TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer
Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated wh...
Saved in:
| Published in: | Immunological reviews Vol. 244; no. 1; pp. 9 - 28 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Blackwell Publishing Ltd
01.11.2011
|
| Subjects: | |
| ISSN: | 0105-2896, 1600-065X, 1600-065X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF‐RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF‐RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin‐binding domains interact with specific di‐ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF‐RSC to generate its signaling output in a spatio‐temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF‐RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer. |
|---|---|
| AbstractList | Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer-related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF-RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF-RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin-binding domains interact with specific di-ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF-RSC to generate its signaling output in a spatio-temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF-RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer-related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF-RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF-RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin-binding domains interact with specific di-ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF-RSC to generate its signaling output in a spatio-temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF-RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer. Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF‐RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF‐RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin‐binding domains interact with specific di‐ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF‐RSC to generate its signaling output in a spatio‐temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF‐RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer. |
| Author | Walczak, Henning |
| Author_xml | – sequence: 1 givenname: Henning surname: Walczak fullname: Walczak, Henning organization: Tumour Immunology Unit, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22017428$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMtO3DAARa2KCobHL1TedUNSv50sWqlCzEBFqVSBYFHJchy7eJo4EDvt8PdNyHQWXeGNLfuea_scgr3QBQsAxCjH4_iwzrFAKEOC3-cEYZwjjITIN2_AYnewBxbjLs9IUYoDcBjjGiEsKWH74ICMkGSkWIAfN9dLqEMNh8o_DT75AHWC6cFC03cx9p2uI-wc_GmDhdok_1sn34VTaGzTwNrq9HAKfXCNbtvtydRmdDC2PwZvnW6iPdnOR-B2eX5zdpFdfVtdnn2-ygyTRGSG8JJrbjjBzBSmcsaJiklBBTNl4ZzFzAnKOccVq6WjdVlyUiPEJWPUypoegfdz72PfPQ02JtX6OD1QB9sNUZUICcoKRMbku21yqFpbq8fet7p_Vv-EjIFiDszft24XwUhN7tVaTYrVpFhN7tWLe7UZ0U__ocanFyep1755TcHHueCPb-zzqy9Wl1-_T6uRz2bex2Q3O173v5SQVHJ1d71SX8jy_oKu7lRB_wLCYatp |
| CitedBy_id | crossref_primary_10_1002_med_21398 crossref_primary_10_3390_cells10102706 crossref_primary_10_1007_s13277_013_1012_8 crossref_primary_10_3390_ijms241411363 crossref_primary_10_15252_embj_2019103303 crossref_primary_10_1007_s10495_014_1061_5 crossref_primary_10_1371_journal_pcbi_1010383 crossref_primary_10_3390_ijms20236039 crossref_primary_10_1146_annurev_immunol_112019_072301 crossref_primary_10_1016_j_csbj_2019_01_009 crossref_primary_10_1038_cddis_2016_285 crossref_primary_10_1016_j_cellsig_2014_08_008 crossref_primary_10_1016_j_cyto_2018_05_036 crossref_primary_10_1080_03008207_2020_1797709 crossref_primary_10_1080_10409238_2017_1325829 crossref_primary_10_1016_j_tibs_2012_11_007 crossref_primary_10_1155_2015_948737 crossref_primary_10_1186_s40425_018_0494_8 crossref_primary_10_1016_j_jff_2019_103648 crossref_primary_10_1097_j_pain_0000000000001470 crossref_primary_10_1007_s10753_022_01732_y crossref_primary_10_1038_s41574_021_00499_w crossref_primary_10_1158_1078_0432_CCR_13_2589 crossref_primary_10_3389_fphar_2022_857502 crossref_primary_10_1016_j_fct_2013_03_015 crossref_primary_10_1111_febs_16093 crossref_primary_10_3389_fimmu_2020_585880 crossref_primary_10_1038_aps_2016_112 crossref_primary_10_3389_fimmu_2014_00322 crossref_primary_10_1007_s00210_024_03027_5 crossref_primary_10_1371_journal_pone_0069201 crossref_primary_10_1016_j_neuroscience_2015_06_038 crossref_primary_10_1038_ncomms10972 crossref_primary_10_1164_rccm_201403_0463OC crossref_primary_10_1016_j_semcancer_2013_07_003 crossref_primary_10_3390_ijms21093381 crossref_primary_10_1242_jcs_091793 crossref_primary_10_3109_0284186X_2012_737932 crossref_primary_10_1038_cdd_2012_72 crossref_primary_10_1038_srep26554 crossref_primary_10_1016_j_ijcard_2013_12_020 crossref_primary_10_1038_nri3131 crossref_primary_10_1177_17448069251323666 crossref_primary_10_3390_ijms241914723 crossref_primary_10_1016_j_gene_2013_11_005 crossref_primary_10_1038_s42003_020_0882_8 crossref_primary_10_1016_j_micinf_2014_08_009 crossref_primary_10_3390_antib4010048 crossref_primary_10_1038_cddis_2014_575 crossref_primary_10_1242_jcs_129999 crossref_primary_10_1155_2022_7346699 crossref_primary_10_3748_wjg_v22_i42_9300 crossref_primary_10_1016_j_molimm_2022_12_002 crossref_primary_10_1161_JAHA_121_022791 crossref_primary_10_1038_s41420_024_01913_8 crossref_primary_10_1101_gad_299776_117 crossref_primary_10_1016_j_semcdb_2015_01_012 crossref_primary_10_1016_j_smim_2014_02_005 crossref_primary_10_1038_cddis_2015_16 crossref_primary_10_1097_j_pain_0000000000002737 crossref_primary_10_1111_ajt_12448 crossref_primary_10_15252_embr_201642592 crossref_primary_10_1038_s41418_021_00922_9 crossref_primary_10_1111_imr_12309 crossref_primary_10_1155_2012_540794 crossref_primary_10_1053_j_gastro_2012_07_009 crossref_primary_10_1016_j_bbrc_2019_12_049 crossref_primary_10_1177_09603271211058884 crossref_primary_10_3390_ijms18071403 crossref_primary_10_3389_fimmu_2022_802638 crossref_primary_10_3390_cancers14174183 crossref_primary_10_1186_1741_7007_10_23 crossref_primary_10_1038_cdd_2015_69 crossref_primary_10_1016_j_abb_2015_10_009 crossref_primary_10_1016_j_biomaterials_2012_10_028 crossref_primary_10_1016_j_fsi_2025_110224 crossref_primary_10_1016_j_jbiosc_2024_10_011 crossref_primary_10_1016_j_semcdb_2014_03_035 crossref_primary_10_1038_cddis_2015_321 crossref_primary_10_1517_13543784_2012_696609 crossref_primary_10_1016_j_virol_2015_03_016 crossref_primary_10_1002_path_5248 crossref_primary_10_1111_gtc_12128 crossref_primary_10_3390_ijms252413670 crossref_primary_10_1155_2015_610813 crossref_primary_10_3892_ijmm_2016_2781 crossref_primary_10_3892_ijmm_2013_1430 crossref_primary_10_1038_cddis_2016_245 crossref_primary_10_1007_s00109_022_02264_6 crossref_primary_10_1136_annrheumdis_2013_203700 crossref_primary_10_1016_j_molcel_2017_05_003 crossref_primary_10_1038_cdd_2013_15 crossref_primary_10_1002_pros_23327 crossref_primary_10_1016_j_immuni_2013_10_009 crossref_primary_10_1016_j_cytogfr_2011_11_007 crossref_primary_10_1016_j_devcel_2021_06_008 crossref_primary_10_1038_cddiscovery_2015_34 crossref_primary_10_1007_s11259_013_9575_9 crossref_primary_10_1089_vim_2022_0010 crossref_primary_10_1038_s41418_021_00906_9 crossref_primary_10_1155_2013_185172 crossref_primary_10_1016_j_cell_2012_06_019 crossref_primary_10_1142_S0192415X19500915 crossref_primary_10_3390_cells9102145 crossref_primary_10_1016_j_bbamcr_2018_04_003 crossref_primary_10_15252_embj_201694300 crossref_primary_10_1016_j_febslet_2015_04_022 crossref_primary_10_1038_srep38294 crossref_primary_10_1016_j_bcp_2021_114733 crossref_primary_10_1016_j_molonc_2015_01_008 crossref_primary_10_1093_biolre_ioac162 crossref_primary_10_3390_cells9020351 crossref_primary_10_1007_s00018_016_2191_4 crossref_primary_10_1016_j_ebiom_2025_105848 crossref_primary_10_1016_j_biocel_2014_08_015 crossref_primary_10_3389_fimmu_2017_00623 crossref_primary_10_3748_wjg_v29_i18_2733 crossref_primary_10_1007_s12250_020_00320_4 crossref_primary_10_1111_j_1600_065X_2011_01065_x crossref_primary_10_1016_j_chembiol_2020_03_016 crossref_primary_10_1080_08923973_2020_1811306 crossref_primary_10_1146_annurev_cellbio_100913_013226 crossref_primary_10_1074_jbc_RA120_013987 crossref_primary_10_1073_pnas_1401857111 crossref_primary_10_4251_wjgo_v11_i4_281 crossref_primary_10_1007_s13721_023_00421_6 crossref_primary_10_1161_HYPERTENSIONAHA_122_19464 crossref_primary_10_1128_MCB_06739_11 crossref_primary_10_3390_ijms26125779 crossref_primary_10_1016_j_cell_2018_03_032 crossref_primary_10_1016_j_molcel_2015_07_032 crossref_primary_10_1038_cdd_2013_94 crossref_primary_10_1016_j_molmed_2017_11_002 crossref_primary_10_1016_j_fbio_2024_104496 crossref_primary_10_1016_j_cellsig_2014_08_011 crossref_primary_10_1016_j_cytogfr_2013_12_013 crossref_primary_10_1002_wrna_1430 crossref_primary_10_1111_febs_13554 crossref_primary_10_1155_2019_2121357 crossref_primary_10_1080_19490976_2021_1902718 crossref_primary_10_1016_j_pharmthera_2020_107717 crossref_primary_10_1096_fj_201902547R crossref_primary_10_1515_hsz_2015_0277 crossref_primary_10_1186_s12964_014_0072_8 |
| Cites_doi | 10.1016/S1097-2765(00)80270-1 10.1074/jbc.M109.042689 10.1007/s12253-011-9433-4 10.1038/nrm3143 10.1371/journal.pone.0017477 10.1016/S0021-9258(18)34957-3 10.1038/ncb1384 10.1126/science.2538923 10.1074/jbc.M600620200 10.1038/nrm2393 10.1074/jbc.C800128200 10.1073/pnas.61.4.1250 10.1016/S0014-5793(98)00791-1 10.1073/pnas.72.9.3666 10.1038/nrm2767 10.1016/j.jmb.2010.04.055 10.1038/nature01802 10.1007/s11010-010-0413-x 10.1152/physiolgenomics.00226.2003 10.1111/j.1600-065X.2008.00629.x 10.1038/312663a0 10.1038/nchembio.83 10.1111/j.1742-4658.2011.08015.x 10.1038/nature09852 10.1038/385729a0 10.1016/j.molcel.2006.03.026 10.1074/jbc.M708690200 10.1002/rcm.3227 10.1016/S0014-5793(00)01212-6 10.1016/0092-8674(88)90486-2 10.1016/S0092-8674(00)00119-7 10.1016/0092-8674(93)90132-A 10.1016/0092-8674(95)90070-5 10.1038/nrc2628 10.1038/ni.1714 10.1016/S0092-8674(03)01074-2 10.1126/science.1071924 10.1016/j.cell.2009.03.007 10.1074/jbc.M309184200 10.1038/nature09814 10.1016/j.molcel.2010.03.009 10.1038/nri1184 10.1016/S0021-9258(20)82050-X 10.1038/sj.gene.6364403 10.1016/j.chom.2010.03.006 10.1038/nature01803 10.1016/0092-8674(83)90131-9 10.1146/annurev.biochem.67.1.425 10.1016/j.molcel.2011.06.011 10.1038/nri802 10.1007/978-1-4419-6612-4_8 10.1016/j.tibs.2010.02.007 10.1042/bj3570617 10.1016/j.molcel.2009.01.014 10.1016/S1074-7613(00)80252-6 10.1038/ni.2060 10.1038/nrm2685 10.1007/s00018-010-0283-0 10.1093/nar/15.2.443 10.1016/j.cell.2009.05.021 10.1038/nchembio711 10.1038/nsmb.1873 10.1042/BST0370937 10.1016/j.cell.2010.03.029 10.1038/76006 10.1016/j.it.2006.07.003 10.1038/clpt.2009.312 10.1073/pnas.1100994108 10.1002/j.1460-2075.1985.tb03693.x 10.1038/nrm2970 10.1038/cdd.2009.178 10.1093/jhmas/XXXVI.1.19 10.1126/science.281.5381.1305 10.1074/jbc.M109.072256 10.1038/sj.emboj.7601823 10.1038/338225a0 10.1073/pnas.0711122105 10.1016/j.molcel.2004.08.008 10.1016/j.molcel.2009.02.011 10.1016/j.molcel.2008.05.014 10.1021/cr800554j 10.1128/MCB.15.3.1265 10.1016/j.cell.2009.07.006 10.1038/nrm2731 10.1038/nature02794 10.1038/sj.cdd.4401189 10.1074/jbc.M601502200 10.1016/j.molcel.2009.10.013 10.1038/ncb0805-758 10.1021/pr800468j 10.1038/emboj.2008.5 10.1074/jbc.M801312200 10.4049/jimmunol.176.11.6852 10.1002/jso.21081 10.1038/sj.emboj.7601360 10.1016/S1074-7613(00)80183-1 10.1038/nsmb.1731 10.1038/nature09816 10.1111/j.1365-2443.2004.00780.x 10.1158/0008-5472.CAN-09-2674 10.1038/ni.1639 10.1016/S0092-8674(03)00521-X 10.1038/ncb1821 10.1073/pnas.93.24.13973 10.1038/embor.2009.55 10.1038/nature09878 10.1038/sj.onc.1211042 10.1007/s00018-004-4129-5 10.1016/j.cell.2010.03.006 10.1016/j.molcel.2006.05.002 10.1016/S0021-9258(18)71533-0 10.1038/ni.1638 10.1016/j.molcel.2009.01.012 10.1038/nature09815 10.1038/ni1367 10.1038/nature07205 10.1042/BJ20031794 10.1038/nrc1994 10.1074/jbc.M509560200 10.1016/j.molcel.2009.10.002 10.1038/cdd.2009.168 10.1126/science.1172308 10.1038/nature10273 10.1016/j.ccr.2008.10.007 10.1111/j.1753-4887.1988.tb05376.x 10.1038/nature08247 10.1016/j.cellsig.2007.05.016 10.1038/nchembio.426 10.1007/s11864-007-0044-y 10.1038/cr.2010.166 10.1074/jbc.M307719200 10.1101/gad.13.19.2514 10.1038/emboj.2010.300 10.1016/j.cell.2009.05.037 10.1016/j.bcp.2009.02.009 10.1002/j.1460-2075.1996.tb01007.x 10.1016/j.cell.2008.10.044 10.1146/annurev.biochem.78.082307.091526 10.1016/j.cell.2008.01.020 |
| ContentType | Journal Article |
| Copyright | 2011 John Wiley & Sons A/S 2011 John Wiley & Sons A/S. |
| Copyright_xml | – notice: 2011 John Wiley & Sons A/S – notice: 2011 John Wiley & Sons A/S. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1111/j.1600-065X.2011.01066.x |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1600-065X |
| EndPage | 28 |
| ExternalDocumentID | 22017428 10_1111_j_1600_065X_2011_01066_x IMR1066 ark_67375_WNG_J2FXH3GW_8 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 10950 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I004580/1 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c4726-c2595a5c5214c8cbfcf6b476364c98ffe14f635551b4d7f3d9952d0057443e7d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 196 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0105-2896 1600-065X |
| IngestDate | Wed Oct 01 13:42:09 EDT 2025 Mon Jul 21 06:03:15 EDT 2025 Sat Nov 29 01:33:02 EST 2025 Tue Nov 18 22:35:01 EST 2025 Wed Jan 22 16:27:44 EST 2025 Sun Sep 21 06:16:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 John Wiley & Sons A/S. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4726-c2595a5c5214c8cbfcf6b476364c98ffe14f635551b4d7f3d9952d0057443e7d3 |
| Notes | ark:/67375/WNG-J2FXH3GW-8 istex:DD4AB6DF54AE4BFACCC5B7ECE53BE6AE4AF6D268 ArticleID:IMR1066 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 22017428 |
| PQID | 900634802 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_900634802 pubmed_primary_22017428 crossref_primary_10_1111_j_1600_065X_2011_01066_x crossref_citationtrail_10_1111_j_1600_065X_2011_01066_x wiley_primary_10_1111_j_1600_065X_2011_01066_x_IMR1066 istex_primary_ark_67375_WNG_J2FXH3GW_8 |
| PublicationCentury | 2000 |
| PublicationDate | November 2011 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: November 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England |
| PublicationTitle | Immunological reviews |
| PublicationTitleAlternate | Immunol Rev |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Zeng W, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141:315-330. Hitomi J, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311-1323. Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 2011;108:10662-10667. Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 1953;276:1-103. Wagner S, et al. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 2008;27:3739-3745. Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229-232. Zhang DW, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332-336. Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 2006;281:13636-13643. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 2011;278:862-876. Tenno T, et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004;9:865-875. Massoumi R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010;35:392-399. Yamamoto M, et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006;7:962-970. Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258:8206-8214. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-444. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009;37:937-953. Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 2011; doi: 10.1007/s12253-011-9433-4 Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004;430:694-699. Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112-119. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. Rahighi S, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009;136:1098-1109. Mauro C, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006;281:18482-18488. Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45-53. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-756. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002;2:364-371. Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729-733. Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045. Martinon F, Holler N, Richard C, Tschopp J. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000;468:134-136. Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378-390. He S, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100-1111. Pickart CM. Back to the future with ubiquitin. Cell 2004;116:181-190. Varfolomeev E, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 2005;280:40599-40608. Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010;400:8-15. Seymour RE, et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 2007;8:416-421. Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 2007;21:3357-3364. Ciechanover A, Elias S, Heller H, Hershko A. "Covalent affinity" purification of ubiquitin-activating enzyme. J Biol Chem 1982;257:2537-2542. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946;6:205-216. Marin I, Lucas JI, Gradilla AC, Ferrus A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004;17:253-263. Gentle IE, Silke J. New perspectives in TNF-R1-induced NF-kappaB signaling. Adv Exp Med Biol 2011;691:79-88. Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 2003;278:45924-45930. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010;11:700-714. Banner DW, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431-445. Xu M, Skaug B, Zeng W, Chen ZJ. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009;36:302-314. Dynek JN, et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010;29:4198-4209. Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci USA 1968;61:1250-1255. Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 2010;21:22-39. Feng S, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007;19:2056-2067. An J, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008;14:394-407. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009;9:361-371. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362. Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700. Verhoef C, de Wilt JH, Grunhagen DJ, van Geel AN, ten Hagen TL, Eggermont AM. Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr Treat Options Oncol 2007;8:417-427. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003;424:793-796. Parascandola J. The theoretical basis of Paul Ehrlich's chemotherapy. J Hist Med Allied Sci 1981;36:19-43. Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009;78:105-114. O'Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev 1988;46:389-391. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-1308. Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 2011;6:e17477. Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313-321. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10:45-65. Cherix S, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for non-resectable soft tissue sarcomas: long-term results on efficacy and limb salvage in a selected group of patients. J Surg Oncol 2008;98:148-155. Shear MJ, Perrault A. A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J Natl Cancer Inst 1944;44:461-476. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181-190. Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776-788. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22:245-257. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011;12:715-723. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634-1635. Eck MJ, Sprang SR. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem 1989;264:17595-17605. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kapp 2010; 11 1998; 281 2011; 477 2010; 17 2004; 9 2006; 176 2010; 340 2008; 105 2008; 30 2008; 223 1968; 61 2011; 471 1953; 276 2003; 278 1998; 431 2009; 11 2010; 21 1913; 2 2009; 10 1984; 312 2010; 29 2000; 12 2006; 22 2006; 27 1997; 385 2006; 25 2008; 27 2007; 8 1982; 257 2006; 281 2010; 7 2009; 16 1944; 44 2010; 6 2009; 17 1983; 258 2007; 19 2010; 38 2010; 35 1997 2002; 2 1996; 93 2010; 285 2011; 6 1996; 15 1998; 67 2009; 78 2004; 430 2004; 279 2000; 103 1995; 47 2000; 468 1989; 243 2005; 7 2005; 1 2009; 461 2008; 135 2008; 132 2009; 109 2011; 278 2004; 61 2000; 5 2008; 9 2010; 141 2008; 7 2011; 12 2010; 140 2008; 4 2003; 114 2003; 10 2010; 67 2004; 378 1993; 73 1989; 264 1981; 36 1999; 13 2003; 3 1988; 46 2009; 284 1996; 4 2010; 70 2007; 21 2007; 26 2009; 325 1989; 338 2002; 296 2000; 25 1985; 4 2011 1995; 15 2010; 400 2006; 7 2008; 14 2006; 8 2006; 6 2008; 98 1988; 53 2011; 691 1975; 72 2009; 136 1993; 143 2008; 283 2009; 137 1987; 15 2009; 138 1983; 34 2009; 33 2010; 87 2005; 280 2009; 36 2004; 116 2011; 108 1995; 81 2003; 424 2004; 17 1946; 6 2004; 15 2009; 9 2011; 43 2008; 454 2001; 357 2009; 37 e_1_2_12_2_2 e_1_2_12_17_2 e_1_2_12_111_2 e_1_2_12_134_2 e_1_2_12_59_2 e_1_2_12_115_2 e_1_2_12_130_2 e_1_2_12_108_2 e_1_2_12_20_2 e_1_2_12_43_2 e_1_2_12_62_2 e_1_2_12_85_2 e_1_2_12_127_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_66_2 e_1_2_12_89_2 e_1_2_12_81_2 e_1_2_12_100_2 e_1_2_12_146_2 e_1_2_12_28_2 e_1_2_12_104_2 e_1_2_12_142_2 e_1_2_12_123_2 e_1_2_12_31_2 e_1_2_12_54_2 e_1_2_12_73_2 e_1_2_12_96_2 e_1_2_12_116_2 e_1_2_12_139_2 e_1_2_12_35_2 e_1_2_12_58_2 e_1_2_12_77_2 e_1_2_12_12_2 e_1_2_12_6_2 e_1_2_12_50_2 e_1_2_12_92_2 e_1_2_12_3_2 e_1_2_12_18_2 e_1_2_12_37_2 e_1_2_12_110_2 e_1_2_12_137_2 e_1_2_12_114_2 e_1_2_12_133_2 e_1_2_12_107_2 e_1_2_12_40_2 e_1_2_12_86_2 e_1_2_12_21_2 e_1_2_12_63_2 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_67_2 e_1_2_12_82_2 HogenEsch H (e_1_2_12_98_2) 1993; 143 e_1_2_12_122_2 e_1_2_12_145_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_103_2 e_1_2_12_126_2 e_1_2_12_141_2 e_1_2_12_119_2 e_1_2_12_51_2 e_1_2_12_97_2 e_1_2_12_32_2 e_1_2_12_74_2 e_1_2_12_138_2 e_1_2_12_55_2 e_1_2_12_36_2 e_1_2_12_78_2 e_1_2_12_13_2 e_1_2_12_7_2 e_1_2_12_93_2 e_1_2_12_70_2 e_1_2_12_4_2 e_1_2_12_19_2 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_136_2 Nauts HC (e_1_2_12_10_2) 1946; 6 e_1_2_12_113_2 e_1_2_12_132_2 e_1_2_12_41_2 e_1_2_12_64_2 e_1_2_12_87_2 e_1_2_12_129_2 e_1_2_12_106_2 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_68_2 Fiers W (e_1_2_12_101_2) 1995; 47 e_1_2_12_60_2 e_1_2_12_83_2 e_1_2_12_140_2 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_121_2 e_1_2_12_125_2 e_1_2_12_102_2 e_1_2_12_144_2 e_1_2_12_52_2 e_1_2_12_75_2 e_1_2_12_118_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_79_2 e_1_2_12_90_2 e_1_2_12_71_2 e_1_2_12_94_2 e_1_2_12_8_2 e_1_2_12_5_2 e_1_2_12_135_2 e_1_2_12_39_2 e_1_2_12_131_2 Nauts HC (e_1_2_12_11_2) 1953; 276 Shear MJ (e_1_2_12_16_2) 1944; 44 e_1_2_12_112_2 e_1_2_12_65_2 e_1_2_12_105_2 e_1_2_12_128_2 e_1_2_12_42_2 e_1_2_12_84_2 e_1_2_12_23_2 e_1_2_12_69_2 e_1_2_12_109_2 e_1_2_12_46_2 e_1_2_12_88_2 e_1_2_12_61_2 e_1_2_12_80_2 Ehrlich P (e_1_2_12_14_2) 1913; 2 e_1_2_12_27_2 e_1_2_12_120_2 e_1_2_12_147_2 e_1_2_12_124_2 e_1_2_12_143_2 e_1_2_12_30_2 e_1_2_12_76_2 e_1_2_12_117_2 e_1_2_12_53_2 e_1_2_12_95_2 e_1_2_12_34_2 e_1_2_12_57_2 e_1_2_12_99_2 e_1_2_12_72_2 e_1_2_12_9_2 e_1_2_12_91_2 |
| References_xml | – reference: Pickart CM. Back to the future with ubiquitin. Cell 2004;116:181-190. – reference: Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009;10:348-355. – reference: Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22:245-257. – reference: Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181-190. – reference: Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362. – reference: Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004;430:694-699. – reference: Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010;11:700-714. – reference: Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-756. – reference: Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425-479. – reference: Shear MJ, Perrault A. A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J Natl Cancer Inst 1944;44:461-476. – reference: Welz PS, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 2011;477:330-334. – reference: Xu M, Skaug B, Zeng W, Chen ZJ. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009;36:302-314. – reference: Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 2010;6:750-757. – reference: Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700. – reference: Varfolomeev E, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 2005;280:40599-40608. – reference: Wertz IE, Dixit VM. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 2009;17:14-24. – reference: Shembade N, Harhaj NS, Liebl DJ, Harhaj EW. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J 2007;26:3910-3922. – reference: Gentle IE, Silke J. New perspectives in TNF-R1-induced NF-kappaB signaling. Adv Exp Med Biol 2011;691:79-88. – reference: Verhoef C, de Wilt JH, Grunhagen DJ, van Geel AN, ten Hagen TL, Eggermont AM. Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr Treat Options Oncol 2007;8:417-427. – reference: Ozkaynak E, Finley D, Varshavsky A. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 1984;312:663-666. – reference: Mauro C, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006;281:18482-18488. – reference: Zhang DW, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332-336. – reference: Massoumi R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010;35:392-399. – reference: Hitomi J, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311-1323. – reference: Enesa K, et al. Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 2008;283:18582-18590. – reference: Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 2011; doi: 10.1007/s12253-011-9433-4 – reference: Cheung PC, Nebreda AR, Cohen P. TAB 3, a new binding partner of the protein kinase TAK1. Biochem J 2004;378:27-34. – reference: Ehrlich P. Chemotheraphy. Collected Papers 1913;2:505-518. – reference: Tsao DH, et al. Solution structure of N-TRADD and characterization of the interaction of N-TRADD and C-TRAF2, a key step in the TNFR1 signaling pathway. Mol Cell 2000;5:1051-1057. – reference: Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229-232. – reference: Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776-788. – reference: Tenno T, et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004;9:865-875. – reference: Ermolaeva MA, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 2008;9:1037-1046. – reference: Ciechanover A, Elias S, Heller H, Hershko A. "Covalent affinity" purification of ubiquitin-activating enzyme. J Biol Chem 1982;257:2537-2542. – reference: Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-444. – reference: Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010;400:8-15. – reference: Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009;37:937-953. – reference: Marin I, Lucas JI, Gradilla AC, Ferrus A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004;17:253-263. – reference: Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363-397. – reference: Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45-53. – reference: Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 2011;108:10662-10667. – reference: Chau V, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989;243:1576-1583. – reference: Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634-1635. – reference: Chiu YH, Zhao M, Chen ZJ. Ubiquitin in NF-kappaB signaling. Chem Rev 2009;109:1549-1560. – reference: Kovalenko A, Wallach D. If the prophet does not come to the mountain: dynamics of signaling complexes in NF-kappaB activation. Mol Cell 2006;22:433-436. – reference: Feoktistova M, et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011;43:449-463. – reference: Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci 2010;67:1567-1579. – reference: Ware CF. Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunol Rev 2008;223:186-201. – reference: Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000;12:301-311. – reference: Ikeda F, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 2011;471:637-641. – reference: Wagner S, et al. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 2008;27:3739-3745. – reference: Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009;78:105-114. – reference: Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 2004;279:7055-7063. – reference: Cho YS, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009;137:1112-1123. – reference: Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 1995;15:1265-1273. – reference: Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009;33:275-286. – reference: Kirisako T, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006;25:4877-4887. – reference: Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 2008;7:4566-4576. – reference: Hershko A. Ubiquitin: roles in protein modification and breakdown. Cell 1983;34:11-12. – reference: Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996;4:387-396. – reference: Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 2006;8:398-406. – reference: Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 2010;21:22-39. – reference: Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 2006;281:13636-13643. – reference: Yamamoto M, et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006;7:962-970. – reference: Pobezinskaya YL, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 2008;9:1047-1054. – reference: Varfolomeev E, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008;283:24295-24299. – reference: Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 2003;278:45924-45930. – reference: Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045. – reference: Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J 1985;4:755-759. – reference: Zeng W, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141:315-330. – reference: Xu G, et al. Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J Biol Chem 2010;285:969-978. – reference: Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009;10:659-671. – reference: Jung J, et al. Newly identified tumor-associated role of human Sharpin. Mol Cell Biochem 2010;340:161-167. – reference: Sims JJ, Cohen RE. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 2009;33:775-783. – reference: Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666-3670. – reference: Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 2010;87:401-406. – reference: Dynek JN, et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010;29:4198-4209. – reference: Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009;10:466-473. – reference: Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J. RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ 2010;17:482-487. – reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. – reference: Tokunaga F, et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 2011;471:633-636. – reference: Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 2011;471:373-376. – reference: Fiers W, et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 1995;47:67-75. – reference: Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999;13:2514-2526. – reference: Rahighi S, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009;136:1098-1109. – reference: Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005;7:758-765. – reference: Martinon F, Holler N, Richard C, Tschopp J. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000;468:134-136. – reference: Gustafsson N, Zhao C, Gustafsson JA, Dahlman-Wright K. RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1. Cancer Res 2010;70:1265-1274. – reference: Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 2011;278:862-876. – reference: Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010;17:939-947. – reference: Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258:8206-8214. – reference: Pan G, et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998;431:351-356. – reference: Cherix S, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for non-resectable soft tissue sarcomas: long-term results on efficacy and limb salvage in a selected group of patients. J Surg Oncol 2008;98:148-155. – reference: Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ. Isolation and characterization of two novel A20-like proteins. Biochem J 2001;357:617-623. – reference: Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011;12:439-452. – reference: Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008;105:11778-11783. – reference: Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313-321. – reference: Dikic I. Journal club. A new ubiquitin chain, a new signal. Nat Rev Mol Cell Biol 2009;10:306. – reference: Fesik SW. Insights into programmed cell death through structural biology. Cell 2000;103:273-282. – reference: Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729-733. – reference: Bignell GR, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000;25:160-165. – reference: Feng S, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007;19:2056-2067. – reference: Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 1953;276:1-103. – reference: An J, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008;14:394-407. – reference: Iha H, et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J 2008;27:629-641. – reference: Imtiyaz HZ, et al. The Fas-associated death domain protein is required in apoptosis and TLR-induced proliferative responses in B cells. J Immunol 2006;176:6852-6861. – reference: Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002;2:364-371. – reference: He S, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100-1111. – reference: Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009;9:361-371. – reference: O'Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev 1988;46:389-391. – reference: Tokunaga F, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009;11:123-132. – reference: Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-1308. – reference: Vince JE, et al. TRAF2 must bind to cIAPs for TNF to efficiently activate NF-{kappa}B and to prevent TNF-induced apoptosis. J Biol Chem 2009;284:35906-35915. – reference: Banner DW, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431-445. – reference: Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009;10:550-563. – reference: Oberst A, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011;471:363-367. – reference: Seymour RE, et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 2007;8:416-421. – reference: Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010;140:771-776. – reference: Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 2011;6:e17477. – reference: Eck MJ, Sprang SR. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem 1989;264:17595-17605. – reference: Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010;7:302-313;doi: 10.1007/s12253-011-9433-4. – reference: Haas TL, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009;36:831-844. – reference: Kanayama A, et al. TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004;15:535-548. – reference: Jones EY, Stuart DI, Walker NP. Structure of tumour necrosis factor. Nature 1989;338:225-228. – reference: Xia ZP, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009;461:114-119. – reference: Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003;424:793-796. – reference: Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995;81:495-504. – reference: Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D. Two-sided ubiquitin binding explains specificity of the TAB 2 NZF domain. Nat Struct Mol Biol 2009;16:1328-1330. – reference: Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996;93:13973-13978. – reference: Fang S, Weissman AM. A field guide to ubiquitylation. Cell Mol Life Sci 2004;61:1546-1561. – reference: Parascandola J. The theoretical basis of Paul Ehrlich's chemotherapy. J Hist Med Allied Sci 1981;36:19-43. – reference: HogenEsch H, Gijbels MJ, Offerman E, van Hooft J, van Bekkum DW, Zurcher C. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am J Pathol 1993;143:972-982. – reference: Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011;12:715-723. – reference: Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378-390. – reference: Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci USA 1968;61:1250-1255. – reference: Gerlach B, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011;471:591-596. – reference: Israel A. NF-kappaB activation: nondegradative ubiquitination implicates NEMO. Trends Immunol 2006;27:395-397. – reference: Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 2007;21:3357-3364. – reference: Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996;15:6189-6196. – reference: Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003;424:801-805. – reference: Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946;6:205-216. – reference: Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112-119. – reference: Baker RT, Board PG. The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Res 1987;15:443-463. – reference: Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10:45-65. – reference: Lo YC, et al. Structural basis for recognition of diubiquitins by NEMO. Mol Cell 2009;33:602-615. – volume: 243 start-page: 1576 year: 1989 end-page: 1583 article-title: A multiubiquitin chain is confined to specific lysine in a targeted short‐lived protein publication-title: Science – volume: 10 start-page: 659 year: 2009 end-page: 671 article-title: Ubiquitin‐binding domains – from structures to functions publication-title: Nat Rev Mol Cell Biol – volume: 7 start-page: 302 year: 2010 end-page: 313 article-title: Virus inhibition of RIP3‐dependent necrosis publication-title: Cell Host Microbe – volume: 138 start-page: 229 year: 2009 end-page: 232 article-title: RIP kinases at the crossroads of cell death and survival publication-title: Cell – volume: 285 start-page: 969 year: 2010 end-page: 978 article-title: Ubiquitin‐specific peptidase 21 inhibits tumor necrosis factor alpha‐induced nuclear factor kappaB activation via binding to and deubiquitinating receptor‐interacting protein 1 publication-title: J Biol Chem – volume: 17 start-page: 939 year: 2010 end-page: 947 article-title: Lys11‐linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne publication-title: Nat Struct Mol Biol – volume: 461 start-page: 114 year: 2009 end-page: 119 article-title: Direct activation of protein kinases by unanchored polyubiquitin chains publication-title: Nature – volume: 2 start-page: 505 year: 1913 end-page: 518 article-title: Chemotheraphy publication-title: Collected Papers – volume: 15 start-page: 1265 year: 1995 end-page: 1273 article-title: A ubiquitin mutant with specific defects in DNA repair and multiubiquitination publication-title: Mol Cell Biol – volume: 22 start-page: 245 year: 2006 end-page: 257 article-title: Activation of IKK by TNFalpha requires site‐specific ubiquitination of RIP1 and polyubiquitin binding by NEMO publication-title: Mol Cell – volume: 10 start-page: 45 year: 2003 end-page: 65 article-title: Tumor necrosis factor signaling publication-title: Cell Death Differ – volume: 8 start-page: 416 year: 2007 end-page: 421 article-title: Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis publication-title: Genes Immun – volume: 9 start-page: 361 year: 2009 end-page: 371 article-title: Tumour necrosis factor and cancer publication-title: Nat Rev Cancer – volume: 477 start-page: 330 year: 2011 end-page: 334 article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation publication-title: Nature – volume: 19 start-page: 2056 year: 2007 end-page: 2067 article-title: Cleavage of RIP3 inactivates its caspase‐independent apoptosis pathway by removal of kinase domain publication-title: Cell Signal – volume: 258 start-page: 8206 year: 1983 end-page: 8214 article-title: Components of ubiquitin‐protein ligase system. Resolution, affinity purification, and role in protein breakdown publication-title: J Biol Chem – volume: 25 start-page: 4877 year: 2006 end-page: 4887 article-title: A ubiquitin ligase complex assembles linear polyubiquitin chains publication-title: EMBO J – volume: 279 start-page: 7055 year: 2004 end-page: 7063 article-title: Solution conformation of Lys63‐linked di‐ubiquitin chain provides clues to functional diversity of polyubiquitin signaling publication-title: J Biol Chem – volume: 6 start-page: 750 year: 2010 end-page: 757 article-title: Engineered diubiquitin synthesis reveals Lys29‐isopeptide specificity of an OTU deubiquitinase publication-title: Nat Chem Biol – volume: 43 start-page: 449 year: 2011 end-page: 463 article-title: cIAPs block ripoptosome formation, a RIP1/Caspase‐8 containing intracellular cell death complex differentially regulated by cFLIP isoforms publication-title: Mol Cell – volume: 108 start-page: 10662 year: 2011 end-page: 10667 article-title: B regulatory cells and the tumor‐promoting actions of TNF‐alpha during squamous carcinogenesis publication-title: Proc Natl Acad Sci USA – volume: 357 start-page: 617 year: 2001 end-page: 623 article-title: Isolation and characterization of two novel A20‐like proteins publication-title: Biochem J – volume: 12 start-page: 439 year: 2011 end-page: 452 article-title: Ubiquitylation in apoptosis: a post‐translational modification at the edge of life and death publication-title: Nat Rev Mol Cell Biol – volume: 9 start-page: 378 year: 2008 end-page: 390 article-title: Expansion and evolution of cell death programmes publication-title: Nat Rev Mol Cell Biol – volume: 38 start-page: 101 year: 2010 end-page: 113 article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation publication-title: Mol Cell – volume: 135 start-page: 1311 year: 2008 end-page: 1323 article-title: Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway publication-title: Cell – volume: 3 start-page: 745 year: 2003 end-page: 756 article-title: Signalling pathways of the TNF superfamily: a double‐edged sword publication-title: Nat Rev Immunol – volume: 27 start-page: 395 year: 2006 end-page: 397 article-title: NF‐kappaB activation: nondegradative ubiquitination implicates NEMO publication-title: Trends Immunol – volume: 9 start-page: 1047 year: 2008 end-page: 1054 article-title: The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF‐dependent Toll‐like receptors publication-title: Nat Immunol – volume: 16 start-page: 1328 year: 2009 end-page: 1330 article-title: Two‐sided ubiquitin binding explains specificity of the TAB 2 NZF domain publication-title: Nat Struct Mol Biol – volume: 98 start-page: 148 year: 2008 end-page: 155 article-title: Isolated limb perfusion with tumor necrosis factor and melphalan for non‐resectable soft tissue sarcomas: long‐term results on efficacy and limb salvage in a selected group of patients publication-title: J Surg Oncol – volume: 468 start-page: 134 year: 2000 end-page: 136 article-title: Activation of a pro‐apoptotic amplification loop through inhibition of NF‐kappaB‐dependent survival signals by caspase‐mediated inactivation of RIP publication-title: FEBS Lett – volume: 312 start-page: 663 year: 1984 end-page: 666 article-title: The yeast ubiquitin gene: head‐to‐tail repeats encoding a polyubiquitin precursor protein publication-title: Nature – volume: 109 start-page: 1549 year: 2009 end-page: 1560 article-title: Ubiquitin in NF‐kappaB signaling publication-title: Chem Rev – volume: 116 start-page: 181 year: 2004 end-page: 190 article-title: Back to the future with ubiquitin publication-title: Cell – volume: 137 start-page: 1112 year: 2009 end-page: 1123 article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation publication-title: Cell – volume: 8 start-page: 417 year: 2007 end-page: 427 article-title: Isolated limb perfusion with melphalan and TNF‐alpha in the treatment of extremity sarcoma publication-title: Curr Treat Options Oncol – volume: 140 start-page: 771 year: 2010 end-page: 776 article-title: Inflammation 2010: new adventures of an old flame publication-title: Cell – volume: 471 start-page: 633 year: 2011 end-page: 636 article-title: SHARPIN is a component of the NF‐kappaB‐activating linear ubiquitin chain assembly complex publication-title: Nature – volume: 325 start-page: 332 year: 2009 end-page: 336 article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis publication-title: Science – volume: 132 start-page: 344 year: 2008 end-page: 362 article-title: Shared principles in NF‐kappaB signaling publication-title: Cell – volume: 81 start-page: 495 year: 1995 end-page: 504 article-title: The TNF receptor 1‐associated protein TRADD signals cell death and NF‐kappa B activation publication-title: Cell – volume: 93 start-page: 13973 year: 1996 end-page: 13978 article-title: The tumor necrosis factor receptor 2 signal transducers TRAF2 and c‐IAP1 are components of the tumor necrosis factor receptor 1 signaling complex publication-title: Proc Natl Acad Sci USA – volume: 223 start-page: 186 year: 2008 end-page: 201 article-title: Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways publication-title: Immunol Rev – volume: 257 start-page: 2537 year: 1982 end-page: 2542 article-title: “Covalent affinity” purification of ubiquitin‐activating enzyme publication-title: J Biol Chem – volume: 6 start-page: e17477 year: 2011 article-title: Optineurin is required for CYLD‐dependent inhibition of TNFalpha‐induced NF‐kappaB activation publication-title: PLoS ONE – volume: 385 start-page: 729 year: 1997 end-page: 733 article-title: A metalloproteinase disintegrin that releases tumour‐necrosis factor‐alpha from cells publication-title: Nature – volume: 4 start-page: 313 year: 2008 end-page: 321 article-title: Identification of RIP1 kinase as a specific cellular target of necrostatins publication-title: Nat Chem Biol – volume: 7 start-page: 962 year: 2006 end-page: 970 article-title: Key function for the Ubc13 E2 ubiquitin‐conjugating enzyme in immune receptor signaling publication-title: Nat Immunol – volume: 37 start-page: 937 year: 2009 end-page: 953 article-title: The emerging complexity of protein ubiquitination publication-title: Biochem Soc Trans – volume: 21 start-page: 3357 year: 2007 end-page: 3364 article-title: Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins publication-title: Rapid Commun Mass Spectrom – volume: 11 start-page: 123 year: 2009 end-page: 132 article-title: Involvement of linear polyubiquitylation of NEMO in NF‐kappaB activation publication-title: Nat Cell Biol – volume: 338 start-page: 225 year: 1989 end-page: 228 article-title: Structure of tumour necrosis factor publication-title: Nature – volume: 10 start-page: 348 year: 2009 end-page: 355 article-title: Death receptor signal transducers: nodes of coordination in immune signaling networks publication-title: Nat Immunol – volume: 280 start-page: 40599 year: 2005 end-page: 40608 article-title: Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor‐related apoptosis‐inducing ligand publication-title: J Biol Chem – volume: 36 start-page: 302 year: 2009 end-page: 314 article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL‐1beta publication-title: Mol Cell – volume: 15 start-page: 443 year: 1987 end-page: 463 article-title: The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily publication-title: Nucleic Acids Res – volume: 87 start-page: 401 year: 2010 end-page: 406 article-title: Cancer and inflammation: implications for pharmacology and therapeutics publication-title: Clin Pharmacol Ther – volume: 11 start-page: 700 year: 2010 end-page: 714 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat Rev Mol Cell Biol – volume: 21 start-page: 22 year: 2010 end-page: 39 article-title: Deubiquitinases in the regulation of NF‐kappaB signaling publication-title: Cell Res – volume: 10 start-page: 550 year: 2009 end-page: 563 article-title: Breaking the chains: structure and function of the deubiquitinases publication-title: Nat Rev Mol Cell Biol – volume: 33 start-page: 775 year: 2009 end-page: 783 article-title: Linkage‐specific avidity defines the lysine 63‐linked polyubiquitin‐binding preference of rap80 publication-title: Mol Cell – volume: 36 start-page: 19 year: 1981 end-page: 43 article-title: The theoretical basis of Paul Ehrlich’s chemotherapy publication-title: J Hist Med Allied Sci – volume: 143 start-page: 972 year: 1993 end-page: 982 article-title: A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice publication-title: Am J Pathol – volume: 73 start-page: 431 year: 1993 end-page: 445 article-title: Crystal structure of the soluble human 55 kd TNF receptor‐human TNF beta complex: implications for TNF receptor activation publication-title: Cell – volume: 471 start-page: 363 year: 2011 end-page: 367 article-title: Catalytic activity of the caspase‐8‐FLIP(L) complex inhibits RIPK3‐dependent necrosis publication-title: Nature – volume: 67 start-page: 425 year: 1998 end-page: 479 article-title: The ubiquitin system publication-title: Annu Rev Biochem – volume: 30 start-page: 689 year: 2008 end-page: 700 article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination publication-title: Mol Cell – volume: 471 start-page: 373 year: 2011 end-page: 376 article-title: Functional complementation between FADD and RIP1 in embryos and lymphocytes publication-title: Nature – volume: 141 start-page: 315 year: 2010 end-page: 330 article-title: Reconstitution of the RIG‐I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity publication-title: Cell – volume: 105 start-page: 11778 year: 2008 end-page: 11783 article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation publication-title: Proc Natl Acad Sci USA – volume: 281 start-page: 13636 year: 2006 end-page: 13643 article-title: Ubiquitination of RIP is required for tumor necrosis factor alpha‐induced NF‐kappaB activation publication-title: J Biol Chem – volume: 430 start-page: 694 year: 2004 end-page: 699 article-title: De‐ubiquitination and ubiquitin ligase domains of A20 downregulate NF‐kappaB signalling publication-title: Nature – volume: 15 start-page: 6189 year: 1996 end-page: 6196 article-title: RIP mediates tumor necrosis factor receptor 1 activation of NF‐kappaB but not Fas/APO‐1‐initiated apoptosis publication-title: EMBO J – volume: 70 start-page: 1265 year: 2010 end-page: 1274 article-title: RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1 publication-title: Cancer Res – volume: 136 start-page: 1098 year: 2009 end-page: 1109 article-title: Specific recognition of linear ubiquitin chains by NEMO is important for NF‐kappaB activation publication-title: Cell – volume: 22 start-page: 433 year: 2006 end-page: 436 article-title: If the prophet does not come to the mountain: dynamics of signaling complexes in NF‐kappaB activation publication-title: Mol Cell – volume: 278 start-page: 862 year: 2011 end-page: 876 article-title: TNFR1‐induced activation of the classical NF‐kappaB pathway publication-title: FEBS J – volume: 14 start-page: 394 year: 2008 end-page: 407 article-title: Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia‐induced NF‐kappaB activation publication-title: Cancer Cell – volume: 114 start-page: 181 year: 2003 end-page: 190 article-title: Induction of TNF receptor I‐mediated apoptosis via two sequential signaling complexes publication-title: Cell – volume: 6 start-page: 776 year: 2006 end-page: 788 article-title: Ubiquitin and ubiquitin‐like proteins in cancer pathogenesis publication-title: Nat Rev Cancer – volume: 12 start-page: 715 year: 2011 end-page: 723 article-title: Inflammation meets cancer, with NF‐kappaB as the matchmaker publication-title: Nat Immunol – volume: 424 start-page: 793 year: 2003 end-page: 796 article-title: CYLD is a deubiquitinating enzyme that negatively regulates NF‐kappaB activation by TNFR family members publication-title: Nature – volume: 44 start-page: 461 year: 1944 end-page: 476 article-title: A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage‐producing bacterial polysaccharide publication-title: J Natl Cancer Inst – volume: 27 start-page: 629 year: 2008 end-page: 641 article-title: Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐kappaB activation publication-title: EMBO J – volume: 340 start-page: 161 year: 2010 end-page: 167 article-title: Newly identified tumor‐associated role of human Sharpin publication-title: Mol Cell Biochem – volume: 53 start-page: 45 year: 1988 end-page: 53 article-title: A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF publication-title: Cell – volume: 25 start-page: 160 year: 2000 end-page: 165 article-title: Identification of the familial cylindromatosis tumour‐suppressor gene publication-title: Nat Genet – volume: 296 start-page: 1634 year: 2002 end-page: 1635 article-title: TNF‐R1 signaling: a beautiful pathway publication-title: Science – volume: 17 start-page: 253 year: 2004 end-page: 263 article-title: Parkin and relatives: the RBR family of ubiquitin ligases publication-title: Physiol Genomics – volume: 103 start-page: 273 year: 2000 end-page: 282 article-title: Insights into programmed cell death through structural biology publication-title: Cell – volume: 431 start-page: 351 year: 1998 end-page: 356 article-title: Identification and functional characterization of DR6, a novel death domain‐containing TNF receptor publication-title: FEBS Lett – volume: 12 start-page: 301 year: 2000 end-page: 311 article-title: Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation publication-title: Immunity – volume: 47 start-page: 67 year: 1995 end-page: 75 article-title: TNF‐induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis publication-title: J Inflamm – volume: 17 start-page: 482 year: 2010 end-page: 487 article-title: RIPK1 is not essential for TNFR1‐induced activation of NF‐kappaB publication-title: Cell Death Differ – volume: 36 start-page: 831 year: 2009 end-page: 844 article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction publication-title: Mol Cell – volume: 137 start-page: 1100 year: 2009 end-page: 1111 article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha publication-title: Cell – volume: 29 start-page: 4198 year: 2010 end-page: 4209 article-title: c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling publication-title: EMBO J – volume: 35 start-page: 392 year: 2010 end-page: 399 article-title: Ubiquitin chain cleavage: CYLD at work publication-title: Trends Biochem Sci – volume: 471 start-page: 591 year: 2011 end-page: 596 article-title: Linear ubiquitination prevents inflammation and regulates immune signalling publication-title: Nature – volume: 10 start-page: 306 year: 2009 article-title: Journal club. A new ubiquitin chain, a new signal publication-title: Nat Rev Mol Cell Biol – volume: 281 start-page: 18482 year: 2006 end-page: 18488 article-title: ABIN‐1 binds to NEMO/IKKgamma and co‐operates with A20 in inhibiting NF‐kappaB publication-title: J Biol Chem – volume: 34 start-page: 11 year: 1983 end-page: 12 article-title: Ubiquitin: roles in protein modification and breakdown publication-title: Cell – volume: 9 start-page: 1037 year: 2008 end-page: 1046 article-title: Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF‐dependent inflammatory responses publication-title: Nat Immunol – volume: 7 start-page: 4566 year: 2008 end-page: 4576 article-title: Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry publication-title: J Proteome Res – volume: 15 start-page: 535 year: 2004 end-page: 548 article-title: TAB 2 and TAB 3 activate the NF‐kappaB pathway through binding to polyubiquitin chains publication-title: Mol Cell – volume: 454 start-page: 436 year: 2008 end-page: 444 article-title: Cancer‐related inflammation publication-title: Nature – volume: 78 start-page: 105 year: 2009 end-page: 114 article-title: ABINs: A20 binding inhibitors of NF‐kappa B and apoptosis signaling publication-title: Biochem Pharmacol – volume: 276 start-page: 1 year: 1953 end-page: 103 article-title: A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study publication-title: Acta Med Scand Suppl – volume: 78 start-page: 363 year: 2009 end-page: 397 article-title: Regulation and cellular roles of ubiquitin‐specific deubiquitinating enzymes publication-title: Annu Rev Biochem – volume: 27 start-page: 3739 year: 2008 end-page: 3745 article-title: Ubiquitin binding mediates the NF‐kappaB inhibitory potential of ABIN proteins publication-title: Oncogene – volume: 13 start-page: 2514 year: 1999 end-page: 2526 article-title: Cleavage of the death domain kinase RIP by caspase‐8 prompts TNF‐induced apoptosis publication-title: Genes Dev – volume: 61 start-page: 1250 year: 1968 end-page: 1255 article-title: Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin publication-title: Proc Natl Acad Sci USA – volume: 264 start-page: 17595 year: 1989 end-page: 17605 article-title: The structure of tumor necrosis factor‐alpha at 2.6 A resolution. Implications for receptor binding publication-title: J Biol Chem – volume: 176 start-page: 6852 year: 2006 end-page: 6861 article-title: The Fas‐associated death domain protein is required in apoptosis and TLR‐induced proliferative responses in B cells publication-title: J Immunol – volume: 61 start-page: 1546 year: 2004 end-page: 1561 article-title: A field guide to ubiquitylation publication-title: Cell Mol Life Sci – volume: 281 start-page: 1305 year: 1998 end-page: 1308 article-title: Death receptors: signaling and modulation publication-title: Science – volume: 691 start-page: 79 year: 2011 end-page: 88 article-title: New perspectives in TNF‐R1‐induced NF‐kappaB signaling publication-title: Adv Exp Med Biol – volume: 278 start-page: 45924 year: 2003 end-page: 45930 article-title: The crystal structure of C3stau2 from and its complex with NAD publication-title: J Biol Chem – volume: 17 start-page: 14 year: 2009 end-page: 24 article-title: Regulation of death receptor signaling by the ubiquitin system publication-title: Cell Death Differ – volume: 378 start-page: 27 year: 2004 end-page: 34 article-title: TAB 3, a new binding partner of the protein kinase TAK1 publication-title: Biochem J – volume: 9 start-page: 865 year: 2004 end-page: 875 article-title: Structural basis for distinct roles of Lys63‐ and Lys48‐linked polyubiquitin chains publication-title: Genes Cells – volume: 400 start-page: 8 year: 2010 end-page: 15 article-title: Asymmetric recruitment of cIAPs by TRAF2 publication-title: J Mol Biol – volume: 4 start-page: 387 year: 1996 end-page: 396 article-title: TNF‐dependent recruitment of the protein kinase RIP to the TNF receptor‐1 signaling complex publication-title: Immunity – volume: 424 start-page: 801 year: 2003 end-page: 805 article-title: The tumour suppressor CYLD negatively regulates NF‐kappaB signalling by deubiquitination publication-title: Nature – volume: 26 start-page: 3910 year: 2007 end-page: 3922 article-title: Essential role for TAX1BP1 in the termination of TNF‐alpha‐, IL‐1‐ and LPS‐mediated NF‐kappaB and JNK signaling publication-title: EMBO J – year: 2011 article-title: Necroptosis: biochemical, physiological and pathological aspects publication-title: Pathol Oncol Res – volume: 2 start-page: 364 year: 2002 end-page: 371 article-title: Development of anti‐TNF therapy for rheumatoid arthritis publication-title: Nat Rev Immunol – volume: 8 start-page: 398 year: 2006 end-page: 406 article-title: Sensing of Lys 63‐linked polyubiquitination by NEMO is a key event in NF‐kappaB activation [corrected] publication-title: Nat Cell Biol – volume: 46 start-page: 389 year: 1988 end-page: 391 article-title: Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with polysaccharide, and induced tolerance publication-title: Nutr Rev – volume: 33 start-page: 602 year: 2009 end-page: 615 article-title: Structural basis for recognition of diubiquitins by NEMO publication-title: Mol Cell – volume: 471 start-page: 637 year: 2011 end-page: 641 article-title: SHARPIN forms a linear ubiquitin ligase complex regulating NF‐kappaB activity and apoptosis publication-title: Nature – start-page: 21 year: 1997 end-page: 127 – volume: 7 start-page: 758 year: 2005 end-page: 765 article-title: Ubiquitin signalling in the NF‐kappaB pathway publication-title: Nat Cell Biol – volume: 10 start-page: 466 year: 2009 end-page: 473 article-title: Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains publication-title: EMBO Rep – volume: 72 start-page: 3666 year: 1975 end-page: 3670 article-title: An endotoxin‐induced serum factor that causes necrosis of tumors publication-title: Proc Natl Acad Sci USA – volume: 283 start-page: 24295 year: 2008 end-page: 24299 article-title: c‐IAP1 and c‐IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)‐induced NF‐kappaB activation publication-title: J Biol Chem – volume: 5 start-page: 1051 year: 2000 end-page: 1057 article-title: Solution structure of N‐TRADD and characterization of the interaction of N‐TRADD and C‐TRAF2, a key step in the TNFR1 signaling pathway publication-title: Mol Cell – volume: 284 start-page: 35906 year: 2009 end-page: 35915 article-title: TRAF2 must bind to cIAPs for TNF to efficiently activate NF‐{kappa}B and to prevent TNF‐induced apoptosis publication-title: J Biol Chem – volume: 4 start-page: 755 year: 1985 end-page: 759 article-title: The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences publication-title: EMBO J – volume: 67 start-page: 1567 year: 2010 end-page: 1579 article-title: Tumor necrosis factor‐mediated cell death: to break or to burst, that’s the question publication-title: Cell Mol Life Sci – volume: 33 start-page: 275 year: 2009 end-page: 286 article-title: Nonproteolytic functions of ubiquitin in cell signaling publication-title: Mol Cell – volume: 1 start-page: 112 year: 2005 end-page: 119 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat Chem Biol – volume: 283 start-page: 7036 year: 2008 end-page: 7045 article-title: NF‐kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro‐inflammatory signaling publication-title: J Biol Chem – volume: 283 start-page: 18582 year: 2008 end-page: 18590 article-title: Hydrogen peroxide prolongs nuclear localization of NF‐kappaB in activated cells by suppressing negative regulatory mechanisms publication-title: J Biol Chem – volume: 6 start-page: 205 year: 1946 end-page: 216 article-title: The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research publication-title: Cancer Res – ident: e_1_2_12_9_2 – ident: e_1_2_12_67_2 doi: 10.1016/S1097-2765(00)80270-1 – ident: e_1_2_12_129_2 doi: 10.1074/jbc.M109.042689 – ident: e_1_2_12_109_2 doi: 10.1007/s12253-011-9433-4 – ident: e_1_2_12_122_2 doi: 10.1038/nrm3143 – ident: e_1_2_12_133_2 doi: 10.1371/journal.pone.0017477 – ident: e_1_2_12_38_2 doi: 10.1016/S0021-9258(18)34957-3 – ident: e_1_2_12_81_2 doi: 10.1038/ncb1384 – ident: e_1_2_12_44_2 doi: 10.1126/science.2538923 – ident: e_1_2_12_82_2 doi: 10.1074/jbc.M600620200 – ident: e_1_2_12_99_2 doi: 10.1038/nrm2393 – ident: e_1_2_12_78_2 doi: 10.1074/jbc.C800128200 – ident: e_1_2_12_29_2 doi: 10.1073/pnas.61.4.1250 – ident: e_1_2_12_33_2 doi: 10.1016/S0014-5793(98)00791-1 – ident: e_1_2_12_12_2 doi: 10.1073/pnas.72.9.3666 – ident: e_1_2_12_55_2 doi: 10.1038/nrm2767 – ident: e_1_2_12_75_2 doi: 10.1016/j.jmb.2010.04.055 – ident: e_1_2_12_128_2 doi: 10.1038/nature01802 – ident: e_1_2_12_145_2 doi: 10.1007/s11010-010-0413-x – ident: e_1_2_12_93_2 doi: 10.1152/physiolgenomics.00226.2003 – volume: 6 start-page: 205 year: 1946 ident: e_1_2_12_10_2 article-title: The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research publication-title: Cancer Res – ident: e_1_2_12_30_2 doi: 10.1111/j.1600-065X.2008.00629.x – ident: e_1_2_12_49_2 doi: 10.1038/312663a0 – ident: e_1_2_12_104_2 doi: 10.1038/nchembio.83 – ident: e_1_2_12_2_2 doi: 10.1111/j.1742-4658.2011.08015.x – ident: e_1_2_12_139_2 doi: 10.1038/nature09852 – ident: e_1_2_12_28_2 doi: 10.1038/385729a0 – ident: e_1_2_12_80_2 doi: 10.1016/j.molcel.2006.03.026 – ident: e_1_2_12_126_2 doi: 10.1074/jbc.M708690200 – ident: e_1_2_12_113_2 doi: 10.1002/rcm.3227 – ident: e_1_2_12_142_2 doi: 10.1016/S0014-5793(00)01212-6 – ident: e_1_2_12_25_2 doi: 10.1016/0092-8674(88)90486-2 – ident: e_1_2_12_31_2 doi: 10.1016/S0092-8674(00)00119-7 – ident: e_1_2_12_71_2 doi: 10.1016/0092-8674(93)90132-A – ident: e_1_2_12_66_2 doi: 10.1016/0092-8674(95)90070-5 – volume: 276 start-page: 1 year: 1953 ident: e_1_2_12_11_2 article-title: A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study publication-title: Acta Med Scand Suppl – ident: e_1_2_12_13_2 doi: 10.1038/nrc2628 – ident: e_1_2_12_36_2 doi: 10.1038/ni.1714 – ident: e_1_2_12_37_2 doi: 10.1016/S0092-8674(03)01074-2 – ident: e_1_2_12_5_2 doi: 10.1126/science.1071924 – ident: e_1_2_12_57_2 doi: 10.1016/j.cell.2009.03.007 – ident: e_1_2_12_64_2 doi: 10.1074/jbc.M309184200 – ident: e_1_2_12_96_2 doi: 10.1038/nature09814 – ident: e_1_2_12_76_2 doi: 10.1016/j.molcel.2010.03.009 – ident: e_1_2_12_6_2 doi: 10.1038/nri1184 – ident: e_1_2_12_40_2 doi: 10.1016/S0021-9258(20)82050-X – ident: e_1_2_12_95_2 doi: 10.1038/sj.gene.6364403 – ident: e_1_2_12_110_2 doi: 10.1016/j.chom.2010.03.006 – ident: e_1_2_12_127_2 doi: 10.1038/nature01803 – ident: e_1_2_12_39_2 doi: 10.1016/0092-8674(83)90131-9 – ident: e_1_2_12_43_2 doi: 10.1146/annurev.biochem.67.1.425 – ident: e_1_2_12_137_2 doi: 10.1016/j.molcel.2011.06.011 – ident: e_1_2_12_18_2 doi: 10.1038/nri802 – ident: e_1_2_12_8_2 doi: 10.1007/978-1-4419-6612-4_8 – ident: e_1_2_12_136_2 doi: 10.1016/j.tibs.2010.02.007 – ident: e_1_2_12_123_2 doi: 10.1042/bj3570617 – ident: e_1_2_12_45_2 doi: 10.1016/j.molcel.2009.01.014 – ident: e_1_2_12_72_2 doi: 10.1016/S1074-7613(00)80252-6 – volume: 2 start-page: 505 year: 1913 ident: e_1_2_12_14_2 article-title: Chemotheraphy publication-title: Collected Papers – ident: e_1_2_12_24_2 doi: 10.1038/ni.2060 – volume: 44 start-page: 461 year: 1944 ident: e_1_2_12_16_2 article-title: A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage‐producing bacterial polysaccharide publication-title: J Natl Cancer Inst – ident: e_1_2_12_54_2 doi: 10.1038/nrm2685 – ident: e_1_2_12_100_2 doi: 10.1007/s00018-010-0283-0 – volume: 47 start-page: 67 year: 1995 ident: e_1_2_12_101_2 article-title: TNF‐induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis publication-title: J Inflamm – ident: e_1_2_12_48_2 doi: 10.1093/nar/15.2.443 – ident: e_1_2_12_107_2 doi: 10.1016/j.cell.2009.05.021 – ident: e_1_2_12_102_2 doi: 10.1038/nchembio711 – ident: e_1_2_12_60_2 doi: 10.1038/nsmb.1873 – ident: e_1_2_12_61_2 doi: 10.1042/BST0370937 – ident: e_1_2_12_92_2 doi: 10.1016/j.cell.2010.03.029 – ident: e_1_2_12_146_2 doi: 10.1038/76006 – ident: e_1_2_12_83_2 doi: 10.1016/j.it.2006.07.003 – ident: e_1_2_12_22_2 doi: 10.1038/clpt.2009.312 – ident: e_1_2_12_21_2 doi: 10.1073/pnas.1100994108 – ident: e_1_2_12_51_2 doi: 10.1002/j.1460-2075.1985.tb03693.x – ident: e_1_2_12_105_2 doi: 10.1038/nrm2970 – ident: e_1_2_12_114_2 doi: 10.1038/cdd.2009.178 – ident: e_1_2_12_15_2 doi: 10.1093/jhmas/XXXVI.1.19 – ident: e_1_2_12_32_2 doi: 10.1126/science.281.5381.1305 – ident: e_1_2_12_74_2 doi: 10.1074/jbc.M109.072256 – ident: e_1_2_12_86_2 doi: 10.1038/sj.emboj.7601823 – ident: e_1_2_12_27_2 doi: 10.1038/338225a0 – ident: e_1_2_12_117_2 doi: 10.1073/pnas.0711122105 – ident: e_1_2_12_84_2 doi: 10.1016/j.molcel.2004.08.008 – ident: e_1_2_12_59_2 doi: 10.1016/j.molcel.2009.02.011 – ident: e_1_2_12_77_2 doi: 10.1016/j.molcel.2008.05.014 – ident: e_1_2_12_89_2 doi: 10.1021/cr800554j – ident: e_1_2_12_46_2 doi: 10.1128/MCB.15.3.1265 – ident: e_1_2_12_103_2 doi: 10.1016/j.cell.2009.07.006 – ident: e_1_2_12_131_2 doi: 10.1038/nrm2731 – ident: e_1_2_12_79_2 doi: 10.1038/nature02794 – ident: e_1_2_12_7_2 doi: 10.1038/sj.cdd.4401189 – ident: e_1_2_12_85_2 doi: 10.1074/jbc.M601502200 – ident: e_1_2_12_52_2 doi: 10.1016/j.molcel.2009.10.013 – ident: e_1_2_12_90_2 doi: 10.1038/ncb0805-758 – ident: e_1_2_12_112_2 doi: 10.1021/pr800468j – ident: e_1_2_12_87_2 doi: 10.1038/emboj.2008.5 – ident: e_1_2_12_125_2 doi: 10.1074/jbc.M801312200 – ident: e_1_2_12_138_2 doi: 10.4049/jimmunol.176.11.6852 – ident: e_1_2_12_19_2 doi: 10.1002/jso.21081 – ident: e_1_2_12_47_2 doi: 10.1038/sj.emboj.7601360 – ident: e_1_2_12_120_2 doi: 10.1016/S1074-7613(00)80183-1 – ident: e_1_2_12_119_2 doi: 10.1038/nsmb.1731 – ident: e_1_2_12_53_2 doi: 10.1038/nature09816 – ident: e_1_2_12_63_2 doi: 10.1111/j.1365-2443.2004.00780.x – ident: e_1_2_12_144_2 doi: 10.1158/0008-5472.CAN-09-2674 – ident: e_1_2_12_68_2 doi: 10.1038/ni.1639 – ident: e_1_2_12_34_2 doi: 10.1016/S0092-8674(03)00521-X – ident: e_1_2_12_94_2 doi: 10.1038/ncb1821 – ident: e_1_2_12_69_2 doi: 10.1073/pnas.93.24.13973 – ident: e_1_2_12_62_2 doi: 10.1038/embor.2009.55 – ident: e_1_2_12_140_2 doi: 10.1038/nature09878 – ident: e_1_2_12_130_2 doi: 10.1038/sj.onc.1211042 – ident: e_1_2_12_41_2 doi: 10.1007/s00018-004-4129-5 – ident: e_1_2_12_134_2 doi: 10.1016/j.cell.2010.03.006 – ident: e_1_2_12_4_2 doi: 10.1016/j.molcel.2006.05.002 – ident: e_1_2_12_26_2 doi: 10.1016/S0021-9258(18)71533-0 – ident: e_1_2_12_70_2 doi: 10.1038/ni.1638 – ident: e_1_2_12_56_2 doi: 10.1016/j.molcel.2009.01.012 – ident: e_1_2_12_97_2 doi: 10.1038/nature09815 – ident: e_1_2_12_116_2 doi: 10.1038/ni1367 – ident: e_1_2_12_23_2 doi: 10.1038/nature07205 – ident: e_1_2_12_118_2 doi: 10.1042/BJ20031794 – ident: e_1_2_12_42_2 doi: 10.1038/nrc1994 – ident: e_1_2_12_35_2 doi: 10.1074/jbc.M509560200 – ident: e_1_2_12_115_2 doi: 10.1016/j.molcel.2009.10.002 – ident: e_1_2_12_88_2 doi: 10.1038/cdd.2009.168 – ident: e_1_2_12_108_2 doi: 10.1126/science.1172308 – ident: e_1_2_12_135_2 doi: 10.1038/nature10273 – ident: e_1_2_12_147_2 doi: 10.1016/j.ccr.2008.10.007 – ident: e_1_2_12_17_2 doi: 10.1111/j.1753-4887.1988.tb05376.x – ident: e_1_2_12_91_2 doi: 10.1038/nature08247 – ident: e_1_2_12_143_2 doi: 10.1016/j.cellsig.2007.05.016 – ident: e_1_2_12_65_2 doi: 10.1038/nchembio.426 – ident: e_1_2_12_20_2 doi: 10.1007/s11864-007-0044-y – ident: e_1_2_12_121_2 doi: 10.1038/cr.2010.166 – ident: e_1_2_12_124_2 doi: 10.1074/jbc.M307719200 – ident: e_1_2_12_141_2 doi: 10.1101/gad.13.19.2514 – ident: e_1_2_12_58_2 doi: 10.1038/emboj.2010.300 – ident: e_1_2_12_106_2 doi: 10.1016/j.cell.2009.05.037 – ident: e_1_2_12_132_2 doi: 10.1016/j.bcp.2009.02.009 – ident: e_1_2_12_73_2 doi: 10.1002/j.1460-2075.1996.tb01007.x – ident: e_1_2_12_111_2 doi: 10.1016/j.cell.2008.10.044 – ident: e_1_2_12_50_2 doi: 10.1146/annurev.biochem.78.082307.091526 – ident: e_1_2_12_3_2 doi: 10.1016/j.cell.2008.01.020 – volume: 143 start-page: 972 year: 1993 ident: e_1_2_12_98_2 article-title: A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice publication-title: Am J Pathol |
| SSID | ssj0017324 |
| Score | 2.4697423 |
| SecondaryResourceType | review_article |
| Snippet | Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9 |
| SubjectTerms | Apoptosis - genetics Apoptosis - immunology apoptosis/autophagy Autophagy - genetics Autophagy - immunology cytokines cytotoxicity Humans Immunity, Innate Inflammation - genetics Inflammation - immunology Inflammation - metabolism Neoplasms - genetics Neoplasms - immunology Neoplasms - metabolism Protein Binding - genetics Receptors, Tumor Necrosis Factor, Type I - genetics Receptors, Tumor Necrosis Factor, Type I - immunology Receptors, Tumor Necrosis Factor, Type I - metabolism Receptors, Tumor Necrosis Factor, Type II - genetics Receptors, Tumor Necrosis Factor, Type II - immunology Receptors, Tumor Necrosis Factor, Type II - metabolism signal transduction Signal Transduction - genetics Signal Transduction - immunology signaling proteins Transcriptional Activation - immunology Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - immunology Tumor Necrosis Factor-alpha - metabolism Ubiquitin - genetics Ubiquitin - immunology Ubiquitin - metabolism Ubiquitination - genetics Ubiquitination - immunology |
| Title | TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer |
| URI | https://api.istex.fr/ark:/67375/WNG-J2FXH3GW-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01066.x https://www.ncbi.nlm.nih.gov/pubmed/22017428 https://www.proquest.com/docview/900634802 |
| Volume | 244 |
| WOSCitedRecordID | wos000297507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-065X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017324 issn: 0105-2896 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6abAO9JH2krZs26FB6isuurId1LE3cB-lSQkL2UBC2HrA08bb7KMm_74ztmC7kEEJvBjOSPfpG-kbSzAC8zULkgWoAujwOU2HQQTFCxdQjlZCZz1R0TRLXYz0e55OJ-d7df6JYmDY_RL_hRpbRzNdk4GW1WDdyRVHRSk66TJzo3aj3yCcHHGGMmB8cnhRnx_2Zgs54m-l7KFN0M9T6vZ5b21pbrAak96vbmOg6sW1WpmLnf_7TY9ju-Cn70ALqCTwI9VPYaitWXj-DH6fjgpW1Z6tq-ns1XU5rVi4ZkkjW_sGs9As2iwxhGRjFTLQ7vgeMDgiYJ755wBDUiMPL7g215gh78104K45OP35OuwINqROaq9Sh7yRL6ZACCJe7KrqoKoEzlhLO5DGGkYhEaOSoEl7HzBsjuaf4VyGyoH32HDbrWR1eAqPiRRTuFySvyGfLsYfKGcrWH8IomgT0zUhY12UvpyIaF_YfLwZ1Z0l3lnRnG93ZqwRGveSvNoPHHWTeNYPdC5Tzn3QDTkt7Pv5kv_KC5qhzmyfAbtBg0S5Jl2UdZquFNUT-RD7kCbxoUdI3xrErjW5fAqoBw50_y375dkJPr-4ruAePmj3xJpbyNWwu56vwBh66P8vpYr4PG3qS73dm8xd0MQ-X |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Vu0X0UsqrpFDwAXFq0G5iO_ERAWkL2whVW3UPSFbih7SizdJ9oPLvO5OkESv1UKHeIkW2k_E39jdjzwzA-9j5yFENQJP6QcgVGiiKSx9apBIitrH0pk7iOkryPJ1M1I-2HBDFwjT5ITqHG2lGvV6TgpNDel3LJYVFSzFpU3GieSM_IqHsc0QV70H_y2l2NuoOFZI4alJ9D0SIdoZcv9hzZ19ru1WfBH99FxVdZ7b11pQ9edCf2oHtlqGyTw2knsKGq57Bo6Zm5d_n8HOcZ6yoLFuV06vVdDmtWLFkSCNZ8wuzwi7YzDMEpmMUNdH4fA8YHREwS4zzgCGsEYmX7RvqzRD65i_gLPs6_nwUtiUaQsOTSIYGrSdRCIMkgJvUlN54WXJcsyQ3KvXeDbknSiOGJbeJj61SIrIUAct57BIbv4ReNavcK2BUvogC_pyISrLaUhyhNIry9Ts39CqA5HYqtGnzl1MZjQv9jx2DstMkO02y07Xs9HUAw67l7yaHxz3afKhnu2tQzH_RHbhE6PP8UH-LMlqlznUaALuFg0bNJFkWlZutFloR_ePpIApgt4FJ11mEQyVo-AUgazTc-7P08ckpPe39b8N38PhofDLSo-P8-2vYqj3kdWTlG-gt5yu3D5vmz3K6mL9ttecGbCESnw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hXah6oYWWNvSBD1VPpNpNbCc-Imha2m2EEIg9VLISP6RV2yzsA8G_ZyYJUVfigKreIkVjJ-Nv7G9szwzAh9j5yFENQJP6QcgVOiiKSx9apBIitrH0pk7iOkryPB2P1UlbDohiYZr8EN2GG1lGPV-TgbtL61etXFJYtBTjNhUnujfyExLKPhdIzHvQPzrNzkfdoUISR02q74EI0c-Qqxd7HmxrZbXqk-JvHqKiq8y2XpqyZ__1p57DZstQ2UEDqS1Yc9U2bDQ1K29fwM-zPGNFZdmynFwtJ4tJxYoFQxrJml-YFnbOpp4hMB2jqIlmz3ef0REBs8Q49xnCGpH4p31DrRlC3-wlnGefzw6_hm2JhtDwJJKhQe9JFMIgCeAmNaU3XpYc5yzJjUq9d0PuidKIYclt4mOrlIgsRcByHrvExjvQq6aVew2MyhdRwJ8TUUleW4o9lEZRvn7nhl4FkNwPhTZt_nIqo_Fb_-XHoO406U6T7nStO30TwLCTvGxyeDxC5mM92p1AMftFd-ASoS_yL_pblNEsdaHTANg9HDRaJumyqNx0OdeK6B9PB1EArxqYdI1F2FWCjl8AskbDoz9LH_84pafdfxXcgycnR5keHeff38DTeoO8Dqx8C73FbOnewbq5Xkzms_et8dwB16wSGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TNF+and+ubiquitin+at+the+crossroads+of+gene+activation%2C+cell+death%2C+inflammation%2C+and+cancer&rft.jtitle=Immunological+reviews&rft.au=Walczak%2C+Henning&rft.date=2011-11-01&rft.issn=1600-065X&rft.eissn=1600-065X&rft.volume=244&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01066.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |