The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528

The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These mode...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of geophysical research. Atmospheres Ročník 118; číslo 13; s. 6869 - 6890
Hlavní autoři: Widlowski, J.-L., Pinty, B., Lopatka, M., Atzberger, C., Buzica, D., Chelle, M., Disney, M., Gastellu-Etchegorry, J-P., Gerboles, M., Gobron, N., Grau, E., Huang, H., Kallel, A., Kobayashi, H., Lewis, P. E., Qin, W., Schlerf, M., Stuckens, J., Xie, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, NJ Blackwell Publishing Ltd 16.07.2013
John Wiley & Sons
American Geophysical Union
Témata:
ISSN:2169-897X, 2169-8996
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “ canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. Key Points ISO‐13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI‐IV.
AbstractList The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “ canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. Key Points ISO‐13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI‐IV.
The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI-IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO-13528 was developed "to determine the performance of individual laboratories for specific tests or measurements." More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO-13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, "truth" must be replaced by a reliable "conventional reference value" to enable absolute performance tests. This contribution will show, for the first time, how the ISO-13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre-screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI-IV "abstract canopy" scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. Key Points ISO-13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI-IV.
The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI-IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO-13528 was developed "to determine the performance of individual laboratories for specific tests or measurements." More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO-13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, "truth" must be replaced by a reliable "conventional reference value" to enable absolute performance tests. This contribution will show, for the first time, how the ISO-13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre-screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI-IV "abstract canopy" scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted.
The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “abstract canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. ISO‐13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI‐IV.
Author Pinty, B.
Gerboles, M.
Xie, D.
Qin, W.
Kallel, A.
Buzica, D.
Widlowski, J.-L.
Atzberger, C.
Lewis, P. E.
Schlerf, M.
Stuckens, J.
Chelle, M.
Disney, M.
Kobayashi, H.
Gastellu-Etchegorry, J-P.
Grau, E.
Gobron, N.
Huang, H.
Lopatka, M.
Author_xml – sequence: 1
  givenname: J.-L.
  surname: Widlowski
  fullname: Widlowski, J.-L.
  organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy
– sequence: 2
  givenname: B.
  surname: Pinty
  fullname: Pinty, B.
  organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy
– sequence: 3
  givenname: M.
  surname: Lopatka
  fullname: Lopatka, M.
  organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy
– sequence: 4
  givenname: C.
  surname: Atzberger
  fullname: Atzberger, C.
  organization: Institute of Surveying, Remote Sensing and Land Information, University of Natural Resources and Life Sciences, Vienna, Austria
– sequence: 5
  givenname: D.
  surname: Buzica
  fullname: Buzica, D.
  organization: Industrial Emissions, Air Quality and Noise Unit, DG Environment, Brussels, European Commission, Belgium
– sequence: 6
  givenname: M.
  surname: Chelle
  fullname: Chelle, M.
  organization: Institut National de la Recherche Agronomique, Thiverval-Grignon, France
– sequence: 7
  givenname: M.
  surname: Disney
  fullname: Disney, M.
  organization: Department of Geography, University College London, UK
– sequence: 8
  givenname: J-P.
  surname: Gastellu-Etchegorry
  fullname: Gastellu-Etchegorry, J-P.
  organization: Centre d'Etudes Spatiales de la BIOsphère, Toulouse, France
– sequence: 9
  givenname: M.
  surname: Gerboles
  fullname: Gerboles, M.
  organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy
– sequence: 10
  givenname: N.
  surname: Gobron
  fullname: Gobron, N.
  organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy
– sequence: 11
  givenname: E.
  surname: Grau
  fullname: Grau, E.
  organization: Centre d'Etudes Spatiales de la BIOsphère, Toulouse, France
– sequence: 12
  givenname: H.
  surname: Huang
  fullname: Huang, H.
  organization: Beijing Forestry University, Beijing, China
– sequence: 13
  givenname: A.
  surname: Kallel
  fullname: Kallel, A.
  organization: Institut Supérieur d'Electronique et de Communication de Sfax, Tunisia
– sequence: 14
  givenname: H.
  surname: Kobayashi
  fullname: Kobayashi, H.
  organization: Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
– sequence: 15
  givenname: P. E.
  surname: Lewis
  fullname: Lewis, P. E.
  organization: Department of Geography, University College London, UK
– sequence: 16
  givenname: W.
  surname: Qin
  fullname: Qin, W.
  organization: Science Systems and Applications, Inc., Maryland, Greenbelt, USA
– sequence: 17
  givenname: M.
  surname: Schlerf
  fullname: Schlerf, M.
  organization: Département Environnement et Agro-biotechnologie, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
– sequence: 18
  givenname: J.
  surname: Stuckens
  fullname: Stuckens, J.
  organization: Biosystems Department, Katholieke Universiteit Leuven, Leuven, Belgium
– sequence: 19
  givenname: D.
  surname: Xie
  fullname: Xie, D.
  organization: Research Center for Remote Sensing and GIS, School of Geography, Beijing Normal University, Beijing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699971$$DView record in Pascal Francis
https://hal.science/hal-01003288$$DView record in HAL
BookMark eNp9kc1uEzEUhUeoSJTSDU9gCSG1SFPs8Yx_2EUF0lSBVmmgiI3leO40DhM72BNKNjw7TqfNokJ4Y8v-zr2-5zzP9px3kGUvCT4hGBdvFzehPqlwKfmTbL8gTOZCSra3O_Nvz7LDGBc4LYFpWZX72Z_pHFDj16Gbo6BrqzvrHeqCdrGBgJa-hhZZ10EwfrnSwcb0fDQZfBrlo6_H79Bl8I01FpzZoA5iZ90N8g0y2vnVBgVoWjCddgb6UhHd2tRpdHWRE1oV4kX2tNFthMP7_SD78vHD9PQsH18MR6eDcW5KXvDcCKxnohCGVfWsMg2wglIgdMa5bOqCAMFMM6BpXFFXeqbTq9HQMFPLGkpBD7Ljvu5ct2oV7FKHjfLaqrPBWG3vcHKQFkL8Iok96tlV8D_XaSa1tNFA22oHfh0VqQopqwoznNBXj9BFstKlSRRhVFAqOGOJen1P6Wh02yRzjY27bxScSSn5tjHuORN8jMk7ZWx3F0jKw7aKYLXNWW1zVnc5J8mbR5KHqv-ESQ_f2hY2_yHV-XDy_kGT9xobO_i90-jwQzFOeaWuPw_V8Pry6vv5ZKKm9C8N3Mkd
CitedBy_id crossref_primary_10_3390_rs71215875
crossref_primary_10_1016_j_ecolind_2024_112010
crossref_primary_10_1016_j_rse_2018_08_011
crossref_primary_10_1080_17538947_2025_2520026
crossref_primary_10_1007_s00271_019_00621_x
crossref_primary_10_3390_rs70607425
crossref_primary_10_1002_ecm_1271
crossref_primary_10_1016_j_rse_2018_11_036
crossref_primary_10_1016_j_isprsjprs_2015_05_005
crossref_primary_10_1111_2041_210X_14402
crossref_primary_10_1016_j_srs_2025_100196
crossref_primary_10_1016_j_rse_2023_113985
crossref_primary_10_1016_j_rse_2021_112497
crossref_primary_10_1016_j_asr_2016_03_008
crossref_primary_10_1016_j_rse_2021_112405
crossref_primary_10_1080_01431161_2021_1980241
crossref_primary_10_3390_rs17010143
crossref_primary_10_1038_nplants_2016_201
crossref_primary_10_3390_rs12010004
crossref_primary_10_1016_j_rse_2014_03_035
crossref_primary_10_1016_j_agrformet_2022_109009
crossref_primary_10_3390_f13020235
crossref_primary_10_3390_rs12081290
crossref_primary_10_1016_j_rse_2018_08_015
crossref_primary_10_3390_rs16193639
crossref_primary_10_3390_rs12152457
crossref_primary_10_5194_bg_14_2343_2017
crossref_primary_10_3390_rs13081443
crossref_primary_10_3390_rs8080673
crossref_primary_10_3390_rs70201667
crossref_primary_10_3390_rs16122119
crossref_primary_10_1016_j_jqsrt_2016_04_005
crossref_primary_10_3390_rs12182925
crossref_primary_10_1016_j_rse_2020_111902
crossref_primary_10_1016_j_agrformet_2014_03_022
crossref_primary_10_1109_JSTARS_2017_2759240
crossref_primary_10_3390_rs13163235
crossref_primary_10_1109_TGRS_2017_2694483
crossref_primary_10_1109_JSTARS_2024_3443348
crossref_primary_10_1007_s13595_019_0862_7
crossref_primary_10_1109_TGRS_2016_2519098
crossref_primary_10_1016_j_rse_2025_114929
crossref_primary_10_1080_01431161_2019_1590878
crossref_primary_10_3390_rs10091329
crossref_primary_10_3390_rs70709347
crossref_primary_10_3390_rs16234552
crossref_primary_10_1016_j_jag_2024_104240
crossref_primary_10_1007_s10712_019_09527_x
crossref_primary_10_1109_JSTARS_2015_2413994
crossref_primary_10_1016_j_rse_2016_02_020
crossref_primary_10_1016_j_rse_2022_112973
crossref_primary_10_1016_j_rse_2015_02_020
crossref_primary_10_1080_01431161_2022_2093143
crossref_primary_10_1016_j_agrformet_2016_05_009
crossref_primary_10_1016_j_rse_2018_10_021
crossref_primary_10_1016_j_rse_2016_07_009
crossref_primary_10_3390_rs15184529
crossref_primary_10_1016_j_ecolmodel_2017_11_022
crossref_primary_10_1016_j_rse_2016_07_010
crossref_primary_10_1016_j_rse_2024_114118
crossref_primary_10_3390_rs12182909
crossref_primary_10_1016_j_jqsrt_2022_108265
crossref_primary_10_1109_TGRS_2016_2547326
crossref_primary_10_3390_rs11131597
crossref_primary_10_3390_s150203453
crossref_primary_10_1016_j_rse_2017_09_025
crossref_primary_10_1007_s10712_019_09532_0
crossref_primary_10_1016_j_isprsjprs_2021_02_020
crossref_primary_10_1016_j_rse_2021_112843
crossref_primary_10_5194_bg_11_1873_2014
crossref_primary_10_1016_j_jqsrt_2023_108715
crossref_primary_10_3390_rs70404604
crossref_primary_10_1080_22797254_2018_1462102
crossref_primary_10_1029_2021JD036175
crossref_primary_10_1109_JSTARS_2015_2450762
crossref_primary_10_1109_JSTARS_2022_3156403
crossref_primary_10_1016_j_rse_2021_112835
crossref_primary_10_1016_j_agrformet_2021_108781
crossref_primary_10_3390_rs10121911
crossref_primary_10_3390_rs12203391
crossref_primary_10_3390_rs12020247
crossref_primary_10_1109_TGRS_2023_3297363
crossref_primary_10_1016_j_rse_2020_112195
crossref_primary_10_3390_rs13050931
crossref_primary_10_1016_j_rse_2022_113368
crossref_primary_10_1016_j_rse_2021_112311
crossref_primary_10_1109_LGRS_2017_2687702
crossref_primary_10_1007_s40725_019_00096_1
crossref_primary_10_1016_j_jqsrt_2020_107183
crossref_primary_10_1016_j_foreco_2015_09_030
crossref_primary_10_3390_rs11222637
crossref_primary_10_3390_rs71013410
crossref_primary_10_1016_j_rse_2024_114264
crossref_primary_10_1016_j_rse_2015_08_016
crossref_primary_10_1016_j_rse_2020_112082
crossref_primary_10_3390_rs6064927
crossref_primary_10_1016_j_agrformet_2018_11_033
crossref_primary_10_1016_j_rse_2023_113951
crossref_primary_10_34133_remotesensing_0663
crossref_primary_10_34133_plantphenomics_0189
Cites_doi 10.1016/j.atmosenv.2010.12.020
10.1016/S0034-4257(00)00129-2
10.1029/96JD04013
10.1016/S0003-2670(00)01115-6
10.1029/93JD02071
10.1080/0143116031000115166
10.2134/agronj1984.00021962007600050021x
10.1029/2004JD004252
10.1080/01431160903130911
10.1029/93JD02072
10.1016/j.ecolmodel.2006.04.010
10.1016/0034-4257(95)00253-7
10.1364/AO.34.006211
10.1029/2000JD900493
10.1016/j.rse.2007.07.016
10.1029/2010JG001511
10.1016/j.jqsrt.2012.01.003
10.1080/02757250009532389
10.1080/02757258809532105
10.1029/2006JD007821
10.1109/TGRS.2002.801583
10.1007/3-540-28125-8_10
10.1109/TGRS.2009.2019268
10.1109/TGRS.2007.902272
10.1109/TGRS.2008.928730
10.1051/agro:19990302
10.1016/j.rse.2007.04.010
10.1016/j.rse.2011.06.011
10.1016/j.jqsrt.2010.02.010
10.1016/j.rse.2005.10.006
10.1016/S0034-4257(01)00247-4
ContentType Journal Article
Copyright 2013. American Geophysical Union. All Rights Reserved.
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013. American Geophysical Union. All Rights Reserved.
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7SU
1XC
DOI 10.1002/jgrd.50497
DatabaseName Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environmental Engineering Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environmental Engineering Abstracts
DatabaseTitleList
Aerospace Database
Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 2169-8996
EndPage 6890
ExternalDocumentID oai:HAL:hal-01003288v1
3531922601
27699971
10_1002_jgrd_50497
JGRD50497
ark_67375_WNG_GWPSZJRR_T
Genre article
GroupedDBID 05W
0R~
1OC
33P
50Y
52M
5VS
702
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
BSCLL
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
1OB
AAYXX
CITATION
31~
8FG
ABJCF
AEUYN
AFKRA
AGHNM
ARAPS
AZQEC
BGLVJ
CCPQU
FEDTE
HVGLF
IQODW
K6-
L6V
LK5
M7R
M7S
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJQFR
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7SU
1XC
AFFHD
AIQQE
ID FETCH-LOGICAL-c4727-c80ab828c65db5cfe6233e13b779fd21e106a6e39968d5aba33ecaef6cd9de483
IEDL.DBID WIN
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322192200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-897X
IngestDate Tue Oct 28 08:50:20 EDT 2025
Tue Oct 07 09:44:55 EDT 2025
Mon Oct 27 02:21:43 EDT 2025
Mon Jul 21 09:13:27 EDT 2025
Tue Nov 18 21:59:46 EST 2025
Sat Nov 29 02:33:15 EST 2025
Tue Sep 09 05:08:26 EDT 2025
Tue Nov 11 03:32:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords models
radiative transfer
Space remote sensing
Satellite observation
digital simulation
performances
Comparative study
Retrieval algorithm
Canopy(vegetation)
Reflectance
CALIBRATION
model comparison
ISO standards
LIGHT
VALIDATION
SIMULATION
INVERSION
BRDF
ATMOSPHERE
radiative transfer models
VEGETATION CANOPIES
CSAR MODEL
SCALE
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4727-c80ab828c65db5cfe6233e13b779fd21e106a6e39968d5aba33ecaef6cd9de483
Notes ArticleID:JGRD50497
ark:/67375/WNG-GWPSZJRR-T
istex:CE1CA05720CBDC24A4AAABCEFDC219CD23BCFD62
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7949-6090
0000-0001-8151-1555
0000-0002-6645-8837
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrd.50497
PQID 1638338766
PQPubID 54657
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_01003288v1
proquest_miscellaneous_1529955060
proquest_journals_1638338766
pascalfrancis_primary_27699971
crossref_citationtrail_10_1002_jgrd_50497
crossref_primary_10_1002_jgrd_50497
wiley_primary_10_1002_jgrd_50497_JGRD50497
istex_primary_ark_67375_WNG_GWPSZJRR_T
PublicationCentury 2000
PublicationDate 16 July 2013
PublicationDateYYYYMMDD 2013-07-16
PublicationDate_xml – month: 07
  year: 2013
  text: 16 July 2013
  day: 16
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Washington
PublicationTitle Journal of geophysical research. Atmospheres
PublicationTitleAlternate J. Geophys. Res. Atmos
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons
– name: American Geophysical Union
References Bruegge, C. J., N. L. Chrien, R. R. Ando, D. J. Diner, W. A. Abdou, M. C. Helmlinger, S. H. Pilorz, and K. J. Thome (2002), Early validation of the multi-angle imaging spectroradiometer (MISR) radiometric scale, IEEE Trans. Geosci. Remote Sens., 40, 1477-1492.
ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 2:, International Standard, ISO 5725-2:1994 (E), 42 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland.
Rahman, H., B. Pinty, and M. M. Verstraete (1993a), Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, 20791-20801.
Gobron, N., B. Pinty, M. M. Verstraete, and Y. Govaerts (1997), A semi-discrete model for the scattering of light by vegetation, J. Geophys. Res., 102, 9431-9446.
Goel, N. (1988), Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data, Remote Sens. Rev., 4, 1-212.
Thome, K. J., K. Arai, S. Tsuchida, and S. F. Biggar (2008), Vicarious calibration of ASTER via the reflectance-based approach, IEEE Trans. Geosci. Remote Sens., 46, 3285-3295.
Huang, H., M. Chen, and Q. Liu (2009), A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment, Int. J. Remote Sens., 30(20), 5421-5439.
Widlowski, J.-L., et al. (2007b), The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling, J. Geophys. Res., 112, D09111, doi:10.1029/2006JD007821.
Hund, E., D. L. Massart, and J. Smeyers-Verbeke (2000), Inter-laboratory studies in analytical chemistry, Anal. Chim. Acta, 423, 145-165.
Rahman, H., M. M. Verstraete, and B. Pinty (1993b), Coupled surface-atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data, J. Geophys. Res., 98, 20779-20789.
Lewis, P. (1999), Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system, Agron. Agric. Environ., 19, 185-210.
Wang, Y., J. Czapla-Myers, A. Lyapustin, K. Thome, and E. Dutton (2011), Aeronet-based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site, Remote Sens. Environ., 115, 2710-2717, doi:10.1016/j.rse.2011.06.011.
Chen, J. M., and J. Cihlar (1995), Plant canopy gap size analysis theory for improving optical measurements of leaf area index, Appl. Opt., 34, 6211-6222.
Widlowski, J. -L., M. Robustelli, M. Disney, J. -P. Gastellu-Etchegorry, T. Lavergne, P. Lewis, P. J. R. North, B. Pinty, R. Thompson, and M. M. Verstraete (2007a), The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models, Remote Sens. Environ., 112(3), 1144-1150, doi:10.1016/j.rse.2007.07.016.
Kallel, A. (2012), Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2, J. Quant. Spectrosc. Radiat. Transfer, 113, 440-460.
Schlerf, M., and M. Atzberger (2006), Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281-294.
Goel, N. S., and D. E. Strebel (1984), Simple beta distribution representation of leaf orientation in vegetation canopies, Agron. J., 76, 800-803.
Kallel, A. (2010), Vegetation radiative transfer modeling based on virtual flux decomposition, J. Quant. Spectrosc. Radiat. Transfer, 111, 1389-1405.
Gerboles, M., et al. (2011), Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM10 in Europe, Atmos. Environ., 45, 3488-3499.
Disney, M. I., P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock (2009), Quantifying surface reflectivity for spaceborne lidar via two independent methods, IEEE Trans. Geosci. Remote Sens., 47(10), 3262-3271, doi:10.1109/TGRS.2009.2019268.
Thome, K. J. (2001), Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method, Remote Sens. Environ., 78, 27-38.
Disney, M. I., P. Lewis, and P. R. J. North (2000), Monte Carlo raytracing in optical canopy reflectance modelling, Remote Sens. Rev., 18, 163-196.
Kobayashi, H., and H. Iwabuchi (2008), Acoupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sens. Environ., 112, 173-185.
Liu, Q. H. H. H. G., W. Qin, K. Fu, and X. Li (2007), Anextended 3-D radiosity graphics combined model for studying thermal-emission directionality of crop canopy, IEEE Trans. Geosci. Remote Sens., 45, 2900-2918.
Pharr, M., and G. Humphreys (2010), Physically Based Rendering: From Theory to Implementation, 1167 pp., Morgan Kaufmann, San Fransisco.
Widlowski, J.-L., et al. (2011), RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models, J. Geophys. Res., 116, G02019, doi:10.1029/2010JG001511.
Kneubühler, M., M. Schaepman, K. Thome, F. Baret, and A. Müller (2002), Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV), Proceedings of MERIS level 2 validation Workshop, ESRIN. Frascati, Italy, December 9-13.
Pinty, B., et al. (2001), The radiation transfer model intercomparison (RAMI) exercise, J. Geophys. Res., 106, 11937-11956.
Gastellu-Etchegorry, J. -P., V. Demarez, V. Pinel, and F. Zagolski (1996), Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 58, 131-156.
ISO 5725-3 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 3:, International Standard, ISO 5725-3:1994 (E), 25 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland.
Gastellu-Etchegorry, J. -P., E. Martin, and F. Gascon (2004), Dart: A 3D model for simulating satellite images and studying surface radiation budget, Int. J. Remote Sens., 25, 73-96.
Qin, W., and S. A. W. Gerstl (2000), 3-D scene modeling of semi-desert vegetation cover and its radiation regime, Remote Sens. Environ., 74, 145-162.
Chelle, M. (2006), Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption?Ecol. Modell., 198, 219-228.
ISO 13528 (2005), Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E), 66 pp., International Organization for Standardization, ISO/TC6-SC6, Geneva, Switzerland.
Pinty, B., et al. (2004), The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase, J. Geophys. Res., 109, D06210, doi:10.1029/2004JD004252.
2011; 116
2011; 115
2007a; 112
2009; 47
1993b; 98
2012
2011
2010
2004; 25
1995; 34
1997
2008
2006; 198
1995
2006
2005
1994
2002
1996; 58
2004; 109
2001; 106
1997; 102
1988; 4
2000; 18
2009; 30
2012; 113
2000
2000; 423
1999; 19
2002; 40
1984; 76
2000; 74
2010; 111
2008; 46
2011; 45
2007b; 112
2008; 112
2001; 78
2007; 45
1993a; 98
2006; 100
e_1_2_9_31_1
ISO 5725‐2 (e_1_2_9_20_1) 1994
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
Pharr M. (e_1_2_9_30_1) 2010
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
Atzberger C. (e_1_2_9_2_1) 2000
Kneubühler M. (e_1_2_9_26_1) 2002
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
ISO 13528 (e_1_2_9_19_1) 2005
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
ISO 5725‐3 (e_1_2_9_21_1) 1994
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Qin, W., and S. A. W. Gerstl (2000), 3-D scene modeling of semi-desert vegetation cover and its radiation regime, Remote Sens. Environ., 74, 145-162.
– reference: Pinty, B., et al. (2001), The radiation transfer model intercomparison (RAMI) exercise, J. Geophys. Res., 106, 11937-11956.
– reference: Widlowski, J.-L., et al. (2011), RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models, J. Geophys. Res., 116, G02019, doi:10.1029/2010JG001511.
– reference: Chen, J. M., and J. Cihlar (1995), Plant canopy gap size analysis theory for improving optical measurements of leaf area index, Appl. Opt., 34, 6211-6222.
– reference: Hund, E., D. L. Massart, and J. Smeyers-Verbeke (2000), Inter-laboratory studies in analytical chemistry, Anal. Chim. Acta, 423, 145-165.
– reference: Rahman, H., B. Pinty, and M. M. Verstraete (1993a), Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, 20791-20801.
– reference: ISO 5725-3 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 3:, International Standard, ISO 5725-3:1994 (E), 25 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland.
– reference: Thome, K. J., K. Arai, S. Tsuchida, and S. F. Biggar (2008), Vicarious calibration of ASTER via the reflectance-based approach, IEEE Trans. Geosci. Remote Sens., 46, 3285-3295.
– reference: Gastellu-Etchegorry, J. -P., V. Demarez, V. Pinel, and F. Zagolski (1996), Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 58, 131-156.
– reference: Pharr, M., and G. Humphreys (2010), Physically Based Rendering: From Theory to Implementation, 1167 pp., Morgan Kaufmann, San Fransisco.
– reference: Widlowski, J. -L., M. Robustelli, M. Disney, J. -P. Gastellu-Etchegorry, T. Lavergne, P. Lewis, P. J. R. North, B. Pinty, R. Thompson, and M. M. Verstraete (2007a), The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models, Remote Sens. Environ., 112(3), 1144-1150, doi:10.1016/j.rse.2007.07.016.
– reference: Bruegge, C. J., N. L. Chrien, R. R. Ando, D. J. Diner, W. A. Abdou, M. C. Helmlinger, S. H. Pilorz, and K. J. Thome (2002), Early validation of the multi-angle imaging spectroradiometer (MISR) radiometric scale, IEEE Trans. Geosci. Remote Sens., 40, 1477-1492.
– reference: Goel, N. (1988), Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data, Remote Sens. Rev., 4, 1-212.
– reference: Pinty, B., et al. (2004), The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase, J. Geophys. Res., 109, D06210, doi:10.1029/2004JD004252.
– reference: Schlerf, M., and M. Atzberger (2006), Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281-294.
– reference: Gobron, N., B. Pinty, M. M. Verstraete, and Y. Govaerts (1997), A semi-discrete model for the scattering of light by vegetation, J. Geophys. Res., 102, 9431-9446.
– reference: Huang, H., M. Chen, and Q. Liu (2009), A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment, Int. J. Remote Sens., 30(20), 5421-5439.
– reference: Gerboles, M., et al. (2011), Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM10 in Europe, Atmos. Environ., 45, 3488-3499.
– reference: Liu, Q. H. H. H. G., W. Qin, K. Fu, and X. Li (2007), Anextended 3-D radiosity graphics combined model for studying thermal-emission directionality of crop canopy, IEEE Trans. Geosci. Remote Sens., 45, 2900-2918.
– reference: Kobayashi, H., and H. Iwabuchi (2008), Acoupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sens. Environ., 112, 173-185.
– reference: Kneubühler, M., M. Schaepman, K. Thome, F. Baret, and A. Müller (2002), Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV), Proceedings of MERIS level 2 validation Workshop, ESRIN. Frascati, Italy, December 9-13.
– reference: Thome, K. J. (2001), Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method, Remote Sens. Environ., 78, 27-38.
– reference: Lewis, P. (1999), Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system, Agron. Agric. Environ., 19, 185-210.
– reference: Disney, M. I., P. Lewis, and P. R. J. North (2000), Monte Carlo raytracing in optical canopy reflectance modelling, Remote Sens. Rev., 18, 163-196.
– reference: Wang, Y., J. Czapla-Myers, A. Lyapustin, K. Thome, and E. Dutton (2011), Aeronet-based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site, Remote Sens. Environ., 115, 2710-2717, doi:10.1016/j.rse.2011.06.011.
– reference: Kallel, A. (2010), Vegetation radiative transfer modeling based on virtual flux decomposition, J. Quant. Spectrosc. Radiat. Transfer, 111, 1389-1405.
– reference: Gastellu-Etchegorry, J. -P., E. Martin, and F. Gascon (2004), Dart: A 3D model for simulating satellite images and studying surface radiation budget, Int. J. Remote Sens., 25, 73-96.
– reference: Goel, N. S., and D. E. Strebel (1984), Simple beta distribution representation of leaf orientation in vegetation canopies, Agron. J., 76, 800-803.
– reference: Widlowski, J.-L., et al. (2007b), The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling, J. Geophys. Res., 112, D09111, doi:10.1029/2006JD007821.
– reference: Kallel, A. (2012), Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2, J. Quant. Spectrosc. Radiat. Transfer, 113, 440-460.
– reference: Rahman, H., M. M. Verstraete, and B. Pinty (1993b), Coupled surface-atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data, J. Geophys. Res., 98, 20779-20789.
– reference: ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 2:, International Standard, ISO 5725-2:1994 (E), 42 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland.
– reference: Disney, M. I., P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock (2009), Quantifying surface reflectivity for spaceborne lidar via two independent methods, IEEE Trans. Geosci. Remote Sens., 47(10), 3262-3271, doi:10.1109/TGRS.2009.2019268.
– reference: Chelle, M. (2006), Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption?Ecol. Modell., 198, 219-228.
– reference: ISO 13528 (2005), Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E), 66 pp., International Organization for Standardization, ISO/TC6-SC6, Geneva, Switzerland.
– year: 2011
– volume: 18
  start-page: 163
  year: 2000
  end-page: 196
  article-title: Monte Carlo raytracing in optical canopy reflectance modelling
  publication-title: Remote Sens. Rev.
– year: 2002
  article-title: Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV)
  publication-title: Proceedings of MERIS level 2 validation Workshop, ESRIN
– volume: 30
  start-page: 5421
  issue: 20
  year: 2009
  end-page: 5439
  article-title: A realistic structure model for large‐scale surface leaving radiance simulation of forest canopy and accuracy assessment
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 185
  year: 1999
  end-page: 210
  article-title: Three‐dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system
  publication-title: Agron. Agric. Environ.
– volume: 58
  start-page: 131
  year: 1996
  end-page: 156
  article-title: Modeling radiative transfer in heterogeneous 3‐D vegetation canopies
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 3488
  year: 2011
  end-page: 3499
  article-title: Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM in Europe
  publication-title: Atmos. Environ.
– start-page: 39
  year: 2000
  end-page: 44
– volume: 46
  start-page: 3285
  year: 2008
  end-page: 3295
  article-title: Vicarious calibration of ASTER via the reflectance‐based approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 112
  start-page: 1144
  issue: 3
  year: 2007a
  end-page: 1150
  article-title: The RAMI On‐line Model Checker (ROMC): A web‐based benchmarking facility for canopy reflectance models
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 3262
  issue: 10
  year: 2009
  end-page: 3271
  article-title: Quantifying surface reflectivity for spaceborne lidar via two independent methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 42
  year: 1994
– volume: 423
  start-page: 145
  year: 2000
  end-page: 165
  article-title: Inter‐laboratory studies in analytical chemistry
  publication-title: Anal. Chim. Acta
– volume: 112
  start-page: 173
  year: 2008
  end-page: 185
  article-title: Acoupled 1‐D atmosphere and 3‐D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape
  publication-title: Remote Sens. Environ.
– start-page: 1167
  year: 2010
– volume: 115
  start-page: 2710
  year: 2011
  end-page: 2717
  article-title: Aeronet‐based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site
  publication-title: Remote Sens. Environ.
– start-page: 66
  year: 2005
– volume: 106
  start-page: 11937
  year: 2001
  end-page: 11956
  article-title: The radiation transfer model intercomparison (RAMI) exercise
  publication-title: J. Geophys. Res.
– volume: 109
  start-page: D06210
  year: 2004
  article-title: The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase
  publication-title: J. Geophys. Res.
– year: 2012
– volume: 78
  start-page: 27
  year: 2001
  end-page: 38
  article-title: Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance‐based method
  publication-title: Remote Sens. Environ.
– volume: 111
  start-page: 1389
  year: 2010
  end-page: 1405
  article-title: Vegetation radiative transfer modeling based on virtual flux decomposition
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 112
  start-page: D09111
  year: 2007b
  article-title: The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling
  publication-title: J. Geophys. Res.
– volume: 74
  start-page: 145
  year: 2000
  end-page: 162
  article-title: 3‐D scene modeling of semi‐desert vegetation cover and its radiation regime
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 281
  year: 2006
  end-page: 294
  article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 1
  year: 1988
  end-page: 212
  article-title: Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data
  publication-title: Remote Sens. Rev.
– start-page: 25
  year: 1994
– volume: 113
  start-page: 440
  year: 2012
  end-page: 460
  article-title: Extension of virtual flux decomposition model to the case of two vegetation layers: FDM‐2
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 40
  start-page: 1477
  year: 2002
  end-page: 1492
  article-title: Early validation of the multi‐angle imaging spectroradiometer (MISR) radiometric scale
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2008
– start-page: 211
  year: 2006
  end-page: 231
– volume: 34
  start-page: 6211
  year: 1995
  end-page: 6222
  article-title: Plant canopy gap size analysis theory for improving optical measurements of leaf area index
  publication-title: Appl. Opt.
– year: 1997
– volume: 76
  start-page: 800
  year: 1984
  end-page: 803
  article-title: Simple beta distribution representation of leaf orientation in vegetation canopies
  publication-title: Agron. J.
– volume: 198
  start-page: 219
  year: 2006
  end-page: 228
  article-title: Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption?
  publication-title: Ecol. Modell.
– year: 1995
– volume: 98
  start-page: 20779
  year: 1993b
  end-page: 20789
  article-title: Coupled surface‐atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 20791
  year: 1993a
  end-page: 20801
  article-title: Coupled surface‐atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 73
  year: 2004
  end-page: 96
  article-title: Dart: A 3D model for simulating satellite images and studying surface radiation budget
  publication-title: Int. J. Remote Sens.
– volume: 116
  start-page: G02019
  year: 2011
  article-title: RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 9431
  year: 1997
  end-page: 9446
  article-title: A semi‐discrete model for the scattering of light by vegetation
  publication-title: J. Geophys. Res.
– volume: 45
  start-page: 2900
  year: 2007
  end-page: 2918
  article-title: Anextended 3‐D radiosity graphics combined model for studying thermal‐emission directionality of crop canopy
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: e_1_2_9_12_1
  doi: 10.1016/j.atmosenv.2010.12.020
– ident: e_1_2_9_33_1
  doi: 10.1016/S0034-4257(00)00129-2
– ident: e_1_2_9_13_1
  doi: 10.1029/96JD04013
– ident: e_1_2_9_18_1
  doi: 10.1016/S0003-2670(00)01115-6
– year: 2002
  ident: e_1_2_9_26_1
  article-title: Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV)
  publication-title: Proceedings of MERIS level 2 validation Workshop, ESRIN
– ident: e_1_2_9_35_1
  doi: 10.1029/93JD02071
– ident: e_1_2_9_10_1
  doi: 10.1080/0143116031000115166
– ident: e_1_2_9_15_1
  doi: 10.2134/agronj1984.00021962007600050021x
– ident: e_1_2_9_32_1
  doi: 10.1029/2004JD004252
– ident: e_1_2_9_17_1
  doi: 10.1080/01431160903130911
– ident: e_1_2_9_34_1
  doi: 10.1029/93JD02072
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ecolmodel.2006.04.010
– ident: e_1_2_9_9_1
  doi: 10.1016/0034-4257(95)00253-7
– start-page: 1167
  volume-title: Physically Based Rendering: From Theory to Implementation
  year: 2010
  ident: e_1_2_9_30_1
– ident: e_1_2_9_6_1
  doi: 10.1364/AO.34.006211
– start-page: 25
  volume-title: Accuracy (trueness and precision) of measurement methods and results—Part 3:, International Standard, ISO 5725‐3:1994 (E)
  year: 1994
  ident: e_1_2_9_21_1
– ident: e_1_2_9_16_1
– ident: e_1_2_9_31_1
  doi: 10.1029/2000JD900493
– ident: e_1_2_9_41_1
  doi: 10.1016/j.rse.2007.07.016
– ident: e_1_2_9_43_1
  doi: 10.1029/2010JG001511
– ident: e_1_2_9_4_1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jqsrt.2012.01.003
– ident: e_1_2_9_7_1
  doi: 10.1080/02757250009532389
– ident: e_1_2_9_14_1
  doi: 10.1080/02757258809532105
– ident: e_1_2_9_42_1
  doi: 10.1029/2006JD007821
– start-page: 42
  volume-title: Accuracy (trueness and precision) of measurement methods and results—Part 2:, International Standard, ISO 5725‐2:1994 (E)
  year: 1994
  ident: e_1_2_9_20_1
– ident: e_1_2_9_3_1
  doi: 10.1109/TGRS.2002.801583
– ident: e_1_2_9_40_1
  doi: 10.1007/3-540-28125-8_10
– ident: e_1_2_9_8_1
  doi: 10.1109/TGRS.2009.2019268
– ident: e_1_2_9_29_1
  doi: 10.1109/TGRS.2007.902272
– ident: e_1_2_9_38_1
  doi: 10.1109/TGRS.2008.928730
– ident: e_1_2_9_28_1
  doi: 10.1051/agro:19990302
– start-page: 66
  volume-title: Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E)
  year: 2005
  ident: e_1_2_9_19_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.rse.2007.04.010
– ident: e_1_2_9_22_1
– ident: e_1_2_9_23_1
– start-page: 39
  volume-title: A Decade of Trans‐European Remote Sensing Cooperation. Proceedings of the 20th EARSeL Symposium Dresden, Germany, 14–16 June 2000
  year: 2000
  ident: e_1_2_9_2_1
– ident: e_1_2_9_39_1
  doi: 10.1016/j.rse.2011.06.011
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jqsrt.2010.02.010
– ident: e_1_2_9_36_1
  doi: 10.1016/j.rse.2005.10.006
– ident: e_1_2_9_11_1
– ident: e_1_2_9_37_1
  doi: 10.1016/S0034-4257(01)00247-4
SSID ssj0000803454
Score 2.2775652
Snippet The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled...
The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6869
SubjectTerms Agricultural sciences
BRDF
Canopies
Climate change
Computer simulation
Criteria
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics
ISO standards
Life Sciences
Mathematical analysis
Mathematical models
Meteorology
model comparison
Radiation
Radiative transfer
radiative transfer models
Statistics
Tolerances
validation
vegetation canopies
Title The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528
URI https://api.istex.fr/ark:/67375/WNG-GWPSZJRR-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgrd.50497
https://www.proquest.com/docview/1638338766
https://www.proquest.com/docview/1529955060
https://hal.science/hal-01003288
Volume 118
WOSCitedRecordID wos000322192200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGxgMv3BGBMZmLJoYUVieN7SBeqo12nbpSdZdWvFiO7WyDqZ3SbmJviF_Ab-SXcI7TZlRCSIi3XI4t5fiz_R3b-Q4hr1KbcqmZCWvGpCHEGybUVrIQwINyUSLnfrvgqCO6XTkcpr0l8n7-L0ypD1EtuGHP8OM1dnCdTTavRUM_Hxf2bQIEF38lZ3WG6QsG7W61wAJUKK77LGgR42koUzGs5EmjzevSCxPSjRM8DrmCHv6KxyT1BDyVlykuFjjo70zWT0XNO__3EXfJ7RkFpY0SM_fIkhvdJ8EesOdx4RfZ6TrdOjsFKuvvHpDvgCWaQ7HpCS1QywAbk0495XUF9cl0KOpOFKbKakhf9xt77Z_ffrSPNt7RHmYG96PIFZ2irsfomI5zCs06Pr-i4BPcPED8lZVNKC4P0_b-R6iAoTLMQ3LY_HCwtRPOcjeEpg6UKDSypjOI5gxPbJaY3AHNih2LMyHS3EbMQSiquQN6xKVNdKbhrdEu58am1tVl_Igsj8Yj95hQw1kuE5lmuY3rGsKjJLK5tBZhVhOZCMjGvAGVmQmbY36NM1VKMkcKvay8lwPysrI9L-U8_mj1AnBQGaAC906jo_AZhK-oQCgvWUDWPUwqM118wVNyIlGDbku1Br39T7v9vjoIyNoCjqoCkeBAzwXUtDoHlpqNIBOFPDmOYa7iAXlevYa-jxs6euTGF2CTAJlIUCIyIG88zP7yUWq31d_2V0_-xfgpuRX5DCAiZHyVLE-LC_eM3DSX09NJsUZWtvvNw86a73q_AG4CMlU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbhMxELVoi0RfuCO2lGIuqijS0uzN9vIWFZqkJCFKQxPxYnltb1uokmqTVvQN8QV8I1_CjDfdEgkhId6S7NjSjo_tM2PnDCEvUpMyoQLt17ROfYg3tK-MCHwAD8pF8Zy544KDNu92xWiU9uZ3c_C_MKU-RJVww5nh1muc4JiQ3r5SDf18WJjXCTBcvkRWYmAaWLlh2OpWKRYgQ1Hs6qCFAUt9kfJRJVAabl81X9iSlo7wQuQK-vgrXpRUU_BVXha5WGChv3NZtxnt3vrP17hNbs5ZKK2XsLlDrtnxXeJ1gEBPCpdnp5t05-QY2Kz7do98BzjRHJrNjmiBcgY4nnTmWK8tqKunQ1F6otBVYUP6sl_vtH5--9E62HpDe1gc3C0kF3SG0h7jQzrJKYzs5PSCglPw_AAhWHY2pZghpq39D9BBgOIw98nH3XeDnaY_L9_g6xhYka9FTWUQ0GmWmCzRuQWmFdkgyjhPcxMGFqJRxSwwJCZMojIFT7WyOdMmNTYW0QOyPJ6M7UNCNQtykYg0y00UK4iQktDkwhhEWo1n3CNblyMo9VzbHEtsnMhSlTmU6GXpvOyR55Xtaano8UerZwCEygBFuJv1tsTfIIJFEUJxHnhk0-GkMlPFF7woxxM57DZkY9jb_7TX78uBRzYWgFQ1CDkDhs6hp_VLZMn5IjKVSJWjCLYr5pGn1WOY_nimo8Z2cgY2CfCJBFUiPfLK4ewvLyX3Gv237tPavxg_ITeag05btlvd94_IaugKgnA_YOtkeVac2cfkuj6fHU-LDTf_fgHG2zTT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZYixAv3BGBMcxFE0MKa5LGTnirVtp1dKXqbhUvluPLNpjaKu0m9ob4BfxGfgnnOFnGJISEeMvlxJKPP9vfsZ3vEPIq1SlLZKD8hlKpD_GG8qVOAh_Ag3JR3DK3XbDf54NBMh6nw_JsDv4LU-hDVAtu2DPceI0d3My0Xb9UDf18mOu3MTBcvkTqTcwiUyP19qiz168WWYAORU2XCS0MWOonKR9XEqXh-mUBVyalpSM8EllHL3_Fo5JyDt6yRZqLKzz0dzbrpqPO7f-syB1yq-ShtFUA5y65Zib3iLcNFHqau5V2uko3To6Bz7q7--Q7AIpa-GxxRHMUNMAWpQvHe01OXUYdiuITuapSG9LXo9Z27-e3H739tXd0iOnB3VByThco7jE5pFNLoW2ns3MKTsEdBARhUdic4hox7e18hAIClId5QPY673c3Nv0ygYOvmsCLfJU0ZAYhnWKxzmJlDXCtyARRxnlqdRgYiEclM8CRWKJjmUl4q6SxTOlUm2YSPSS1yXRiHhGqWGCTOEkzq6OmhBgpDrVNtEasNXjGPbJ20YJClermmGTjRBS6zKFALwvnZY-8rGxnhabHH61eABAqA5Th3mz1BT6DGBZlCJOzwCOrDieVmcy_4FE5HouDQVd0D4Y7n7ZGI7HrkZUrQKo-CDkDjs6hpOULZIlyGJkLJMtRBBMW88jz6jUMALirIydmego2MTCKGHUiPfLG4ewvlRJb3VHbXT3-F-Nn5Maw3RH93uDDE3IzdBlBuB-wZVJb5KfmKbmuzhbH83yl7IC_ANz0NXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fourth+radiation+transfer+model+intercomparison+%28RAMI-IV%29%3A+Proficiency+testing+of+canopy+reflectance+models+with+ISO-13528&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=WIDLOWSKI%2C+J.-L&rft.au=PINTY%2C+B&rft.au=GRAU%2C+E&rft.au=HUANG%2C+H&rft.date=2013-07-16&rft.pub=John+Wiley+%26+Sons&rft.issn=2169-897X&rft.volume=118&rft.issue=13&rft.spage=6869&rft.epage=6890&rft_id=info:doi/10.1002%2Fjgrd.50497&rft.externalDBID=n%2Fa&rft.externalDocID=27699971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon