The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528
The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These mode...
Uloženo v:
| Vydáno v: | Journal of geophysical research. Atmospheres Ročník 118; číslo 13; s. 6869 - 6890 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, NJ
Blackwell Publishing Ltd
16.07.2013
John Wiley & Sons American Geophysical Union |
| Témata: | |
| ISSN: | 2169-897X, 2169-8996 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “ canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted.
Key Points
ISO‐13528 can be applied to the verification of computer simulation models.
Model comparisons require detailed definitions on acceptable bias levels.
Operator choices/errors are likely cause for most observed biases in RAMI‐IV. |
|---|---|
| AbstractList | The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “ canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted.
Key Points
ISO‐13528 can be applied to the verification of computer simulation models.
Model comparisons require detailed definitions on acceptable bias levels.
Operator choices/errors are likely cause for most observed biases in RAMI‐IV. The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI-IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO-13528 was developed "to determine the performance of individual laboratories for specific tests or measurements." More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO-13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, "truth" must be replaced by a reliable "conventional reference value" to enable absolute performance tests. This contribution will show, for the first time, how the ISO-13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre-screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI-IV "abstract canopy" scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. Key Points ISO-13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI-IV. The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI-IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO-13528 was developed "to determine the performance of individual laboratories for specific tests or measurements." More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO-13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, "truth" must be replaced by a reliable "conventional reference value" to enable absolute performance tests. This contribution will show, for the first time, how the ISO-13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre-screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI-IV "abstract canopy" scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI‐IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO‐13528 was developed “to determine the performance of individual laboratories for specific tests or measurements.” More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO‐13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, “truth” must be replaced by a reliable “conventional reference value” to enable absolute performance tests. This contribution will show, for the first time, how the ISO‐13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre‐screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI‐IV “abstract canopy” scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted. ISO‐13528 can be applied to the verification of computer simulation models. Model comparisons require detailed definitions on acceptable bias levels. Operator choices/errors are likely cause for most observed biases in RAMI‐IV. |
| Author | Pinty, B. Gerboles, M. Xie, D. Qin, W. Kallel, A. Buzica, D. Widlowski, J.-L. Atzberger, C. Lewis, P. E. Schlerf, M. Stuckens, J. Chelle, M. Disney, M. Kobayashi, H. Gastellu-Etchegorry, J-P. Grau, E. Gobron, N. Huang, H. Lopatka, M. |
| Author_xml | – sequence: 1 givenname: J.-L. surname: Widlowski fullname: Widlowski, J.-L. organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy – sequence: 2 givenname: B. surname: Pinty fullname: Pinty, B. organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy – sequence: 3 givenname: M. surname: Lopatka fullname: Lopatka, M. organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy – sequence: 4 givenname: C. surname: Atzberger fullname: Atzberger, C. organization: Institute of Surveying, Remote Sensing and Land Information, University of Natural Resources and Life Sciences, Vienna, Austria – sequence: 5 givenname: D. surname: Buzica fullname: Buzica, D. organization: Industrial Emissions, Air Quality and Noise Unit, DG Environment, Brussels, European Commission, Belgium – sequence: 6 givenname: M. surname: Chelle fullname: Chelle, M. organization: Institut National de la Recherche Agronomique, Thiverval-Grignon, France – sequence: 7 givenname: M. surname: Disney fullname: Disney, M. organization: Department of Geography, University College London, UK – sequence: 8 givenname: J-P. surname: Gastellu-Etchegorry fullname: Gastellu-Etchegorry, J-P. organization: Centre d'Etudes Spatiales de la BIOsphère, Toulouse, France – sequence: 9 givenname: M. surname: Gerboles fullname: Gerboles, M. organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy – sequence: 10 givenname: N. surname: Gobron fullname: Gobron, N. organization: Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, European Commission, Italy – sequence: 11 givenname: E. surname: Grau fullname: Grau, E. organization: Centre d'Etudes Spatiales de la BIOsphère, Toulouse, France – sequence: 12 givenname: H. surname: Huang fullname: Huang, H. organization: Beijing Forestry University, Beijing, China – sequence: 13 givenname: A. surname: Kallel fullname: Kallel, A. organization: Institut Supérieur d'Electronique et de Communication de Sfax, Tunisia – sequence: 14 givenname: H. surname: Kobayashi fullname: Kobayashi, H. organization: Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA – sequence: 15 givenname: P. E. surname: Lewis fullname: Lewis, P. E. organization: Department of Geography, University College London, UK – sequence: 16 givenname: W. surname: Qin fullname: Qin, W. organization: Science Systems and Applications, Inc., Maryland, Greenbelt, USA – sequence: 17 givenname: M. surname: Schlerf fullname: Schlerf, M. organization: Département Environnement et Agro-biotechnologie, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg – sequence: 18 givenname: J. surname: Stuckens fullname: Stuckens, J. organization: Biosystems Department, Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 19 givenname: D. surname: Xie fullname: Xie, D. organization: Research Center for Remote Sensing and GIS, School of Geography, Beijing Normal University, Beijing, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699971$$DView record in Pascal Francis https://hal.science/hal-01003288$$DView record in HAL |
| BookMark | eNp9kc1uEzEUhUeoSJTSDU9gCSG1SFPs8Yx_2EUF0lSBVmmgiI3leO40DhM72BNKNjw7TqfNokJ4Y8v-zr2-5zzP9px3kGUvCT4hGBdvFzehPqlwKfmTbL8gTOZCSra3O_Nvz7LDGBc4LYFpWZX72Z_pHFDj16Gbo6BrqzvrHeqCdrGBgJa-hhZZ10EwfrnSwcb0fDQZfBrlo6_H79Bl8I01FpzZoA5iZ90N8g0y2vnVBgVoWjCddgb6UhHd2tRpdHWRE1oV4kX2tNFthMP7_SD78vHD9PQsH18MR6eDcW5KXvDcCKxnohCGVfWsMg2wglIgdMa5bOqCAMFMM6BpXFFXeqbTq9HQMFPLGkpBD7Ljvu5ct2oV7FKHjfLaqrPBWG3vcHKQFkL8Iok96tlV8D_XaSa1tNFA22oHfh0VqQopqwoznNBXj9BFstKlSRRhVFAqOGOJen1P6Wh02yRzjY27bxScSSn5tjHuORN8jMk7ZWx3F0jKw7aKYLXNWW1zVnc5J8mbR5KHqv-ESQ_f2hY2_yHV-XDy_kGT9xobO_i90-jwQzFOeaWuPw_V8Pry6vv5ZKKm9C8N3Mkd |
| CitedBy_id | crossref_primary_10_3390_rs71215875 crossref_primary_10_1016_j_ecolind_2024_112010 crossref_primary_10_1016_j_rse_2018_08_011 crossref_primary_10_1080_17538947_2025_2520026 crossref_primary_10_1007_s00271_019_00621_x crossref_primary_10_3390_rs70607425 crossref_primary_10_1002_ecm_1271 crossref_primary_10_1016_j_rse_2018_11_036 crossref_primary_10_1016_j_isprsjprs_2015_05_005 crossref_primary_10_1111_2041_210X_14402 crossref_primary_10_1016_j_srs_2025_100196 crossref_primary_10_1016_j_rse_2023_113985 crossref_primary_10_1016_j_rse_2021_112497 crossref_primary_10_1016_j_asr_2016_03_008 crossref_primary_10_1016_j_rse_2021_112405 crossref_primary_10_1080_01431161_2021_1980241 crossref_primary_10_3390_rs17010143 crossref_primary_10_1038_nplants_2016_201 crossref_primary_10_3390_rs12010004 crossref_primary_10_1016_j_rse_2014_03_035 crossref_primary_10_1016_j_agrformet_2022_109009 crossref_primary_10_3390_f13020235 crossref_primary_10_3390_rs12081290 crossref_primary_10_1016_j_rse_2018_08_015 crossref_primary_10_3390_rs16193639 crossref_primary_10_3390_rs12152457 crossref_primary_10_5194_bg_14_2343_2017 crossref_primary_10_3390_rs13081443 crossref_primary_10_3390_rs8080673 crossref_primary_10_3390_rs70201667 crossref_primary_10_3390_rs16122119 crossref_primary_10_1016_j_jqsrt_2016_04_005 crossref_primary_10_3390_rs12182925 crossref_primary_10_1016_j_rse_2020_111902 crossref_primary_10_1016_j_agrformet_2014_03_022 crossref_primary_10_1109_JSTARS_2017_2759240 crossref_primary_10_3390_rs13163235 crossref_primary_10_1109_TGRS_2017_2694483 crossref_primary_10_1109_JSTARS_2024_3443348 crossref_primary_10_1007_s13595_019_0862_7 crossref_primary_10_1109_TGRS_2016_2519098 crossref_primary_10_1016_j_rse_2025_114929 crossref_primary_10_1080_01431161_2019_1590878 crossref_primary_10_3390_rs10091329 crossref_primary_10_3390_rs70709347 crossref_primary_10_3390_rs16234552 crossref_primary_10_1016_j_jag_2024_104240 crossref_primary_10_1007_s10712_019_09527_x crossref_primary_10_1109_JSTARS_2015_2413994 crossref_primary_10_1016_j_rse_2016_02_020 crossref_primary_10_1016_j_rse_2022_112973 crossref_primary_10_1016_j_rse_2015_02_020 crossref_primary_10_1080_01431161_2022_2093143 crossref_primary_10_1016_j_agrformet_2016_05_009 crossref_primary_10_1016_j_rse_2018_10_021 crossref_primary_10_1016_j_rse_2016_07_009 crossref_primary_10_3390_rs15184529 crossref_primary_10_1016_j_ecolmodel_2017_11_022 crossref_primary_10_1016_j_rse_2016_07_010 crossref_primary_10_1016_j_rse_2024_114118 crossref_primary_10_3390_rs12182909 crossref_primary_10_1016_j_jqsrt_2022_108265 crossref_primary_10_1109_TGRS_2016_2547326 crossref_primary_10_3390_rs11131597 crossref_primary_10_3390_s150203453 crossref_primary_10_1016_j_rse_2017_09_025 crossref_primary_10_1007_s10712_019_09532_0 crossref_primary_10_1016_j_isprsjprs_2021_02_020 crossref_primary_10_1016_j_rse_2021_112843 crossref_primary_10_5194_bg_11_1873_2014 crossref_primary_10_1016_j_jqsrt_2023_108715 crossref_primary_10_3390_rs70404604 crossref_primary_10_1080_22797254_2018_1462102 crossref_primary_10_1029_2021JD036175 crossref_primary_10_1109_JSTARS_2015_2450762 crossref_primary_10_1109_JSTARS_2022_3156403 crossref_primary_10_1016_j_rse_2021_112835 crossref_primary_10_1016_j_agrformet_2021_108781 crossref_primary_10_3390_rs10121911 crossref_primary_10_3390_rs12203391 crossref_primary_10_3390_rs12020247 crossref_primary_10_1109_TGRS_2023_3297363 crossref_primary_10_1016_j_rse_2020_112195 crossref_primary_10_3390_rs13050931 crossref_primary_10_1016_j_rse_2022_113368 crossref_primary_10_1016_j_rse_2021_112311 crossref_primary_10_1109_LGRS_2017_2687702 crossref_primary_10_1007_s40725_019_00096_1 crossref_primary_10_1016_j_jqsrt_2020_107183 crossref_primary_10_1016_j_foreco_2015_09_030 crossref_primary_10_3390_rs11222637 crossref_primary_10_3390_rs71013410 crossref_primary_10_1016_j_rse_2024_114264 crossref_primary_10_1016_j_rse_2015_08_016 crossref_primary_10_1016_j_rse_2020_112082 crossref_primary_10_3390_rs6064927 crossref_primary_10_1016_j_agrformet_2018_11_033 crossref_primary_10_1016_j_rse_2023_113951 crossref_primary_10_34133_remotesensing_0663 crossref_primary_10_34133_plantphenomics_0189 |
| Cites_doi | 10.1016/j.atmosenv.2010.12.020 10.1016/S0034-4257(00)00129-2 10.1029/96JD04013 10.1016/S0003-2670(00)01115-6 10.1029/93JD02071 10.1080/0143116031000115166 10.2134/agronj1984.00021962007600050021x 10.1029/2004JD004252 10.1080/01431160903130911 10.1029/93JD02072 10.1016/j.ecolmodel.2006.04.010 10.1016/0034-4257(95)00253-7 10.1364/AO.34.006211 10.1029/2000JD900493 10.1016/j.rse.2007.07.016 10.1029/2010JG001511 10.1016/j.jqsrt.2012.01.003 10.1080/02757250009532389 10.1080/02757258809532105 10.1029/2006JD007821 10.1109/TGRS.2002.801583 10.1007/3-540-28125-8_10 10.1109/TGRS.2009.2019268 10.1109/TGRS.2007.902272 10.1109/TGRS.2008.928730 10.1051/agro:19990302 10.1016/j.rse.2007.04.010 10.1016/j.rse.2011.06.011 10.1016/j.jqsrt.2010.02.010 10.1016/j.rse.2005.10.006 10.1016/S0034-4257(01)00247-4 |
| ContentType | Journal Article |
| Copyright | 2013. American Geophysical Union. All Rights Reserved. 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2013. American Geophysical Union. All Rights Reserved. – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | BSCLL AAYXX CITATION IQODW 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M 7SU 1XC |
| DOI | 10.1002/jgrd.50497 |
| DatabaseName | Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environmental Engineering Abstracts Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Environmental Engineering Abstracts |
| DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Statistics |
| EISSN | 2169-8996 |
| EndPage | 6890 |
| ExternalDocumentID | oai:HAL:hal-01003288v1 3531922601 27699971 10_1002_jgrd_50497 JGRD50497 ark_67375_WNG_GWPSZJRR_T |
| Genre | article |
| GroupedDBID | 05W 0R~ 1OC 33P 50Y 52M 5VS 702 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI BSCLL DPXWK DRFUL DRSTM EBS EJD G-S GODZA HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR ~OA 1OB AAYXX CITATION 31~ 8FG ABJCF AEUYN AFKRA AGHNM ARAPS AZQEC BGLVJ CCPQU FEDTE HVGLF IQODW K6- L6V LK5 M7R M7S P62 PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PYCSY RJQFR 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M 7SU 1XC AFFHD AIQQE |
| ID | FETCH-LOGICAL-c4727-c80ab828c65db5cfe6233e13b779fd21e106a6e39968d5aba33ecaef6cd9de483 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322192200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-897X |
| IngestDate | Tue Oct 28 08:50:20 EDT 2025 Tue Oct 07 09:44:55 EDT 2025 Mon Oct 27 02:21:43 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Tue Nov 18 21:59:46 EST 2025 Sat Nov 29 02:33:15 EST 2025 Tue Sep 09 05:08:26 EDT 2025 Tue Nov 11 03:32:58 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | models radiative transfer Space remote sensing Satellite observation digital simulation performances Comparative study Retrieval algorithm Canopy(vegetation) Reflectance CALIBRATION model comparison ISO standards LIGHT VALIDATION SIMULATION INVERSION BRDF ATMOSPHERE radiative transfer models VEGETATION CANOPIES CSAR MODEL SCALE |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4727-c80ab828c65db5cfe6233e13b779fd21e106a6e39968d5aba33ecaef6cd9de483 |
| Notes | ArticleID:JGRD50497 ark:/67375/WNG-GWPSZJRR-T istex:CE1CA05720CBDC24A4AAABCEFDC219CD23BCFD62 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7949-6090 0000-0001-8151-1555 0000-0002-6645-8837 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrd.50497 |
| PQID | 1638338766 |
| PQPubID | 54657 |
| PageCount | 22 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01003288v1 proquest_miscellaneous_1529955060 proquest_journals_1638338766 pascalfrancis_primary_27699971 crossref_citationtrail_10_1002_jgrd_50497 crossref_primary_10_1002_jgrd_50497 wiley_primary_10_1002_jgrd_50497_JGRD50497 istex_primary_ark_67375_WNG_GWPSZJRR_T |
| PublicationCentury | 2000 |
| PublicationDate | 16 July 2013 |
| PublicationDateYYYYMMDD | 2013-07-16 |
| PublicationDate_xml | – month: 07 year: 2013 text: 16 July 2013 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, NJ |
| PublicationPlace_xml | – name: Hoboken, NJ – name: Washington |
| PublicationTitle | Journal of geophysical research. Atmospheres |
| PublicationTitleAlternate | J. Geophys. Res. Atmos |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons American Geophysical Union |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons – name: American Geophysical Union |
| References | Bruegge, C. J., N. L. Chrien, R. R. Ando, D. J. Diner, W. A. Abdou, M. C. Helmlinger, S. H. Pilorz, and K. J. Thome (2002), Early validation of the multi-angle imaging spectroradiometer (MISR) radiometric scale, IEEE Trans. Geosci. Remote Sens., 40, 1477-1492. ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 2:, International Standard, ISO 5725-2:1994 (E), 42 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland. Rahman, H., B. Pinty, and M. M. Verstraete (1993a), Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, 20791-20801. Gobron, N., B. Pinty, M. M. Verstraete, and Y. Govaerts (1997), A semi-discrete model for the scattering of light by vegetation, J. Geophys. Res., 102, 9431-9446. Goel, N. (1988), Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data, Remote Sens. Rev., 4, 1-212. Thome, K. J., K. Arai, S. Tsuchida, and S. F. Biggar (2008), Vicarious calibration of ASTER via the reflectance-based approach, IEEE Trans. Geosci. Remote Sens., 46, 3285-3295. Huang, H., M. Chen, and Q. Liu (2009), A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment, Int. J. Remote Sens., 30(20), 5421-5439. Widlowski, J.-L., et al. (2007b), The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling, J. Geophys. Res., 112, D09111, doi:10.1029/2006JD007821. Hund, E., D. L. Massart, and J. Smeyers-Verbeke (2000), Inter-laboratory studies in analytical chemistry, Anal. Chim. Acta, 423, 145-165. Rahman, H., M. M. Verstraete, and B. Pinty (1993b), Coupled surface-atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data, J. Geophys. Res., 98, 20779-20789. Lewis, P. (1999), Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system, Agron. Agric. Environ., 19, 185-210. Wang, Y., J. Czapla-Myers, A. Lyapustin, K. Thome, and E. Dutton (2011), Aeronet-based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site, Remote Sens. Environ., 115, 2710-2717, doi:10.1016/j.rse.2011.06.011. Chen, J. M., and J. Cihlar (1995), Plant canopy gap size analysis theory for improving optical measurements of leaf area index, Appl. Opt., 34, 6211-6222. Widlowski, J. -L., M. Robustelli, M. Disney, J. -P. Gastellu-Etchegorry, T. Lavergne, P. Lewis, P. J. R. North, B. Pinty, R. Thompson, and M. M. Verstraete (2007a), The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models, Remote Sens. Environ., 112(3), 1144-1150, doi:10.1016/j.rse.2007.07.016. Kallel, A. (2012), Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2, J. Quant. Spectrosc. Radiat. Transfer, 113, 440-460. Schlerf, M., and M. Atzberger (2006), Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281-294. Goel, N. S., and D. E. Strebel (1984), Simple beta distribution representation of leaf orientation in vegetation canopies, Agron. J., 76, 800-803. Kallel, A. (2010), Vegetation radiative transfer modeling based on virtual flux decomposition, J. Quant. Spectrosc. Radiat. Transfer, 111, 1389-1405. Gerboles, M., et al. (2011), Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM10 in Europe, Atmos. Environ., 45, 3488-3499. Disney, M. I., P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock (2009), Quantifying surface reflectivity for spaceborne lidar via two independent methods, IEEE Trans. Geosci. Remote Sens., 47(10), 3262-3271, doi:10.1109/TGRS.2009.2019268. Thome, K. J. (2001), Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method, Remote Sens. Environ., 78, 27-38. Disney, M. I., P. Lewis, and P. R. J. North (2000), Monte Carlo raytracing in optical canopy reflectance modelling, Remote Sens. Rev., 18, 163-196. Kobayashi, H., and H. Iwabuchi (2008), Acoupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sens. Environ., 112, 173-185. Liu, Q. H. H. H. G., W. Qin, K. Fu, and X. Li (2007), Anextended 3-D radiosity graphics combined model for studying thermal-emission directionality of crop canopy, IEEE Trans. Geosci. Remote Sens., 45, 2900-2918. Pharr, M., and G. Humphreys (2010), Physically Based Rendering: From Theory to Implementation, 1167 pp., Morgan Kaufmann, San Fransisco. Widlowski, J.-L., et al. (2011), RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models, J. Geophys. Res., 116, G02019, doi:10.1029/2010JG001511. Kneubühler, M., M. Schaepman, K. Thome, F. Baret, and A. Müller (2002), Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV), Proceedings of MERIS level 2 validation Workshop, ESRIN. Frascati, Italy, December 9-13. Pinty, B., et al. (2001), The radiation transfer model intercomparison (RAMI) exercise, J. Geophys. Res., 106, 11937-11956. Gastellu-Etchegorry, J. -P., V. Demarez, V. Pinel, and F. Zagolski (1996), Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 58, 131-156. ISO 5725-3 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 3:, International Standard, ISO 5725-3:1994 (E), 25 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland. Gastellu-Etchegorry, J. -P., E. Martin, and F. Gascon (2004), Dart: A 3D model for simulating satellite images and studying surface radiation budget, Int. J. Remote Sens., 25, 73-96. Qin, W., and S. A. W. Gerstl (2000), 3-D scene modeling of semi-desert vegetation cover and its radiation regime, Remote Sens. Environ., 74, 145-162. Chelle, M. (2006), Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption?Ecol. Modell., 198, 219-228. ISO 13528 (2005), Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E), 66 pp., International Organization for Standardization, ISO/TC6-SC6, Geneva, Switzerland. Pinty, B., et al. (2004), The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase, J. Geophys. Res., 109, D06210, doi:10.1029/2004JD004252. 2011; 116 2011; 115 2007a; 112 2009; 47 1993b; 98 2012 2011 2010 2004; 25 1995; 34 1997 2008 2006; 198 1995 2006 2005 1994 2002 1996; 58 2004; 109 2001; 106 1997; 102 1988; 4 2000; 18 2009; 30 2012; 113 2000 2000; 423 1999; 19 2002; 40 1984; 76 2000; 74 2010; 111 2008; 46 2011; 45 2007b; 112 2008; 112 2001; 78 2007; 45 1993a; 98 2006; 100 e_1_2_9_31_1 ISO 5725‐2 (e_1_2_9_20_1) 1994 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 Pharr M. (e_1_2_9_30_1) 2010 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 Atzberger C. (e_1_2_9_2_1) 2000 Kneubühler M. (e_1_2_9_26_1) 2002 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 ISO 13528 (e_1_2_9_19_1) 2005 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_28_1 ISO 5725‐3 (e_1_2_9_21_1) 1994 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – reference: Qin, W., and S. A. W. Gerstl (2000), 3-D scene modeling of semi-desert vegetation cover and its radiation regime, Remote Sens. Environ., 74, 145-162. – reference: Pinty, B., et al. (2001), The radiation transfer model intercomparison (RAMI) exercise, J. Geophys. Res., 106, 11937-11956. – reference: Widlowski, J.-L., et al. (2011), RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models, J. Geophys. Res., 116, G02019, doi:10.1029/2010JG001511. – reference: Chen, J. M., and J. Cihlar (1995), Plant canopy gap size analysis theory for improving optical measurements of leaf area index, Appl. Opt., 34, 6211-6222. – reference: Hund, E., D. L. Massart, and J. Smeyers-Verbeke (2000), Inter-laboratory studies in analytical chemistry, Anal. Chim. Acta, 423, 145-165. – reference: Rahman, H., B. Pinty, and M. M. Verstraete (1993a), Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, 20791-20801. – reference: ISO 5725-3 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 3:, International Standard, ISO 5725-3:1994 (E), 25 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland. – reference: Thome, K. J., K. Arai, S. Tsuchida, and S. F. Biggar (2008), Vicarious calibration of ASTER via the reflectance-based approach, IEEE Trans. Geosci. Remote Sens., 46, 3285-3295. – reference: Gastellu-Etchegorry, J. -P., V. Demarez, V. Pinel, and F. Zagolski (1996), Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 58, 131-156. – reference: Pharr, M., and G. Humphreys (2010), Physically Based Rendering: From Theory to Implementation, 1167 pp., Morgan Kaufmann, San Fransisco. – reference: Widlowski, J. -L., M. Robustelli, M. Disney, J. -P. Gastellu-Etchegorry, T. Lavergne, P. Lewis, P. J. R. North, B. Pinty, R. Thompson, and M. M. Verstraete (2007a), The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models, Remote Sens. Environ., 112(3), 1144-1150, doi:10.1016/j.rse.2007.07.016. – reference: Bruegge, C. J., N. L. Chrien, R. R. Ando, D. J. Diner, W. A. Abdou, M. C. Helmlinger, S. H. Pilorz, and K. J. Thome (2002), Early validation of the multi-angle imaging spectroradiometer (MISR) radiometric scale, IEEE Trans. Geosci. Remote Sens., 40, 1477-1492. – reference: Goel, N. (1988), Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data, Remote Sens. Rev., 4, 1-212. – reference: Pinty, B., et al. (2004), The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase, J. Geophys. Res., 109, D06210, doi:10.1029/2004JD004252. – reference: Schlerf, M., and M. Atzberger (2006), Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281-294. – reference: Gobron, N., B. Pinty, M. M. Verstraete, and Y. Govaerts (1997), A semi-discrete model for the scattering of light by vegetation, J. Geophys. Res., 102, 9431-9446. – reference: Huang, H., M. Chen, and Q. Liu (2009), A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment, Int. J. Remote Sens., 30(20), 5421-5439. – reference: Gerboles, M., et al. (2011), Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM10 in Europe, Atmos. Environ., 45, 3488-3499. – reference: Liu, Q. H. H. H. G., W. Qin, K. Fu, and X. Li (2007), Anextended 3-D radiosity graphics combined model for studying thermal-emission directionality of crop canopy, IEEE Trans. Geosci. Remote Sens., 45, 2900-2918. – reference: Kobayashi, H., and H. Iwabuchi (2008), Acoupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sens. Environ., 112, 173-185. – reference: Kneubühler, M., M. Schaepman, K. Thome, F. Baret, and A. Müller (2002), Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV), Proceedings of MERIS level 2 validation Workshop, ESRIN. Frascati, Italy, December 9-13. – reference: Thome, K. J. (2001), Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method, Remote Sens. Environ., 78, 27-38. – reference: Lewis, P. (1999), Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system, Agron. Agric. Environ., 19, 185-210. – reference: Disney, M. I., P. Lewis, and P. R. J. North (2000), Monte Carlo raytracing in optical canopy reflectance modelling, Remote Sens. Rev., 18, 163-196. – reference: Wang, Y., J. Czapla-Myers, A. Lyapustin, K. Thome, and E. Dutton (2011), Aeronet-based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site, Remote Sens. Environ., 115, 2710-2717, doi:10.1016/j.rse.2011.06.011. – reference: Kallel, A. (2010), Vegetation radiative transfer modeling based on virtual flux decomposition, J. Quant. Spectrosc. Radiat. Transfer, 111, 1389-1405. – reference: Gastellu-Etchegorry, J. -P., E. Martin, and F. Gascon (2004), Dart: A 3D model for simulating satellite images and studying surface radiation budget, Int. J. Remote Sens., 25, 73-96. – reference: Goel, N. S., and D. E. Strebel (1984), Simple beta distribution representation of leaf orientation in vegetation canopies, Agron. J., 76, 800-803. – reference: Widlowski, J.-L., et al. (2007b), The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling, J. Geophys. Res., 112, D09111, doi:10.1029/2006JD007821. – reference: Kallel, A. (2012), Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2, J. Quant. Spectrosc. Radiat. Transfer, 113, 440-460. – reference: Rahman, H., M. M. Verstraete, and B. Pinty (1993b), Coupled surface-atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data, J. Geophys. Res., 98, 20779-20789. – reference: ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results-Part 2:, International Standard, ISO 5725-2:1994 (E), 42 pp., International Organization for Standardization, ISO/TC69-SC6, Geneva, Switzerland. – reference: Disney, M. I., P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock (2009), Quantifying surface reflectivity for spaceborne lidar via two independent methods, IEEE Trans. Geosci. Remote Sens., 47(10), 3262-3271, doi:10.1109/TGRS.2009.2019268. – reference: Chelle, M. (2006), Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption?Ecol. Modell., 198, 219-228. – reference: ISO 13528 (2005), Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E), 66 pp., International Organization for Standardization, ISO/TC6-SC6, Geneva, Switzerland. – year: 2011 – volume: 18 start-page: 163 year: 2000 end-page: 196 article-title: Monte Carlo raytracing in optical canopy reflectance modelling publication-title: Remote Sens. Rev. – year: 2002 article-title: Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV) publication-title: Proceedings of MERIS level 2 validation Workshop, ESRIN – volume: 30 start-page: 5421 issue: 20 year: 2009 end-page: 5439 article-title: A realistic structure model for large‐scale surface leaving radiance simulation of forest canopy and accuracy assessment publication-title: Int. J. Remote Sens. – volume: 19 start-page: 185 year: 1999 end-page: 210 article-title: Three‐dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system publication-title: Agron. Agric. Environ. – volume: 58 start-page: 131 year: 1996 end-page: 156 article-title: Modeling radiative transfer in heterogeneous 3‐D vegetation canopies publication-title: Remote Sens. Environ. – volume: 45 start-page: 3488 year: 2011 end-page: 3499 article-title: Interlaboratory comparison exercise for the determination of As, Cd, Ni and PM in Europe publication-title: Atmos. Environ. – start-page: 39 year: 2000 end-page: 44 – volume: 46 start-page: 3285 year: 2008 end-page: 3295 article-title: Vicarious calibration of ASTER via the reflectance‐based approach publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 112 start-page: 1144 issue: 3 year: 2007a end-page: 1150 article-title: The RAMI On‐line Model Checker (ROMC): A web‐based benchmarking facility for canopy reflectance models publication-title: Remote Sens. Environ. – volume: 47 start-page: 3262 issue: 10 year: 2009 end-page: 3271 article-title: Quantifying surface reflectivity for spaceborne lidar via two independent methods publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 42 year: 1994 – volume: 423 start-page: 145 year: 2000 end-page: 165 article-title: Inter‐laboratory studies in analytical chemistry publication-title: Anal. Chim. Acta – volume: 112 start-page: 173 year: 2008 end-page: 185 article-title: Acoupled 1‐D atmosphere and 3‐D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape publication-title: Remote Sens. Environ. – start-page: 1167 year: 2010 – volume: 115 start-page: 2710 year: 2011 end-page: 2717 article-title: Aeronet‐based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site publication-title: Remote Sens. Environ. – start-page: 66 year: 2005 – volume: 106 start-page: 11937 year: 2001 end-page: 11956 article-title: The radiation transfer model intercomparison (RAMI) exercise publication-title: J. Geophys. Res. – volume: 109 start-page: D06210 year: 2004 article-title: The radiation transfer model intercomparison (RAMI) exercise: Results from the second phase publication-title: J. Geophys. Res. – year: 2012 – volume: 78 start-page: 27 year: 2001 end-page: 38 article-title: Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance‐based method publication-title: Remote Sens. Environ. – volume: 111 start-page: 1389 year: 2010 end-page: 1405 article-title: Vegetation radiative transfer modeling based on virtual flux decomposition publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 112 start-page: D09111 year: 2007b article-title: The third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling publication-title: J. Geophys. Res. – volume: 74 start-page: 145 year: 2000 end-page: 162 article-title: 3‐D scene modeling of semi‐desert vegetation cover and its radiation regime publication-title: Remote Sens. Environ. – volume: 100 start-page: 281 year: 2006 end-page: 294 article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data publication-title: Remote Sens. Environ. – volume: 4 start-page: 1 year: 1988 end-page: 212 article-title: Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data publication-title: Remote Sens. Rev. – start-page: 25 year: 1994 – volume: 113 start-page: 440 year: 2012 end-page: 460 article-title: Extension of virtual flux decomposition model to the case of two vegetation layers: FDM‐2 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 40 start-page: 1477 year: 2002 end-page: 1492 article-title: Early validation of the multi‐angle imaging spectroradiometer (MISR) radiometric scale publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2008 – start-page: 211 year: 2006 end-page: 231 – volume: 34 start-page: 6211 year: 1995 end-page: 6222 article-title: Plant canopy gap size analysis theory for improving optical measurements of leaf area index publication-title: Appl. Opt. – year: 1997 – volume: 76 start-page: 800 year: 1984 end-page: 803 article-title: Simple beta distribution representation of leaf orientation in vegetation canopies publication-title: Agron. J. – volume: 198 start-page: 219 year: 2006 end-page: 228 article-title: Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? publication-title: Ecol. Modell. – year: 1995 – volume: 98 start-page: 20779 year: 1993b end-page: 20789 article-title: Coupled surface‐atmosphere reflectance (CSAR) model. 1. Model description and inversion on synthetic data publication-title: J. Geophys. Res. – volume: 98 start-page: 20791 year: 1993a end-page: 20801 article-title: Coupled surface‐atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data publication-title: J. Geophys. Res. – volume: 25 start-page: 73 year: 2004 end-page: 96 article-title: Dart: A 3D model for simulating satellite images and studying surface radiation budget publication-title: Int. J. Remote Sens. – volume: 116 start-page: G02019 year: 2011 article-title: RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models publication-title: J. Geophys. Res. – volume: 102 start-page: 9431 year: 1997 end-page: 9446 article-title: A semi‐discrete model for the scattering of light by vegetation publication-title: J. Geophys. Res. – volume: 45 start-page: 2900 year: 2007 end-page: 2918 article-title: Anextended 3‐D radiosity graphics combined model for studying thermal‐emission directionality of crop canopy publication-title: IEEE Trans. Geosci. Remote Sens. – ident: e_1_2_9_12_1 doi: 10.1016/j.atmosenv.2010.12.020 – ident: e_1_2_9_33_1 doi: 10.1016/S0034-4257(00)00129-2 – ident: e_1_2_9_13_1 doi: 10.1029/96JD04013 – ident: e_1_2_9_18_1 doi: 10.1016/S0003-2670(00)01115-6 – year: 2002 ident: e_1_2_9_26_1 article-title: Calibration and validation of Envisat MERIS. Part 1: Vicarious calibration at Rail Road valley Playa (NV) publication-title: Proceedings of MERIS level 2 validation Workshop, ESRIN – ident: e_1_2_9_35_1 doi: 10.1029/93JD02071 – ident: e_1_2_9_10_1 doi: 10.1080/0143116031000115166 – ident: e_1_2_9_15_1 doi: 10.2134/agronj1984.00021962007600050021x – ident: e_1_2_9_32_1 doi: 10.1029/2004JD004252 – ident: e_1_2_9_17_1 doi: 10.1080/01431160903130911 – ident: e_1_2_9_34_1 doi: 10.1029/93JD02072 – ident: e_1_2_9_5_1 doi: 10.1016/j.ecolmodel.2006.04.010 – ident: e_1_2_9_9_1 doi: 10.1016/0034-4257(95)00253-7 – start-page: 1167 volume-title: Physically Based Rendering: From Theory to Implementation year: 2010 ident: e_1_2_9_30_1 – ident: e_1_2_9_6_1 doi: 10.1364/AO.34.006211 – start-page: 25 volume-title: Accuracy (trueness and precision) of measurement methods and results—Part 3:, International Standard, ISO 5725‐3:1994 (E) year: 1994 ident: e_1_2_9_21_1 – ident: e_1_2_9_16_1 – ident: e_1_2_9_31_1 doi: 10.1029/2000JD900493 – ident: e_1_2_9_41_1 doi: 10.1016/j.rse.2007.07.016 – ident: e_1_2_9_43_1 doi: 10.1029/2010JG001511 – ident: e_1_2_9_4_1 – ident: e_1_2_9_25_1 doi: 10.1016/j.jqsrt.2012.01.003 – ident: e_1_2_9_7_1 doi: 10.1080/02757250009532389 – ident: e_1_2_9_14_1 doi: 10.1080/02757258809532105 – ident: e_1_2_9_42_1 doi: 10.1029/2006JD007821 – start-page: 42 volume-title: Accuracy (trueness and precision) of measurement methods and results—Part 2:, International Standard, ISO 5725‐2:1994 (E) year: 1994 ident: e_1_2_9_20_1 – ident: e_1_2_9_3_1 doi: 10.1109/TGRS.2002.801583 – ident: e_1_2_9_40_1 doi: 10.1007/3-540-28125-8_10 – ident: e_1_2_9_8_1 doi: 10.1109/TGRS.2009.2019268 – ident: e_1_2_9_29_1 doi: 10.1109/TGRS.2007.902272 – ident: e_1_2_9_38_1 doi: 10.1109/TGRS.2008.928730 – ident: e_1_2_9_28_1 doi: 10.1051/agro:19990302 – start-page: 66 volume-title: Statistical methods for use in proficiency testing by interlaboratory comparisons, International Standard, ISO 13528:2005(E) year: 2005 ident: e_1_2_9_19_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.rse.2007.04.010 – ident: e_1_2_9_22_1 – ident: e_1_2_9_23_1 – start-page: 39 volume-title: A Decade of Trans‐European Remote Sensing Cooperation. Proceedings of the 20th EARSeL Symposium Dresden, Germany, 14–16 June 2000 year: 2000 ident: e_1_2_9_2_1 – ident: e_1_2_9_39_1 doi: 10.1016/j.rse.2011.06.011 – ident: e_1_2_9_24_1 doi: 10.1016/j.jqsrt.2010.02.010 – ident: e_1_2_9_36_1 doi: 10.1016/j.rse.2005.10.006 – ident: e_1_2_9_11_1 – ident: e_1_2_9_37_1 doi: 10.1016/S0034-4257(01)00247-4 |
| SSID | ssj0000803454 |
| Score | 2.2775652 |
| Snippet | The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics‐based radiative transfer (RT) models under controlled... The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled... |
| SourceID | hal proquest pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6869 |
| SubjectTerms | Agricultural sciences BRDF Canopies Climate change Computer simulation Criteria Earth, ocean, space Exact sciences and technology External geophysics Geophysics ISO standards Life Sciences Mathematical analysis Mathematical models Meteorology model comparison Radiation Radiative transfer radiative transfer models Statistics Tolerances validation vegetation canopies |
| Title | The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528 |
| URI | https://api.istex.fr/ark:/67375/WNG-GWPSZJRR-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgrd.50497 https://www.proquest.com/docview/1638338766 https://www.proquest.com/docview/1529955060 https://hal.science/hal-01003288 |
| Volume | 118 |
| WOSCitedRecordID | wos000322192200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGxgMv3BGBMZmLJoYUVieN7SBeqo12nbpSdZdWvFiO7WyDqZ3SbmJviF_Ab-SXcI7TZlRCSIi3XI4t5fiz_R3b-Q4hr1KbcqmZCWvGpCHEGybUVrIQwINyUSLnfrvgqCO6XTkcpr0l8n7-L0ypD1EtuGHP8OM1dnCdTTavRUM_Hxf2bQIEF38lZ3WG6QsG7W61wAJUKK77LGgR42koUzGs5EmjzevSCxPSjRM8DrmCHv6KxyT1BDyVlykuFjjo70zWT0XNO__3EXfJ7RkFpY0SM_fIkhvdJ8EesOdx4RfZ6TrdOjsFKuvvHpDvgCWaQ7HpCS1QywAbk0495XUF9cl0KOpOFKbKakhf9xt77Z_ffrSPNt7RHmYG96PIFZ2irsfomI5zCs06Pr-i4BPcPED8lZVNKC4P0_b-R6iAoTLMQ3LY_HCwtRPOcjeEpg6UKDSypjOI5gxPbJaY3AHNih2LMyHS3EbMQSiquQN6xKVNdKbhrdEu58am1tVl_Igsj8Yj95hQw1kuE5lmuY3rGsKjJLK5tBZhVhOZCMjGvAGVmQmbY36NM1VKMkcKvay8lwPysrI9L-U8_mj1AnBQGaAC906jo_AZhK-oQCgvWUDWPUwqM118wVNyIlGDbku1Br39T7v9vjoIyNoCjqoCkeBAzwXUtDoHlpqNIBOFPDmOYa7iAXlevYa-jxs6euTGF2CTAJlIUCIyIG88zP7yUWq31d_2V0_-xfgpuRX5DCAiZHyVLE-LC_eM3DSX09NJsUZWtvvNw86a73q_AG4CMlU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbhMxELVoi0RfuCO2lGIuqijS0uzN9vIWFZqkJCFKQxPxYnltb1uokmqTVvQN8QV8I1_CjDfdEgkhId6S7NjSjo_tM2PnDCEvUpMyoQLt17ROfYg3tK-MCHwAD8pF8Zy544KDNu92xWiU9uZ3c_C_MKU-RJVww5nh1muc4JiQ3r5SDf18WJjXCTBcvkRWYmAaWLlh2OpWKRYgQ1Hs6qCFAUt9kfJRJVAabl81X9iSlo7wQuQK-vgrXpRUU_BVXha5WGChv3NZtxnt3vrP17hNbs5ZKK2XsLlDrtnxXeJ1gEBPCpdnp5t05-QY2Kz7do98BzjRHJrNjmiBcgY4nnTmWK8tqKunQ1F6otBVYUP6sl_vtH5--9E62HpDe1gc3C0kF3SG0h7jQzrJKYzs5PSCglPw_AAhWHY2pZghpq39D9BBgOIw98nH3XeDnaY_L9_g6xhYka9FTWUQ0GmWmCzRuQWmFdkgyjhPcxMGFqJRxSwwJCZMojIFT7WyOdMmNTYW0QOyPJ6M7UNCNQtykYg0y00UK4iQktDkwhhEWo1n3CNblyMo9VzbHEtsnMhSlTmU6GXpvOyR55Xtaano8UerZwCEygBFuJv1tsTfIIJFEUJxHnhk0-GkMlPFF7woxxM57DZkY9jb_7TX78uBRzYWgFQ1CDkDhs6hp_VLZMn5IjKVSJWjCLYr5pGn1WOY_nimo8Z2cgY2CfCJBFUiPfLK4ewvLyX3Gv237tPavxg_ITeag05btlvd94_IaugKgnA_YOtkeVac2cfkuj6fHU-LDTf_fgHG2zTT |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZYixAv3BGBMcxFE0MKa5LGTnirVtp1dKXqbhUvluPLNpjaKu0m9ob4BfxGfgnnOFnGJISEeMvlxJKPP9vfsZ3vEPIq1SlLZKD8hlKpD_GG8qVOAh_Ag3JR3DK3XbDf54NBMh6nw_JsDv4LU-hDVAtu2DPceI0d3My0Xb9UDf18mOu3MTBcvkTqTcwiUyP19qiz168WWYAORU2XCS0MWOonKR9XEqXh-mUBVyalpSM8EllHL3_Fo5JyDt6yRZqLKzz0dzbrpqPO7f-syB1yq-ShtFUA5y65Zib3iLcNFHqau5V2uko3To6Bz7q7--Q7AIpa-GxxRHMUNMAWpQvHe01OXUYdiuITuapSG9LXo9Z27-e3H739tXd0iOnB3VByThco7jE5pFNLoW2ns3MKTsEdBARhUdic4hox7e18hAIClId5QPY673c3Nv0ygYOvmsCLfJU0ZAYhnWKxzmJlDXCtyARRxnlqdRgYiEclM8CRWKJjmUl4q6SxTOlUm2YSPSS1yXRiHhGqWGCTOEkzq6OmhBgpDrVNtEasNXjGPbJ20YJClermmGTjRBS6zKFALwvnZY-8rGxnhabHH61eABAqA5Th3mz1BT6DGBZlCJOzwCOrDieVmcy_4FE5HouDQVd0D4Y7n7ZGI7HrkZUrQKo-CDkDjs6hpOULZIlyGJkLJMtRBBMW88jz6jUMALirIydmego2MTCKGHUiPfLG4ewvlRJb3VHbXT3-F-Nn5Maw3RH93uDDE3IzdBlBuB-wZVJb5KfmKbmuzhbH83yl7IC_ANz0NXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fourth+radiation+transfer+model+intercomparison+%28RAMI-IV%29%3A+Proficiency+testing+of+canopy+reflectance+models+with+ISO-13528&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=WIDLOWSKI%2C+J.-L&rft.au=PINTY%2C+B&rft.au=GRAU%2C+E&rft.au=HUANG%2C+H&rft.date=2013-07-16&rft.pub=John+Wiley+%26+Sons&rft.issn=2169-897X&rft.volume=118&rft.issue=13&rft.spage=6869&rft.epage=6890&rft_id=info:doi/10.1002%2Fjgrd.50497&rft.externalDBID=n%2Fa&rft.externalDocID=27699971 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon |