Adaptive variable step algorithm for missing samples recovery in sparse signals
Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and con...
Uloženo v:
| Vydáno v: | IET signal processing Ročník 8; číslo 3; s. 246 - 256 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
The Institution of Engineering and Technology
01.05.2014
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1751-9675, 1751-9683, 1751-9683 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done by using one of the well-known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non-differentiable forms of measures lead us to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals. |
|---|---|
| AbstractList | Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done by using one of the well‐known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non‐differentiable forms of measures lead us to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals. Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done, by using one of the well-known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non-differentiable forms of measures lead the authors to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals. |
| Author | Stanković, Ljubiša Vujović, Stefan Daković, Miloš |
| Author_xml | – sequence: 1 givenname: Ljubisa surname: Stankovic fullname: Stankovic, Ljubisa – sequence: 2 givenname: Milos surname: Dakovic fullname: Dakovic, Milos – sequence: 3 givenname: Stefan surname: Vujovic fullname: Vujovic, Stefan |
| BookMark | eNqFkMtKxDAUhoMoeH0AdwE3uuiYpEnTutPBy8CA4mUd0vR0jHSamnRG5u1NGVER0dXJ4vvyn_Pvos3WtYDQISUjSnhxaqFPQudHjNB0RNJcbKAdKgVNiixPNz_fUmyj3RBeCBGZoGwH3Z5XuuvtEvBSe6vLBnDoocO6mTlv--c5rp3HcxuCbWc46HnXQMAejFuCX2Hb4tBpH6JlZ61uwj7aquOAg4-5h56uLh_HN8n09noyPp8mhksmEy45iYtpwmpZQQFAU5YLU2jDSWUybXLGKdRcmpJTUtIMQJSCC8KqMs1rSPfQ8frfzrvXBYRexR0NNI1uwS2CoiKTJGMskxE9-oG-uIUflo0Uj4UVjPBI0TVlvAvBQ606b-farxQlaqhYxYpVrFgNFauh4ujIH46xve6ta3uvbfOnebY232wDq_-j1MNkyi6uCKFsOChZywP2dcsfYSe_8JPLR_Vwd_8to6vq9B0iqbPL |
| CitedBy_id | crossref_primary_10_1049_iet_ipr_2018_6243 crossref_primary_10_1109_JSEN_2018_2791568 crossref_primary_10_1049_2023_9937696 crossref_primary_10_1016_j_dsp_2022_103392 crossref_primary_10_1007_s12517_015_2199_3 crossref_primary_10_3390_s20092602 crossref_primary_10_1016_j_micpro_2018_07_009 crossref_primary_10_1016_j_sigpro_2016_08_007 crossref_primary_10_3390_e25030511 crossref_primary_10_1016_j_sigpro_2016_05_025 crossref_primary_10_1049_iet_spr_2014_0253 crossref_primary_10_1155_2016_7616393 crossref_primary_10_1109_TAES_2017_2768938 crossref_primary_10_1049_sil2_12096 crossref_primary_10_1155_2015_629759 crossref_primary_10_1109_TGRS_2020_2974550 crossref_primary_10_1007_s00034_016_0334_3 crossref_primary_10_1109_TAES_2015_140413 crossref_primary_10_1007_s00034_018_0909_2 crossref_primary_10_1007_s11042_017_4502_7 crossref_primary_10_1007_s11265_022_01780_5 crossref_primary_10_1109_JSEN_2019_2923447 crossref_primary_10_1007_s00500_016_2423_4 crossref_primary_10_1155_2016_6212674 crossref_primary_10_1049_2023_6647291 crossref_primary_10_1007_s11760_021_02128_5 crossref_primary_10_1016_j_sigpro_2022_108773 crossref_primary_10_1007_s00034_018_0814_8 crossref_primary_10_1016_j_sigpro_2021_108316 crossref_primary_10_1049_el_2015_1700 crossref_primary_10_1007_s11760_016_0934_1 crossref_primary_10_1109_JIOT_2020_3004498 crossref_primary_10_1016_j_jvcir_2015_05_010 crossref_primary_10_1109_TGRS_2021_3073159 crossref_primary_10_1016_j_sigpro_2019_107260 |
| Cites_doi | 10.1109/MSP.2007.4286571 10.1109/TIT.2005.862083 10.1109/JSTSP.2007.910281 10.1109/ICDSP.2009.5201168 10.1007/BF02678430 10.1109/TIT.2006.871582 10.1137/0801008 10.1080/10556780512331318182 10.1109/TGRS.2012.2203310 10.1117/12.777175 10.1016/j.sigpro.2013.07.002 10.1109/LSP.2013.2252899 10.1109/TSP.2003.812739 10.1007/978-1-4614-4208-0 10.1109/TIT.2005.860430 10.1109/78.258082 10.1016/S0165-1684(00)00236-X 10.1007/BF00939565 10.1109/TSP.2010.2044839 10.1002/cpa.20042 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Institution of Engineering and Technology Copyright The Institution of Engineering & Technology May 2014 |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Institution of Engineering and Technology – notice: Copyright The Institution of Engineering & Technology May 2014 |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W 7SC 7SP 8FD L7M L~C L~D |
| DOI | 10.1049/iet-spr.2013.0385 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer Science Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9683 |
| EndPage | 256 |
| ExternalDocumentID | 3358556681 10_1049_iet_spr_2013_0385 SIL2BF00127 |
| Genre | article Feature |
| GroupedDBID | 0R 24P 29I 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 DU5 EBS EJD HCIFZ HZ IFIPE IPLJI J9A JAVBF K6V K7- L6V LAI LOTEE LXI LXU M43 M7S NADUK NXXTH O9- OCL P2P P62 PTHSS RIE RNS RUI S0W UNMZH UNR ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO IGS ITC MCNEO OK1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQQKQ PQUKI PRINS 7SC 7SP 8FD L7M L~C L~D |
| ID | FETCH-LOGICAL-c4727-4740683a02f7de9ee13285c9ac40dc6ac8241ef47cb410b16ee5b54502db38fe3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335575700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9675 1751-9683 |
| IngestDate | Sun Nov 09 12:11:55 EST 2025 Wed Aug 13 10:07:27 EDT 2025 Tue Nov 18 21:00:30 EST 2025 Wed Oct 29 21:25:52 EDT 2025 Wed Jan 22 16:31:07 EST 2025 Tue Jan 05 21:44:06 EST 2021 Thu May 09 18:13:40 EDT 2019 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | compressed sensing compressive sensed signals adaptive variable step algorithm arbitrarily positioned samples standard linear programming form linear programming reconstruction problem corrupted samples nondifferentiable forms missing samples recovery approximately sparse signals noisy sparse signals signal reconstruction |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4727-4740683a02f7de9ee13285c9ac40dc6ac8241ef47cb410b16ee5b54502db38fe3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2013.0385 |
| PQID | 1542019204 |
| PQPubID | 1916341 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1049_iet_spr_2013_0385 wiley_primary_10_1049_iet_spr_2013_0385_SIL2BF00127 iet_journals_10_1049_iet_spr_2013_0385 proquest_journals_1542019204 proquest_miscellaneous_1567062267 crossref_citationtrail_10_1049_iet_spr_2013_0385 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | May 2014 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET signal processing |
| PublicationYear | 2014 |
| Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc |
| References | Donoho, D.L. (C1) 2006; 52 Baraniuk, R. (C17) 2007; 24 Donoho, D.; Elad, M.; Temlyakov, V. (C14) 2006; 52 Ahmad, F.; Amin, M.G. (C20) 2012; 51 Daubechies, I.; Defrise, M.; De Mol, C. (C26) 2004; 57 Flandrin, P.; Borgnat, P. (C18) 2010; 58 Stanković, L.; Stanković, S.; Amin, M.G. (C19) 2014; 94 Mallat, S.G.; Zhang, Z. (C25) 1993; 41 Candes, E.; Romberg, J.; Tao, T. (C11) 2006; 52 Serafini, T.; Zanghirati, G.; Zanni, L. (C10) 2004; 20 More, J.; Toraldo, G. (C12) 1991; 1 Davis, G.; Mallat, S.; Avellaneda, M. (C13) 1997; 12 Candès, E.J.; Romberg, J.; Tao, T. (C2) 2006; 52 Stanković, L.; Orović, I.; Stanković, S.; Amin, M.G. (C5) 2013; 20 Djurović, I.; Stanković, L.; Böhme, J.F. (C4) 2003; 51 Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. (C7) 2007; 1 Sejdić, E.; Cam, A.; Chaparro, L.F.; Steele, C.M.; Chau, T. (C23) 2012; 101 Stanković, L. (C24) 2001; 81 Wright, S.J. (C9) 1990; 65 2001; 81 1990; 65 2004; 20 1991; 1 2006; 52 2010; 58 2012; 101 2012 2013; 20 1997; 12 1993; 41 2004; 57 1998 2009 2005 2013 2007; 1 2003; 51 2014; 94 2007; 24 2008; 6968 1999 2012; 51 Mallat S. (e_1_2_6_4_2) 1999 Mallat S. (e_1_2_6_9_2) 1998 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 Sejdić E. (e_1_2_6_24_2) 2012; 101 e_1_2_6_20_2 Stanković L. (e_1_2_6_7_2) 2013 e_1_2_6_8_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – volume: 20 start-page: 353 issue: 2–3 year: 2004 end-page: 378 ident: C10 article-title: Gradient projection methods for large quadratic programs and applications in training support vector machines publication-title: Optim. Methods Softw. – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 ident: C2 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 51 start-page: 881 issue: 2 year: 2012 end-page: 890 ident: C20 article-title: Through-the-wall human motion indication using sparsity-driven change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 81 start-page: 621 year: 2001 end-page: 631 ident: C24 article-title: A measure of some time–frequency distributions concentration publication-title: Signal Process. – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 ident: C25 article-title: Matching pursuits with time–frequency dictionaries publication-title: IEEE Trans. Signal Process. – volume: 20 start-page: 499 issue: 5 year: 2013 end-page: 502 ident: C5 article-title: Robust time–frequency analysis based on the L-estimation and compressive sensing publication-title: IEEE Signal Process. Lett. – volume: 57 start-page: 1413 issue: 11 year: 2004 end-page: 1457 ident: C26 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. – volume: 94 start-page: 401 year: 2014 end-page: 408 ident: C19 article-title: Missing samples analysis in signals for applications to L-estimation and compressive sensing publication-title: Signal Process. – volume: 51 start-page: 1753 issue: 7 year: 2003 end-page: 1761 ident: C4 article-title: Robust L-estimation based forms of signal transforms and time–frequency representations publication-title: IEEE Trans. SP – volume: 52 start-page: 489 year: 2006 end-page: 509 ident: C11 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 12 start-page: 57 year: 1997 end-page: 98 ident: C13 article-title: Greedy adaptive approximation publication-title: J. Constructive Approx. – volume: 101 start-page: 1 year: 2012 end-page: 14 ident: C23 article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences publication-title: EURASIP J. Adv. Signal Process. – volume: 1 start-page: 93 year: 1991 end-page: 113 ident: C12 article-title: On the solution of large quadratic programming problems with bound constraints publication-title: SIAM J. Optim. – volume: 52 start-page: 6 year: 2006 end-page: 18 ident: C14 article-title: Stable recovery of sparse overcomplete representations in the presence of noise publication-title: IEEE Trans. Inf. Theory – volume: 24 start-page: 118 issue: 4 year: 2007 end-page: 121 ident: C17 article-title: Compressive sensing publication-title: IEEE Signal Process. Mag. – volume: 58 start-page: 2974 issue: 6 year: 2010 end-page: 2982 ident: C18 article-title: Time–frequency energy distributions meet compressed sensing publication-title: IEEE Trans. Signal Process. – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: C1 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 1 start-page: 586 issue: 4 year: 2007 end-page: 597 ident: C7 article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems publication-title: IEEE J. Sel. Top. Signal Process. – volume: 65 start-page: 531 year: 1990 end-page: 554 ident: C9 article-title: Implementing proximal point methods for linear programming publication-title: J. Optim. Theory Appl. – volume: 81 start-page: 621 year: 2001 end-page: 631 article-title: A measure of some time–frequency distributions concentration publication-title: Signal Process. – volume: 51 start-page: 881 issue: 2 year: 2012 end-page: 890 article-title: Through‐the‐wall human motion indication using sparsity‐driven change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 article-title: Matching pursuits with time–frequency dictionaries publication-title: IEEE Trans. Signal Process. – volume: 12 start-page: 57 year: 1997 end-page: 98 article-title: Greedy adaptive approximation publication-title: J. Constructive Approx. – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – start-page: 418 year: 2013 end-page: 423 article-title: Concentration measures with an adaptive algorithm for processing sparse signals – volume: 58 start-page: 2974 issue: 6 year: 2010 end-page: 2982 article-title: Time–frequency energy distributions meet compressed sensing publication-title: IEEE Trans. Signal Process. – volume: 101 start-page: 1 year: 2012 end-page: 14 article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences publication-title: EURASIP J. Adv. Signal Process. – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 20 start-page: 353 issue: 2–3 year: 2004 end-page: 378 article-title: Gradient projection methods for large quadratic programs and applications in training support vector machines publication-title: Optim. Methods Softw. – year: 1998 – year: 2012 – volume: 24 start-page: 118 issue: 4 year: 2007 end-page: 121 article-title: Compressive sensing publication-title: IEEE Signal Process. Mag. – volume: 52 start-page: 6 year: 2006 end-page: 18 article-title: Stable recovery of sparse overcomplete representations in the presence of noise publication-title: IEEE Trans. Inf. Theory – volume: 52 start-page: 489 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 1 start-page: 93 year: 1991 end-page: 113 article-title: On the solution of large quadratic programming problems with bound constraints publication-title: SIAM J. Optim. – volume: 1 start-page: 586 issue: 4 year: 2007 end-page: 597 article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems publication-title: IEEE J. Sel. Top. Signal Process. – volume: 65 start-page: 531 year: 1990 end-page: 554 article-title: Implementing proximal point methods for linear programming publication-title: J. Optim. Theory Appl. – volume: 57 start-page: 1413 issue: 11 year: 2004 end-page: 1457 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. – volume: 94 start-page: 401 year: 2014 end-page: 408 article-title: Missing samples analysis in signals for applications to L‐estimation and compressive sensing publication-title: Signal Process. – start-page: 2572 year: 2005 end-page: 2577 article-title: On algorithms for solving least squares problems under an L1 penalty or an L1 constraint – volume: 20 start-page: 499 issue: 5 year: 2013 end-page: 502 article-title: Robust time–frequency analysis based on the L‐estimation and compressive sensing publication-title: IEEE Signal Process. Lett. – start-page: 1 year: 2009 end-page: 8 article-title: Compressed sensing of time‐varying signals – volume: 51 start-page: 1753 issue: 7 year: 2003 end-page: 1761 article-title: Robust L‐estimation based forms of signal transforms and time–frequency representations publication-title: IEEE Trans. SP – year: 1999 – year: 2013 – volume: 6968 start-page: 6968A year: 2008 end-page: 69681A‐10 article-title: Compressed sensing technique for high‐resolution radar imaging – ident: e_1_2_6_16_2 – ident: e_1_2_6_18_2 doi: 10.1109/MSP.2007.4286571 – ident: e_1_2_6_12_2 doi: 10.1109/TIT.2005.862083 – volume-title: Time–frequency signal analysis with applications year: 2013 ident: e_1_2_6_7_2 – volume-title: A wavelet tour of signal processing year: 1999 ident: e_1_2_6_4_2 – ident: e_1_2_6_8_2 doi: 10.1109/JSTSP.2007.910281 – ident: e_1_2_6_17_2 doi: 10.1109/ICDSP.2009.5201168 – volume-title: A wavelet tour of signal processing year: 1998 ident: e_1_2_6_9_2 – ident: e_1_2_6_14_2 doi: 10.1007/BF02678430 – ident: e_1_2_6_2_2 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_6_13_2 doi: 10.1137/0801008 – ident: e_1_2_6_11_2 doi: 10.1080/10556780512331318182 – ident: e_1_2_6_21_2 doi: 10.1109/TGRS.2012.2203310 – ident: e_1_2_6_23_2 doi: 10.1117/12.777175 – ident: e_1_2_6_20_2 doi: 10.1016/j.sigpro.2013.07.002 – volume: 101 start-page: 1 year: 2012 ident: e_1_2_6_24_2 article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences publication-title: EURASIP J. Adv. Signal Process. – ident: e_1_2_6_6_2 doi: 10.1109/LSP.2013.2252899 – ident: e_1_2_6_5_2 doi: 10.1109/TSP.2003.812739 – ident: e_1_2_6_22_2 doi: 10.1007/978-1-4614-4208-0 – ident: e_1_2_6_15_2 doi: 10.1109/TIT.2005.860430 – ident: e_1_2_6_28_2 – ident: e_1_2_6_26_2 doi: 10.1109/78.258082 – ident: e_1_2_6_3_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_6_25_2 doi: 10.1016/S0165-1684(00)00236-X – ident: e_1_2_6_10_2 doi: 10.1007/BF00939565 – ident: e_1_2_6_19_2 doi: 10.1109/TSP.2010.2044839 – ident: e_1_2_6_27_2 doi: 10.1002/cpa.20042 |
| SSID | ssj0056512 |
| Score | 2.2782407 |
| Snippet | Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily... |
| SourceID | proquest crossref wiley iet |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 246 |
| SubjectTerms | Adaptive algorithms adaptive variable step algorithm Algorithms approximately sparse signals arbitrarily positioned samples compressed sensing compressive sensed signals corrupted samples Criteria Linear programming missing samples recovery noisy sparse signals nondifferentiable forms Reconstruction reconstruction problem Recovery Signal processing signal reconstruction Special Issue on Compressive Sensing and Robust Transforms standard linear programming form |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_a6oM--C1ubSWK-CCsZjfJZvPYlh4WSj1shb4tSTZbF-recnst9L93ZvfuvKPQgviaTEKYzMcvmWQG4GNuDc-90rGrMoEHFK5im0kTp0rYJAlClq6vWnKsT07y83Mz3oCDxV-YIT_E8sKNNKO316Tg1g1VSBDU4ibWYRZ3LaX0TMQXim9twoMkETnVb0jleGGOEbAMIU9N9eSzXCxDm-brrSnWnNMmdq_hzlX02ruf0dP_svBn8GSOPtneIC7PYSM0L-DxSk7Cl_B9r7Qt2UB2jcdo-ljFUBBaZi8vJtN69us3Q5jLUDrokoF1lrILd4zO1agUN6xuGNqoaYej6gvKzfwKfo4Ozw6-xfOqC7GXCGZiqdHH58LytNJlMCHgeTVX3lgveekz63N0-qGS2juZcJdkISiHOIynpRN5FcRr2GomTXgDTJUikcErNBSVdMbY1KWllipwGzKnVAR8we7Cz1OSU2WMy6IPjUtTIK8K5FVBvCqIVxF8Xg5ph3wcdxF_ora5VnZ3EX5YIzw6PCtOxz_-EhRtWUWws5CFlSmVTAklcxnB-2U3bgLFXWwTJldEk2meIc7VEYheMu5fenF6dJzuj_qXAdv_NOotPMJ2OTzO3IGt2fQq7MJDfz2ru-m7Xkf-ADKCEus priority: 102 providerName: Wiley-Blackwell |
| Title | Adaptive variable step algorithm for missing samples recovery in sparse signals |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0385 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2013.0385 https://www.proquest.com/docview/1542019204 https://www.proquest.com/docview/1567062267 |
| Volume | 8 |
| WOSCitedRecordID | wos000335575700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1751-9683 dateEnd: 20140930 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: P5Z dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1751-9683 dateEnd: 20140930 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: K7- dateStart: 20120901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-9683 dateEnd: 20140930 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: M7S dateStart: 20120901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1751-9683 dateEnd: 20140930 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: BENPR dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RjQd44BsRGJVBiAekMMex4-QJbagVFVOJ1iEmXiLHcUalLc2abhL_PXdpWtqX8sCLFcVnx_LZd7_zOXcA72KT8Ngq7edlFKKBwpVvIpn4QoUmCFwoi7zNWnKix-P4_DxJuwO3prtWuZKJraAuZpbOyA9R1QuCI1x-qq99yhpF3tUuhUYP9gMhAlrnX7W_ksSIVZbeTk2p5BEZr72ayeHULfympoCgQfiRvGNbeqmH1VuQcxO4tppn-PB_x_wIHnSYkx0tF8ljuOOqJ3B_IxLhU_h2VJiaJB-7ReOZfqdiyP6amcsL7HDx64ohuGW4JuhogTWGYgo3jKxp3Aq_2bRiKJnmDbaaXlBE5mfwfTg4-_zF73It-FYihPGlRs0eh4aLUhcucQ6t1FjZxFjJCxsZG6Oqd6XUNpcBz4PIOZUj-uKiyMO4dOFz2KtmlXsBTBVhIJ1VKB5KmSeJEbkotFSOGxflSnnAVzOd2S4QOeXDuMxah7hMMpz9DJmTEXMyYo4HH9ZN6mUUjl3E7-ldtxebXYRvtwhHg7Nskp7-JcjqovTgYMXbjS7XjPXgzboamUDeFlO52Q3RRJpHiG61B2G7fP499GwyOhHHw_Y-wMvdH34F9_BJLu9eHsDeYn7jXsNde7uYNvM-9IRM-7B_PBinp_12V_TpWusEy1T9xPLHaPwHY2YSnA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aBhLjwO-JwACDgANSmBPbcXJAaMCqVS1lYp20W7AdZ1QqaWi6of1T_I08J01pL-W0A1f72Ynjz-999nPeA3gZq4TGRkhf5xHDDQoVvop44oeCqSCwjGe6zlrSl4NBfHqaHG3A7_ZfGHetstWJtaLOJsadke-hqQ8dHaH8ffnTd1mjnHe1TaHRwKJnL3_hlq161_2E8_sqDDsHw4-H_jyrgG84GmufS7RhMVM0zGVmE2txPxYLkyjDaWYiZWI0ajbn0mgeUB1E1gqNPIOGmWZxbhn2uwnXOIuli9Xfk36r-ZEbNd5V6VLXIxNfeFGTvZGd-VXpApAG7K3zxq3YwU2sXqG4y0S5tnSd2__bN7oDt-acmuw3i-AubNjiHtxcirR4H77sZ6p0mp1cKFxyemwJwrskanyGA5h9_0GQvBPEvDs6IZVyMZMr4k4LcKlfklFBUPNOK2w1OnMRpx_AyZWMaAe2iklhHwIRGQu4NQLVX851kqhQh5nkwlJlIy2EB7Sd2dTMA627fB_jtHb48yTF2U4RDKkDQ-rA4MGbRZOyiTKyTvi1K5vrmmqd4IsVwe7BMD0--vpXIC2z3IPdFktLXS6A5MHzRTVOgvMmqcJOzp1MJGmE7F16wGq4_vvV0-NuP_zQqe87PFr_4Gdw43D4uZ_2u4PeY9jGUt7cM92Frdn03D6B6-ZiNqqmT-s1SODbVQP6D62VaYY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tA6HxwDciMMAg4AEp1EnsOHlAaLBVVK1KxYa0N2M7zlappKHphvav8ddxTprSvpSnPfCaXD4c_-7uZ9_lDuBVolKaGC58nccRLlAo91XMUj_kkQoCG7FM111LBmI4TE5O0tEW_G7_hXFpla1NrA11NjVuj7yDrj50dISyTr5IixgddD-UP33XQcpFWtt2Gg1E-vbyFy7fqve9A5zr12HYPTz-9NlfdBjwDUPH7TOB_iyJFA1zkdnUWlybJdykyjCamViZBB2czZkwmgVUB7G1XCPnoGGmoyS3Ed53G66hF-ZOx_rCb70A8qQm0ipcG3tk5cuIatoZ27lfla4YaRC9c5G5NZ-4jafX6O4qaa69Xvf2__y97sCtBdcm-41y3IUtW9yDmysVGO_Dl_1Mlc7ikwuFqqgnliDsS6ImpziA-dkPgqSeoC64LRVSKVdLuSJuFwFNwCUZFwQt8qzCq8anrhL1A_h2JSN6CDvFtLCPgPAsCpg1HM1iznSaqlCHmWDcUmVjzbkHtJ1laRYF2F0fkImsEwFYKnHmJQJDOmBIBwwP3i4vKZvqI5uE37hjCxtUbRJ8uSbYOzyWR6OvfwVkmeUe7LW4WrnlElQevFiexklwUSZV2Om5k4kFjZHVCw-iGrr_fnV51BuEH7t1HsTjzQ9-DjcQx3LQG_afwC4eZE366R7szGfn9ilcNxfzcTV7Vqsjge9Xjec_TW1yQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+variable+step+algorithm+for+missing+samples+recovery+in+sparse+signals&rft.jtitle=IET+signal+processing&rft.au=Stankovic%2C+Ljubisa&rft.au=Dakovic%2C+Milos&rft.au=Vujovic%2C+Stefan&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=8&rft.issue=3&rft.spage=246&rft_id=info:doi/10.1049%2Fiet-spr.2013.0385&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3358556681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |