGicmZEyCG1NgxNCM_6CL7b4-m1-B07O5dnvwu5kOvH3IJTcWBNZUQqEtUszlZusjHkkfZEo9JcDiNr91LYptU4dP8a6CvkLpXGPNe6WJghogkAAL1dTZnWdkW3EL-haI23m2wifbhD2D4519-PRXwI9c2UAey2C1pZcwSeAJ6thFD0UTzITP10SDdqKyN55HkBSgfTfj667Ryf8XY8O0uT97Td-DJcRsfpDf3D4AK7gCqLO7duD3cXZ0j-ES_bHYjQ_e1QxXgifzxu5fwBPbWwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+validity+index+for+adaptive+clustering+algorithms&rft.jtitle=IET+communications&rft.au=Cui%2C+Hongyan&rft.au=Xie%2C+Mingzhi&rft.au=Cai%2C+Yunlong&rft.au=Huang%2C+Xu&rft.date=2014-09-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=8&rft.issue=13&rft.spage=2256&rft.epage=2263&rft_id=info:doi/10.1049%2Fiet-com.2013.0899&rft.externalDocID=10_1049_iet_com_2013_0899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon