Adaptive variable step algorithm for missing samples recovery in sparse signals

Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET signal processing Ročník 8; číslo 3; s. 246 - 256
Hlavní autoři: Stankovic, Ljubisa, Dakovic, Milos, Vujovic, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.05.2014
John Wiley & Sons, Inc
Témata:
ISSN:1751-9675, 1751-9683, 1751-9683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done by using one of the well-known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non-differentiable forms of measures lead us to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals.
AbstractList Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done by using one of the well‐known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non‐differentiable forms of measures lead us to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals.
Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of the missing samples is done, by using one of the well-known reconstruction algorithms. In this study, the authors will propose a very simple and efficient algorithm, applied directly to the concentration measures, without reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient approach to the non-differentiable forms of measures lead the authors to introduce a variable step size algorithm. A criterion for changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals, including approximately sparse signals and noisy sparse signals.
Author Stanković, Ljubiša
Vujović, Stefan
Daković, Miloš
Author_xml – sequence: 1
  givenname: Ljubisa
  surname: Stankovic
  fullname: Stankovic, Ljubisa
– sequence: 2
  givenname: Milos
  surname: Dakovic
  fullname: Dakovic, Milos
– sequence: 3
  givenname: Stefan
  surname: Vujovic
  fullname: Vujovic, Stefan
BookMark eNqFkMtKxDAUhoMoeH0AdwE3uuiYpEnTutPBy8CA4mUd0vR0jHSamnRG5u1NGVER0dXJ4vvyn_Pvos3WtYDQISUjSnhxaqFPQudHjNB0RNJcbKAdKgVNiixPNz_fUmyj3RBeCBGZoGwH3Z5XuuvtEvBSe6vLBnDoocO6mTlv--c5rp3HcxuCbWc46HnXQMAejFuCX2Hb4tBpH6JlZ61uwj7aquOAg4-5h56uLh_HN8n09noyPp8mhksmEy45iYtpwmpZQQFAU5YLU2jDSWUybXLGKdRcmpJTUtIMQJSCC8KqMs1rSPfQ8frfzrvXBYRexR0NNI1uwS2CoiKTJGMskxE9-oG-uIUflo0Uj4UVjPBI0TVlvAvBQ606b-farxQlaqhYxYpVrFgNFauh4ujIH46xve6ta3uvbfOnebY232wDq_-j1MNkyi6uCKFsOChZywP2dcsfYSe_8JPLR_Vwd_8to6vq9B0iqbPL
CitedBy_id crossref_primary_10_1049_iet_ipr_2018_6243
crossref_primary_10_1109_JSEN_2018_2791568
crossref_primary_10_1049_2023_9937696
crossref_primary_10_1016_j_dsp_2022_103392
crossref_primary_10_1007_s12517_015_2199_3
crossref_primary_10_3390_s20092602
crossref_primary_10_1016_j_micpro_2018_07_009
crossref_primary_10_1016_j_sigpro_2016_08_007
crossref_primary_10_3390_e25030511
crossref_primary_10_1016_j_sigpro_2016_05_025
crossref_primary_10_1049_iet_spr_2014_0253
crossref_primary_10_1155_2016_7616393
crossref_primary_10_1109_TAES_2017_2768938
crossref_primary_10_1049_sil2_12096
crossref_primary_10_1155_2015_629759
crossref_primary_10_1109_TGRS_2020_2974550
crossref_primary_10_1007_s00034_016_0334_3
crossref_primary_10_1109_TAES_2015_140413
crossref_primary_10_1007_s00034_018_0909_2
crossref_primary_10_1007_s11042_017_4502_7
crossref_primary_10_1007_s11265_022_01780_5
crossref_primary_10_1109_JSEN_2019_2923447
crossref_primary_10_1007_s00500_016_2423_4
crossref_primary_10_1155_2016_6212674
crossref_primary_10_1049_2023_6647291
crossref_primary_10_1007_s11760_021_02128_5
crossref_primary_10_1016_j_sigpro_2022_108773
crossref_primary_10_1007_s00034_018_0814_8
crossref_primary_10_1016_j_sigpro_2021_108316
crossref_primary_10_1049_el_2015_1700
crossref_primary_10_1007_s11760_016_0934_1
crossref_primary_10_1109_JIOT_2020_3004498
crossref_primary_10_1016_j_jvcir_2015_05_010
crossref_primary_10_1109_TGRS_2021_3073159
crossref_primary_10_1016_j_sigpro_2019_107260
Cites_doi 10.1109/MSP.2007.4286571
10.1109/TIT.2005.862083
10.1109/JSTSP.2007.910281
10.1109/ICDSP.2009.5201168
10.1007/BF02678430
10.1109/TIT.2006.871582
10.1137/0801008
10.1080/10556780512331318182
10.1109/TGRS.2012.2203310
10.1117/12.777175
10.1016/j.sigpro.2013.07.002
10.1109/LSP.2013.2252899
10.1109/TSP.2003.812739
10.1007/978-1-4614-4208-0
10.1109/TIT.2005.860430
10.1109/78.258082
10.1016/S0165-1684(00)00236-X
10.1007/BF00939565
10.1109/TSP.2010.2044839
10.1002/cpa.20042
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright The Institution of Engineering & Technology May 2014
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
– notice: Copyright The Institution of Engineering & Technology May 2014
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
7SC
7SP
8FD
L7M
L~C
L~D
DOI 10.1049/iet-spr.2013.0385
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef


Computer Science Database
Technology Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 256
ExternalDocumentID 3358556681
10_1049_iet_spr_2013_0385
SIL2BF00127
Genre article
Feature
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
8FD
L7M
L~C
L~D
ID FETCH-LOGICAL-c4727-4740683a02f7de9ee13285c9ac40dc6ac8241ef47cb410b16ee5b54502db38fe3
IEDL.DBID K7-
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335575700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9675
1751-9683
IngestDate Sun Nov 09 12:11:55 EST 2025
Wed Aug 13 10:07:27 EDT 2025
Tue Nov 18 21:00:30 EST 2025
Wed Oct 29 21:25:52 EDT 2025
Wed Jan 22 16:31:07 EST 2025
Tue Jan 05 21:44:06 EST 2021
Thu May 09 18:13:40 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords compressed sensing
compressive sensed signals
adaptive variable step algorithm
arbitrarily positioned samples
standard linear programming form
linear programming
reconstruction problem
corrupted samples
nondifferentiable forms
missing samples recovery
approximately sparse signals
noisy sparse signals
signal reconstruction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4727-4740683a02f7de9ee13285c9ac40dc6ac8241ef47cb410b16ee5b54502db38fe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2013.0385
PQID 1542019204
PQPubID 1916341
PageCount 11
ParticipantIDs crossref_primary_10_1049_iet_spr_2013_0385
wiley_primary_10_1049_iet_spr_2013_0385_SIL2BF00127
iet_journals_10_1049_iet_spr_2013_0385
proquest_journals_1542019204
proquest_miscellaneous_1567062267
crossref_citationtrail_10_1049_iet_spr_2013_0385
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET signal processing
PublicationYear 2014
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Donoho, D.L. (C1) 2006; 52
Baraniuk, R. (C17) 2007; 24
Donoho, D.; Elad, M.; Temlyakov, V. (C14) 2006; 52
Ahmad, F.; Amin, M.G. (C20) 2012; 51
Daubechies, I.; Defrise, M.; De Mol, C. (C26) 2004; 57
Flandrin, P.; Borgnat, P. (C18) 2010; 58
Stanković, L.; Stanković, S.; Amin, M.G. (C19) 2014; 94
Mallat, S.G.; Zhang, Z. (C25) 1993; 41
Candes, E.; Romberg, J.; Tao, T. (C11) 2006; 52
Serafini, T.; Zanghirati, G.; Zanni, L. (C10) 2004; 20
More, J.; Toraldo, G. (C12) 1991; 1
Davis, G.; Mallat, S.; Avellaneda, M. (C13) 1997; 12
Candès, E.J.; Romberg, J.; Tao, T. (C2) 2006; 52
Stanković, L.; Orović, I.; Stanković, S.; Amin, M.G. (C5) 2013; 20
Djurović, I.; Stanković, L.; Böhme, J.F. (C4) 2003; 51
Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. (C7) 2007; 1
Sejdić, E.; Cam, A.; Chaparro, L.F.; Steele, C.M.; Chau, T. (C23) 2012; 101
Stanković, L. (C24) 2001; 81
Wright, S.J. (C9) 1990; 65
2001; 81
1990; 65
2004; 20
1991; 1
2006; 52
2010; 58
2012; 101
2012
2013; 20
1997; 12
1993; 41
2004; 57
1998
2009
2005
2013
2007; 1
2003; 51
2014; 94
2007; 24
2008; 6968
1999
2012; 51
Mallat S. (e_1_2_6_4_2) 1999
Mallat S. (e_1_2_6_9_2) 1998
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
Sejdić E. (e_1_2_6_24_2) 2012; 101
e_1_2_6_20_2
Stanković L. (e_1_2_6_7_2) 2013
e_1_2_6_8_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 20
  start-page: 353
  issue: 2–3
  year: 2004
  end-page: 378
  ident: C10
  article-title: Gradient projection methods for large quadratic programs and applications in training support vector machines
  publication-title: Optim. Methods Softw.
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  ident: C2
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 51
  start-page: 881
  issue: 2
  year: 2012
  end-page: 890
  ident: C20
  article-title: Through-the-wall human motion indication using sparsity-driven change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 81
  start-page: 621
  year: 2001
  end-page: 631
  ident: C24
  article-title: A measure of some time–frequency distributions concentration
  publication-title: Signal Process.
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  ident: C25
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 499
  issue: 5
  year: 2013
  end-page: 502
  ident: C5
  article-title: Robust time–frequency analysis based on the L-estimation and compressive sensing
  publication-title: IEEE Signal Process. Lett.
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  end-page: 1457
  ident: C26
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
– volume: 94
  start-page: 401
  year: 2014
  end-page: 408
  ident: C19
  article-title: Missing samples analysis in signals for applications to L-estimation and compressive sensing
  publication-title: Signal Process.
– volume: 51
  start-page: 1753
  issue: 7
  year: 2003
  end-page: 1761
  ident: C4
  article-title: Robust L-estimation based forms of signal transforms and time–frequency representations
  publication-title: IEEE Trans. SP
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: C11
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 12
  start-page: 57
  year: 1997
  end-page: 98
  ident: C13
  article-title: Greedy adaptive approximation
  publication-title: J. Constructive Approx.
– volume: 101
  start-page: 1
  year: 2012
  end-page: 14
  ident: C23
  article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 1
  start-page: 93
  year: 1991
  end-page: 113
  ident: C12
  article-title: On the solution of large quadratic programming problems with bound constraints
  publication-title: SIAM J. Optim.
– volume: 52
  start-page: 6
  year: 2006
  end-page: 18
  ident: C14
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inf. Theory
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  end-page: 121
  ident: C17
  article-title: Compressive sensing
  publication-title: IEEE Signal Process. Mag.
– volume: 58
  start-page: 2974
  issue: 6
  year: 2010
  end-page: 2982
  ident: C18
  article-title: Time–frequency energy distributions meet compressed sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: C1
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  end-page: 597
  ident: C7
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 65
  start-page: 531
  year: 1990
  end-page: 554
  ident: C9
  article-title: Implementing proximal point methods for linear programming
  publication-title: J. Optim. Theory Appl.
– volume: 81
  start-page: 621
  year: 2001
  end-page: 631
  article-title: A measure of some time–frequency distributions concentration
  publication-title: Signal Process.
– volume: 51
  start-page: 881
  issue: 2
  year: 2012
  end-page: 890
  article-title: Through‐the‐wall human motion indication using sparsity‐driven change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  start-page: 57
  year: 1997
  end-page: 98
  article-title: Greedy adaptive approximation
  publication-title: J. Constructive Approx.
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– start-page: 418
  year: 2013
  end-page: 423
  article-title: Concentration measures with an adaptive algorithm for processing sparse signals
– volume: 58
  start-page: 2974
  issue: 6
  year: 2010
  end-page: 2982
  article-title: Time–frequency energy distributions meet compressed sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 101
  start-page: 1
  year: 2012
  end-page: 14
  article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 20
  start-page: 353
  issue: 2–3
  year: 2004
  end-page: 378
  article-title: Gradient projection methods for large quadratic programs and applications in training support vector machines
  publication-title: Optim. Methods Softw.
– year: 1998
– year: 2012
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  end-page: 121
  article-title: Compressive sensing
  publication-title: IEEE Signal Process. Mag.
– volume: 52
  start-page: 6
  year: 2006
  end-page: 18
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inf. Theory
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 1
  start-page: 93
  year: 1991
  end-page: 113
  article-title: On the solution of large quadratic programming problems with bound constraints
  publication-title: SIAM J. Optim.
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  end-page: 597
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 65
  start-page: 531
  year: 1990
  end-page: 554
  article-title: Implementing proximal point methods for linear programming
  publication-title: J. Optim. Theory Appl.
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  end-page: 1457
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
– volume: 94
  start-page: 401
  year: 2014
  end-page: 408
  article-title: Missing samples analysis in signals for applications to L‐estimation and compressive sensing
  publication-title: Signal Process.
– start-page: 2572
  year: 2005
  end-page: 2577
  article-title: On algorithms for solving least squares problems under an L1 penalty or an L1 constraint
– volume: 20
  start-page: 499
  issue: 5
  year: 2013
  end-page: 502
  article-title: Robust time–frequency analysis based on the L‐estimation and compressive sensing
  publication-title: IEEE Signal Process. Lett.
– start-page: 1
  year: 2009
  end-page: 8
  article-title: Compressed sensing of time‐varying signals
– volume: 51
  start-page: 1753
  issue: 7
  year: 2003
  end-page: 1761
  article-title: Robust L‐estimation based forms of signal transforms and time–frequency representations
  publication-title: IEEE Trans. SP
– year: 1999
– year: 2013
– volume: 6968
  start-page: 6968A
  year: 2008
  end-page: 69681A‐10
  article-title: Compressed sensing technique for high‐resolution radar imaging
– ident: e_1_2_6_16_2
– ident: e_1_2_6_18_2
  doi: 10.1109/MSP.2007.4286571
– ident: e_1_2_6_12_2
  doi: 10.1109/TIT.2005.862083
– volume-title: Time–frequency signal analysis with applications
  year: 2013
  ident: e_1_2_6_7_2
– volume-title: A wavelet tour of signal processing
  year: 1999
  ident: e_1_2_6_4_2
– ident: e_1_2_6_8_2
  doi: 10.1109/JSTSP.2007.910281
– ident: e_1_2_6_17_2
  doi: 10.1109/ICDSP.2009.5201168
– volume-title: A wavelet tour of signal processing
  year: 1998
  ident: e_1_2_6_9_2
– ident: e_1_2_6_14_2
  doi: 10.1007/BF02678430
– ident: e_1_2_6_2_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_6_13_2
  doi: 10.1137/0801008
– ident: e_1_2_6_11_2
  doi: 10.1080/10556780512331318182
– ident: e_1_2_6_21_2
  doi: 10.1109/TGRS.2012.2203310
– ident: e_1_2_6_23_2
  doi: 10.1117/12.777175
– ident: e_1_2_6_20_2
  doi: 10.1016/j.sigpro.2013.07.002
– volume: 101
  start-page: 1
  year: 2012
  ident: e_1_2_6_24_2
  article-title: Compressive sampling of swallowing accelerometry signals using TF dictionaries based on modulated discrete prolate spheroidal sequences
  publication-title: EURASIP J. Adv. Signal Process.
– ident: e_1_2_6_6_2
  doi: 10.1109/LSP.2013.2252899
– ident: e_1_2_6_5_2
  doi: 10.1109/TSP.2003.812739
– ident: e_1_2_6_22_2
  doi: 10.1007/978-1-4614-4208-0
– ident: e_1_2_6_15_2
  doi: 10.1109/TIT.2005.860430
– ident: e_1_2_6_28_2
– ident: e_1_2_6_26_2
  doi: 10.1109/78.258082
– ident: e_1_2_6_3_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_6_25_2
  doi: 10.1016/S0165-1684(00)00236-X
– ident: e_1_2_6_10_2
  doi: 10.1007/BF00939565
– ident: e_1_2_6_19_2
  doi: 10.1109/TSP.2010.2044839
– ident: e_1_2_6_27_2
  doi: 10.1002/cpa.20042
SSID ssj0056512
Score 2.2782407
Snippet Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Adaptive algorithms
adaptive variable step algorithm
Algorithms
approximately sparse signals
arbitrarily positioned samples
compressed sensing
compressive sensed signals
corrupted samples
Criteria
Linear programming
missing samples recovery
noisy sparse signals
nondifferentiable forms
Reconstruction
reconstruction problem
Recovery
Signal processing
signal reconstruction
Special Issue on Compressive Sensing and Robust Transforms
standard linear programming form
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_a6oM--C1ubSWK-CCsZjfJZvPYlh4WSj1shb4tSTZbF-recnst9L93ZvfuvKPQgviaTEKYzMcvmWQG4GNuDc-90rGrMoEHFK5im0kTp0rYJAlClq6vWnKsT07y83Mz3oCDxV-YIT_E8sKNNKO316Tg1g1VSBDU4ibWYRZ3LaX0TMQXim9twoMkETnVb0jleGGOEbAMIU9N9eSzXCxDm-brrSnWnNMmdq_hzlX02ruf0dP_svBn8GSOPtneIC7PYSM0L-DxSk7Cl_B9r7Qt2UB2jcdo-ljFUBBaZi8vJtN69us3Q5jLUDrokoF1lrILd4zO1agUN6xuGNqoaYej6gvKzfwKfo4Ozw6-xfOqC7GXCGZiqdHH58LytNJlMCHgeTVX3lgveekz63N0-qGS2juZcJdkISiHOIynpRN5FcRr2GomTXgDTJUikcErNBSVdMbY1KWllipwGzKnVAR8we7Cz1OSU2WMy6IPjUtTIK8K5FVBvCqIVxF8Xg5ph3wcdxF_ora5VnZ3EX5YIzw6PCtOxz_-EhRtWUWws5CFlSmVTAklcxnB-2U3bgLFXWwTJldEk2meIc7VEYheMu5fenF6dJzuj_qXAdv_NOotPMJ2OTzO3IGt2fQq7MJDfz2ru-m7Xkf-ADKCEus
  priority: 102
  providerName: Wiley-Blackwell
Title Adaptive variable step algorithm for missing samples recovery in sparse signals
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0385
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2013.0385
https://www.proquest.com/docview/1542019204
https://www.proquest.com/docview/1567062267
Volume 8
WOSCitedRecordID wos000335575700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: P5Z
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: K7-
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: M7S
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: BENPR
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RjQd44BsRGJVBiAekMMex4-QJbagVFVOJ1iEmXiLHcUalLc2abhL_PXdpWtqX8sCLFcVnx_LZd7_zOXcA72KT8Ngq7edlFKKBwpVvIpn4QoUmCFwoi7zNWnKix-P4_DxJuwO3prtWuZKJraAuZpbOyA9R1QuCI1x-qq99yhpF3tUuhUYP9gMhAlrnX7W_ksSIVZbeTk2p5BEZr72ayeHULfympoCgQfiRvGNbeqmH1VuQcxO4tppn-PB_x_wIHnSYkx0tF8ljuOOqJ3B_IxLhU_h2VJiaJB-7ReOZfqdiyP6amcsL7HDx64ohuGW4JuhogTWGYgo3jKxp3Aq_2bRiKJnmDbaaXlBE5mfwfTg4-_zF73It-FYihPGlRs0eh4aLUhcucQ6t1FjZxFjJCxsZG6Oqd6XUNpcBz4PIOZUj-uKiyMO4dOFz2KtmlXsBTBVhIJ1VKB5KmSeJEbkotFSOGxflSnnAVzOd2S4QOeXDuMxah7hMMpz9DJmTEXMyYo4HH9ZN6mUUjl3E7-ldtxebXYRvtwhHg7Nskp7-JcjqovTgYMXbjS7XjPXgzboamUDeFlO52Q3RRJpHiG61B2G7fP499GwyOhHHw_Y-wMvdH34F9_BJLu9eHsDeYn7jXsNde7uYNvM-9IRM-7B_PBinp_12V_TpWusEy1T9xPLHaPwHY2YSnA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aBhLjwO-JwACDgANSmBPbcXJAaMCqVS1lYp20W7AdZ1QqaWi6of1T_I08J01pL-W0A1f72Ynjz-999nPeA3gZq4TGRkhf5xHDDQoVvop44oeCqSCwjGe6zlrSl4NBfHqaHG3A7_ZfGHetstWJtaLOJsadke-hqQ8dHaH8ffnTd1mjnHe1TaHRwKJnL3_hlq161_2E8_sqDDsHw4-H_jyrgG84GmufS7RhMVM0zGVmE2txPxYLkyjDaWYiZWI0ajbn0mgeUB1E1gqNPIOGmWZxbhn2uwnXOIuli9Xfk36r-ZEbNd5V6VLXIxNfeFGTvZGd-VXpApAG7K3zxq3YwU2sXqG4y0S5tnSd2__bN7oDt-acmuw3i-AubNjiHtxcirR4H77sZ6p0mp1cKFxyemwJwrskanyGA5h9_0GQvBPEvDs6IZVyMZMr4k4LcKlfklFBUPNOK2w1OnMRpx_AyZWMaAe2iklhHwIRGQu4NQLVX851kqhQh5nkwlJlIy2EB7Sd2dTMA627fB_jtHb48yTF2U4RDKkDQ-rA4MGbRZOyiTKyTvi1K5vrmmqd4IsVwe7BMD0--vpXIC2z3IPdFktLXS6A5MHzRTVOgvMmqcJOzp1MJGmE7F16wGq4_vvV0-NuP_zQqe87PFr_4Gdw43D4uZ_2u4PeY9jGUt7cM92Frdn03D6B6-ZiNqqmT-s1SODbVQP6D62VaYY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tA6HxwDciMMAg4AEp1EnsOHlAaLBVVK1KxYa0N2M7zlappKHphvav8ddxTprSvpSnPfCaXD4c_-7uZ9_lDuBVolKaGC58nccRLlAo91XMUj_kkQoCG7FM111LBmI4TE5O0tEW_G7_hXFpla1NrA11NjVuj7yDrj50dISyTr5IixgddD-UP33XQcpFWtt2Gg1E-vbyFy7fqve9A5zr12HYPTz-9NlfdBjwDUPH7TOB_iyJFA1zkdnUWlybJdykyjCamViZBB2czZkwmgVUB7G1XCPnoGGmoyS3Ed53G66hF-ZOx_rCb70A8qQm0ipcG3tk5cuIatoZ27lfla4YaRC9c5G5NZ-4jafX6O4qaa69Xvf2__y97sCtBdcm-41y3IUtW9yDmysVGO_Dl_1Mlc7ikwuFqqgnliDsS6ImpziA-dkPgqSeoC64LRVSKVdLuSJuFwFNwCUZFwQt8qzCq8anrhL1A_h2JSN6CDvFtLCPgPAsCpg1HM1iznSaqlCHmWDcUmVjzbkHtJ1laRYF2F0fkImsEwFYKnHmJQJDOmBIBwwP3i4vKZvqI5uE37hjCxtUbRJ8uSbYOzyWR6OvfwVkmeUe7LW4WrnlElQevFiexklwUSZV2Om5k4kFjZHVCw-iGrr_fnV51BuEH7t1HsTjzQ9-DjcQx3LQG_afwC4eZE366R7szGfn9ilcNxfzcTV7Vqsjge9Xjec_TW1yQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+variable+step+algorithm+for+missing+samples+recovery+in+sparse+signals&rft.jtitle=IET+signal+processing&rft.au=Stankovic%2C+Ljubisa&rft.au=Dakovic%2C+Milos&rft.au=Vujovic%2C+Stefan&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=8&rft.issue=3&rft.spage=246&rft_id=info:doi/10.1049%2Fiet-spr.2013.0385&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3358556681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon