TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer

Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated wh...

Full description

Saved in:
Bibliographic Details
Published in:Immunological reviews Vol. 244; no. 1; pp. 9 - 28
Main Author: Walczak, Henning
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.11.2011
Subjects:
ISSN:0105-2896, 1600-065X, 1600-065X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF‐RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF‐RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin‐binding domains interact with specific di‐ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF‐RSC to generate its signaling output in a spatio‐temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF‐RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.
AbstractList Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer-related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF-RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF-RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin-binding domains interact with specific di-ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF-RSC to generate its signaling output in a spatio-temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF-RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer-related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF-RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF-RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin-binding domains interact with specific di-ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF-RSC to generate its signaling output in a spatio-temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF-RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.
Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer‐related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF‐RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF‐RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin‐binding domains interact with specific di‐ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF‐RSC to generate its signaling output in a spatio‐temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF‐RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.
Author Walczak, Henning
Author_xml – sequence: 1
  givenname: Henning
  surname: Walczak
  fullname: Walczak, Henning
  organization: Tumour Immunology Unit, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22017428$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtO3DAARa2KCobHL1TedUNSv50sWqlCzEBFqVSBYFHJchy7eJo4EDvt8PdNyHQWXeGNLfuea_scgr3QBQsAxCjH4_iwzrFAKEOC3-cEYZwjjITIN2_AYnewBxbjLs9IUYoDcBjjGiEsKWH74ICMkGSkWIAfN9dLqEMNh8o_DT75AHWC6cFC03cx9p2uI-wc_GmDhdok_1sn34VTaGzTwNrq9HAKfXCNbtvtydRmdDC2PwZvnW6iPdnOR-B2eX5zdpFdfVtdnn2-ygyTRGSG8JJrbjjBzBSmcsaJiklBBTNl4ZzFzAnKOccVq6WjdVlyUiPEJWPUypoegfdz72PfPQ02JtX6OD1QB9sNUZUICcoKRMbku21yqFpbq8fet7p_Vv-EjIFiDszft24XwUhN7tVaTYrVpFhN7tWLe7UZ0U__ocanFyep1755TcHHueCPb-zzqy9Wl1-_T6uRz2bex2Q3O173v5SQVHJ1d71SX8jy_oKu7lRB_wLCYatp
CitedBy_id crossref_primary_10_1002_med_21398
crossref_primary_10_3390_cells10102706
crossref_primary_10_1007_s13277_013_1012_8
crossref_primary_10_3390_ijms241411363
crossref_primary_10_15252_embj_2019103303
crossref_primary_10_1007_s10495_014_1061_5
crossref_primary_10_1371_journal_pcbi_1010383
crossref_primary_10_3390_ijms20236039
crossref_primary_10_1146_annurev_immunol_112019_072301
crossref_primary_10_1016_j_csbj_2019_01_009
crossref_primary_10_1038_cddis_2016_285
crossref_primary_10_1016_j_cellsig_2014_08_008
crossref_primary_10_1016_j_cyto_2018_05_036
crossref_primary_10_1080_03008207_2020_1797709
crossref_primary_10_1080_10409238_2017_1325829
crossref_primary_10_1016_j_tibs_2012_11_007
crossref_primary_10_1155_2015_948737
crossref_primary_10_1186_s40425_018_0494_8
crossref_primary_10_1016_j_jff_2019_103648
crossref_primary_10_1097_j_pain_0000000000001470
crossref_primary_10_1007_s10753_022_01732_y
crossref_primary_10_1038_s41574_021_00499_w
crossref_primary_10_1158_1078_0432_CCR_13_2589
crossref_primary_10_3389_fphar_2022_857502
crossref_primary_10_1016_j_fct_2013_03_015
crossref_primary_10_1111_febs_16093
crossref_primary_10_3389_fimmu_2020_585880
crossref_primary_10_1038_aps_2016_112
crossref_primary_10_3389_fimmu_2014_00322
crossref_primary_10_1007_s00210_024_03027_5
crossref_primary_10_1371_journal_pone_0069201
crossref_primary_10_1016_j_neuroscience_2015_06_038
crossref_primary_10_1038_ncomms10972
crossref_primary_10_1164_rccm_201403_0463OC
crossref_primary_10_1016_j_semcancer_2013_07_003
crossref_primary_10_3390_ijms21093381
crossref_primary_10_1242_jcs_091793
crossref_primary_10_3109_0284186X_2012_737932
crossref_primary_10_1038_cdd_2012_72
crossref_primary_10_1038_srep26554
crossref_primary_10_1016_j_ijcard_2013_12_020
crossref_primary_10_1038_nri3131
crossref_primary_10_1177_17448069251323666
crossref_primary_10_3390_ijms241914723
crossref_primary_10_1016_j_gene_2013_11_005
crossref_primary_10_1038_s42003_020_0882_8
crossref_primary_10_1016_j_micinf_2014_08_009
crossref_primary_10_3390_antib4010048
crossref_primary_10_1038_cddis_2014_575
crossref_primary_10_1242_jcs_129999
crossref_primary_10_1155_2022_7346699
crossref_primary_10_3748_wjg_v22_i42_9300
crossref_primary_10_1016_j_molimm_2022_12_002
crossref_primary_10_1161_JAHA_121_022791
crossref_primary_10_1038_s41420_024_01913_8
crossref_primary_10_1101_gad_299776_117
crossref_primary_10_1016_j_semcdb_2015_01_012
crossref_primary_10_1016_j_smim_2014_02_005
crossref_primary_10_1038_cddis_2015_16
crossref_primary_10_1097_j_pain_0000000000002737
crossref_primary_10_1111_ajt_12448
crossref_primary_10_15252_embr_201642592
crossref_primary_10_1038_s41418_021_00922_9
crossref_primary_10_1111_imr_12309
crossref_primary_10_1155_2012_540794
crossref_primary_10_1053_j_gastro_2012_07_009
crossref_primary_10_1016_j_bbrc_2019_12_049
crossref_primary_10_1177_09603271211058884
crossref_primary_10_3390_ijms18071403
crossref_primary_10_3389_fimmu_2022_802638
crossref_primary_10_3390_cancers14174183
crossref_primary_10_1186_1741_7007_10_23
crossref_primary_10_1038_cdd_2015_69
crossref_primary_10_1016_j_abb_2015_10_009
crossref_primary_10_1016_j_biomaterials_2012_10_028
crossref_primary_10_1016_j_fsi_2025_110224
crossref_primary_10_1016_j_jbiosc_2024_10_011
crossref_primary_10_1016_j_semcdb_2014_03_035
crossref_primary_10_1038_cddis_2015_321
crossref_primary_10_1517_13543784_2012_696609
crossref_primary_10_1016_j_virol_2015_03_016
crossref_primary_10_1002_path_5248
crossref_primary_10_1111_gtc_12128
crossref_primary_10_3390_ijms252413670
crossref_primary_10_1155_2015_610813
crossref_primary_10_3892_ijmm_2016_2781
crossref_primary_10_3892_ijmm_2013_1430
crossref_primary_10_1038_cddis_2016_245
crossref_primary_10_1007_s00109_022_02264_6
crossref_primary_10_1136_annrheumdis_2013_203700
crossref_primary_10_1016_j_molcel_2017_05_003
crossref_primary_10_1038_cdd_2013_15
crossref_primary_10_1002_pros_23327
crossref_primary_10_1016_j_immuni_2013_10_009
crossref_primary_10_1016_j_cytogfr_2011_11_007
crossref_primary_10_1016_j_devcel_2021_06_008
crossref_primary_10_1038_cddiscovery_2015_34
crossref_primary_10_1007_s11259_013_9575_9
crossref_primary_10_1089_vim_2022_0010
crossref_primary_10_1038_s41418_021_00906_9
crossref_primary_10_1155_2013_185172
crossref_primary_10_1016_j_cell_2012_06_019
crossref_primary_10_1142_S0192415X19500915
crossref_primary_10_3390_cells9102145
crossref_primary_10_1016_j_bbamcr_2018_04_003
crossref_primary_10_15252_embj_201694300
crossref_primary_10_1016_j_febslet_2015_04_022
crossref_primary_10_1038_srep38294
crossref_primary_10_1016_j_bcp_2021_114733
crossref_primary_10_1016_j_molonc_2015_01_008
crossref_primary_10_1093_biolre_ioac162
crossref_primary_10_3390_cells9020351
crossref_primary_10_1007_s00018_016_2191_4
crossref_primary_10_1016_j_ebiom_2025_105848
crossref_primary_10_1016_j_biocel_2014_08_015
crossref_primary_10_3389_fimmu_2017_00623
crossref_primary_10_3748_wjg_v29_i18_2733
crossref_primary_10_1007_s12250_020_00320_4
crossref_primary_10_1111_j_1600_065X_2011_01065_x
crossref_primary_10_1016_j_chembiol_2020_03_016
crossref_primary_10_1080_08923973_2020_1811306
crossref_primary_10_1146_annurev_cellbio_100913_013226
crossref_primary_10_1074_jbc_RA120_013987
crossref_primary_10_1073_pnas_1401857111
crossref_primary_10_4251_wjgo_v11_i4_281
crossref_primary_10_1007_s13721_023_00421_6
crossref_primary_10_1161_HYPERTENSIONAHA_122_19464
crossref_primary_10_1128_MCB_06739_11
crossref_primary_10_3390_ijms26125779
crossref_primary_10_1016_j_cell_2018_03_032
crossref_primary_10_1016_j_molcel_2015_07_032
crossref_primary_10_1038_cdd_2013_94
crossref_primary_10_1016_j_molmed_2017_11_002
crossref_primary_10_1016_j_fbio_2024_104496
crossref_primary_10_1016_j_cellsig_2014_08_011
crossref_primary_10_1016_j_cytogfr_2013_12_013
crossref_primary_10_1002_wrna_1430
crossref_primary_10_1111_febs_13554
crossref_primary_10_1155_2019_2121357
crossref_primary_10_1080_19490976_2021_1902718
crossref_primary_10_1016_j_pharmthera_2020_107717
crossref_primary_10_1096_fj_201902547R
crossref_primary_10_1515_hsz_2015_0277
crossref_primary_10_1186_s12964_014_0072_8
Cites_doi 10.1016/S1097-2765(00)80270-1
10.1074/jbc.M109.042689
10.1007/s12253-011-9433-4
10.1038/nrm3143
10.1371/journal.pone.0017477
10.1016/S0021-9258(18)34957-3
10.1038/ncb1384
10.1126/science.2538923
10.1074/jbc.M600620200
10.1038/nrm2393
10.1074/jbc.C800128200
10.1073/pnas.61.4.1250
10.1016/S0014-5793(98)00791-1
10.1073/pnas.72.9.3666
10.1038/nrm2767
10.1016/j.jmb.2010.04.055
10.1038/nature01802
10.1007/s11010-010-0413-x
10.1152/physiolgenomics.00226.2003
10.1111/j.1600-065X.2008.00629.x
10.1038/312663a0
10.1038/nchembio.83
10.1111/j.1742-4658.2011.08015.x
10.1038/nature09852
10.1038/385729a0
10.1016/j.molcel.2006.03.026
10.1074/jbc.M708690200
10.1002/rcm.3227
10.1016/S0014-5793(00)01212-6
10.1016/0092-8674(88)90486-2
10.1016/S0092-8674(00)00119-7
10.1016/0092-8674(93)90132-A
10.1016/0092-8674(95)90070-5
10.1038/nrc2628
10.1038/ni.1714
10.1016/S0092-8674(03)01074-2
10.1126/science.1071924
10.1016/j.cell.2009.03.007
10.1074/jbc.M309184200
10.1038/nature09814
10.1016/j.molcel.2010.03.009
10.1038/nri1184
10.1016/S0021-9258(20)82050-X
10.1038/sj.gene.6364403
10.1016/j.chom.2010.03.006
10.1038/nature01803
10.1016/0092-8674(83)90131-9
10.1146/annurev.biochem.67.1.425
10.1016/j.molcel.2011.06.011
10.1038/nri802
10.1007/978-1-4419-6612-4_8
10.1016/j.tibs.2010.02.007
10.1042/bj3570617
10.1016/j.molcel.2009.01.014
10.1016/S1074-7613(00)80252-6
10.1038/ni.2060
10.1038/nrm2685
10.1007/s00018-010-0283-0
10.1093/nar/15.2.443
10.1016/j.cell.2009.05.021
10.1038/nchembio711
10.1038/nsmb.1873
10.1042/BST0370937
10.1016/j.cell.2010.03.029
10.1038/76006
10.1016/j.it.2006.07.003
10.1038/clpt.2009.312
10.1073/pnas.1100994108
10.1002/j.1460-2075.1985.tb03693.x
10.1038/nrm2970
10.1038/cdd.2009.178
10.1093/jhmas/XXXVI.1.19
10.1126/science.281.5381.1305
10.1074/jbc.M109.072256
10.1038/sj.emboj.7601823
10.1038/338225a0
10.1073/pnas.0711122105
10.1016/j.molcel.2004.08.008
10.1016/j.molcel.2009.02.011
10.1016/j.molcel.2008.05.014
10.1021/cr800554j
10.1128/MCB.15.3.1265
10.1016/j.cell.2009.07.006
10.1038/nrm2731
10.1038/nature02794
10.1038/sj.cdd.4401189
10.1074/jbc.M601502200
10.1016/j.molcel.2009.10.013
10.1038/ncb0805-758
10.1021/pr800468j
10.1038/emboj.2008.5
10.1074/jbc.M801312200
10.4049/jimmunol.176.11.6852
10.1002/jso.21081
10.1038/sj.emboj.7601360
10.1016/S1074-7613(00)80183-1
10.1038/nsmb.1731
10.1038/nature09816
10.1111/j.1365-2443.2004.00780.x
10.1158/0008-5472.CAN-09-2674
10.1038/ni.1639
10.1016/S0092-8674(03)00521-X
10.1038/ncb1821
10.1073/pnas.93.24.13973
10.1038/embor.2009.55
10.1038/nature09878
10.1038/sj.onc.1211042
10.1007/s00018-004-4129-5
10.1016/j.cell.2010.03.006
10.1016/j.molcel.2006.05.002
10.1016/S0021-9258(18)71533-0
10.1038/ni.1638
10.1016/j.molcel.2009.01.012
10.1038/nature09815
10.1038/ni1367
10.1038/nature07205
10.1042/BJ20031794
10.1038/nrc1994
10.1074/jbc.M509560200
10.1016/j.molcel.2009.10.002
10.1038/cdd.2009.168
10.1126/science.1172308
10.1038/nature10273
10.1016/j.ccr.2008.10.007
10.1111/j.1753-4887.1988.tb05376.x
10.1038/nature08247
10.1016/j.cellsig.2007.05.016
10.1038/nchembio.426
10.1007/s11864-007-0044-y
10.1038/cr.2010.166
10.1074/jbc.M307719200
10.1101/gad.13.19.2514
10.1038/emboj.2010.300
10.1016/j.cell.2009.05.037
10.1016/j.bcp.2009.02.009
10.1002/j.1460-2075.1996.tb01007.x
10.1016/j.cell.2008.10.044
10.1146/annurev.biochem.78.082307.091526
10.1016/j.cell.2008.01.020
ContentType Journal Article
Copyright 2011 John Wiley & Sons A/S
2011 John Wiley & Sons A/S.
Copyright_xml – notice: 2011 John Wiley & Sons A/S
– notice: 2011 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1600-065X.2011.01066.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 28
ExternalDocumentID 22017428
10_1111_j_1600_065X_2011_01066_x
IMR1066
ark_67375_WNG_J2FXH3GW_8
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 10950
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I004580/1
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4726-c2595a5c5214c8cbfcf6b476364c98ffe14f635551b4d7f3d9952d0057443e7d3
IEDL.DBID DRFUL
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0105-2896
1600-065X
IngestDate Wed Oct 01 13:42:09 EDT 2025
Mon Jul 21 06:03:15 EDT 2025
Sat Nov 29 01:33:02 EST 2025
Tue Nov 18 22:35:01 EST 2025
Wed Jan 22 16:27:44 EST 2025
Sun Sep 21 06:16:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4726-c2595a5c5214c8cbfcf6b476364c98ffe14f635551b4d7f3d9952d0057443e7d3
Notes ark:/67375/WNG-J2FXH3GW-8
istex:DD4AB6DF54AE4BFACCC5B7ECE53BE6AE4AF6D268
ArticleID:IMR1066
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 22017428
PQID 900634802
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_900634802
pubmed_primary_22017428
crossref_primary_10_1111_j_1600_065X_2011_01066_x
crossref_citationtrail_10_1111_j_1600_065X_2011_01066_x
wiley_primary_10_1111_j_1600_065X_2011_01066_x_IMR1066
istex_primary_ark_67375_WNG_J2FXH3GW_8
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Zeng W, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141:315-330.
Hitomi J, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311-1323.
Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 2011;108:10662-10667.
Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 1953;276:1-103.
Wagner S, et al. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 2008;27:3739-3745.
Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229-232.
Zhang DW, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332-336.
Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 2006;281:13636-13643.
Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 2011;278:862-876.
Tenno T, et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004;9:865-875.
Massoumi R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010;35:392-399.
Yamamoto M, et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006;7:962-970.
Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258:8206-8214.
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-444.
Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009;37:937-953.
Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 2011; doi: 10.1007/s12253-011-9433-4
Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004;430:694-699.
Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112-119.
Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
Rahighi S, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009;136:1098-1109.
Mauro C, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006;281:18482-18488.
Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45-53.
Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-756.
Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002;2:364-371.
Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729-733.
Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045.
Martinon F, Holler N, Richard C, Tschopp J. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000;468:134-136.
Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378-390.
He S, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100-1111.
Pickart CM. Back to the future with ubiquitin. Cell 2004;116:181-190.
Varfolomeev E, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 2005;280:40599-40608.
Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010;400:8-15.
Seymour RE, et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 2007;8:416-421.
Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 2007;21:3357-3364.
Ciechanover A, Elias S, Heller H, Hershko A. "Covalent affinity" purification of ubiquitin-activating enzyme. J Biol Chem 1982;257:2537-2542.
Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946;6:205-216.
Marin I, Lucas JI, Gradilla AC, Ferrus A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004;17:253-263.
Gentle IE, Silke J. New perspectives in TNF-R1-induced NF-kappaB signaling. Adv Exp Med Biol 2011;691:79-88.
Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 2003;278:45924-45930.
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010;11:700-714.
Banner DW, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431-445.
Xu M, Skaug B, Zeng W, Chen ZJ. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009;36:302-314.
Dynek JN, et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010;29:4198-4209.
Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci USA 1968;61:1250-1255.
Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 2010;21:22-39.
Feng S, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007;19:2056-2067.
An J, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008;14:394-407.
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009;9:361-371.
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362.
Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700.
Verhoef C, de Wilt JH, Grunhagen DJ, van Geel AN, ten Hagen TL, Eggermont AM. Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr Treat Options Oncol 2007;8:417-427.
Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003;424:793-796.
Parascandola J. The theoretical basis of Paul Ehrlich's chemotherapy. J Hist Med Allied Sci 1981;36:19-43.
Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009;78:105-114.
O'Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev 1988;46:389-391.
Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-1308.
Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 2011;6:e17477.
Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313-321.
Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10:45-65.
Cherix S, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for non-resectable soft tissue sarcomas: long-term results on efficacy and limb salvage in a selected group of patients. J Surg Oncol 2008;98:148-155.
Shear MJ, Perrault A. A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J Natl Cancer Inst 1944;44:461-476.
Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181-190.
Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776-788.
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22:245-257.
Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011;12:715-723.
Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634-1635.
Eck MJ, Sprang SR. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem 1989;264:17595-17605.
Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kapp
2010; 11
1998; 281
2011; 477
2010; 17
2004; 9
2006; 176
2010; 340
2008; 105
2008; 30
2008; 223
1968; 61
2011; 471
1953; 276
2003; 278
1998; 431
2009; 11
2010; 21
1913; 2
2009; 10
1984; 312
2010; 29
2000; 12
2006; 22
2006; 27
1997; 385
2006; 25
2008; 27
2007; 8
1982; 257
2006; 281
2010; 7
2009; 16
1944; 44
2010; 6
2009; 17
1983; 258
2007; 19
2010; 38
2010; 35
1997
2002; 2
1996; 93
2010; 285
2011; 6
1996; 15
1998; 67
2009; 78
2004; 430
2004; 279
2000; 103
1995; 47
2000; 468
1989; 243
2005; 7
2005; 1
2009; 461
2008; 135
2008; 132
2009; 109
2011; 278
2004; 61
2000; 5
2008; 9
2010; 141
2008; 7
2011; 12
2010; 140
2008; 4
2003; 114
2003; 10
2010; 67
2004; 378
1993; 73
1989; 264
1981; 36
1999; 13
2003; 3
1988; 46
2009; 284
1996; 4
2010; 70
2007; 21
2007; 26
2009; 325
1989; 338
2002; 296
2000; 25
1985; 4
2011
1995; 15
2010; 400
2006; 7
2008; 14
2006; 8
2006; 6
2008; 98
1988; 53
2011; 691
1975; 72
2009; 136
1993; 143
2008; 283
2009; 137
1987; 15
2009; 138
1983; 34
2009; 33
2010; 87
2005; 280
2009; 36
2004; 116
2011; 108
1995; 81
2003; 424
2004; 17
1946; 6
2004; 15
2009; 9
2011; 43
2008; 454
2001; 357
2009; 37
e_1_2_12_2_2
e_1_2_12_17_2
e_1_2_12_111_2
e_1_2_12_134_2
e_1_2_12_59_2
e_1_2_12_115_2
e_1_2_12_130_2
e_1_2_12_108_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_62_2
e_1_2_12_85_2
e_1_2_12_127_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_66_2
e_1_2_12_89_2
e_1_2_12_81_2
e_1_2_12_100_2
e_1_2_12_146_2
e_1_2_12_28_2
e_1_2_12_104_2
e_1_2_12_142_2
e_1_2_12_123_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_73_2
e_1_2_12_96_2
e_1_2_12_116_2
e_1_2_12_139_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_77_2
e_1_2_12_12_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_92_2
e_1_2_12_3_2
e_1_2_12_18_2
e_1_2_12_37_2
e_1_2_12_110_2
e_1_2_12_137_2
e_1_2_12_114_2
e_1_2_12_133_2
e_1_2_12_107_2
e_1_2_12_40_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_63_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
e_1_2_12_82_2
HogenEsch H (e_1_2_12_98_2) 1993; 143
e_1_2_12_122_2
e_1_2_12_145_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_103_2
e_1_2_12_126_2
e_1_2_12_141_2
e_1_2_12_119_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_138_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_78_2
e_1_2_12_13_2
e_1_2_12_7_2
e_1_2_12_93_2
e_1_2_12_70_2
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_136_2
Nauts HC (e_1_2_12_10_2) 1946; 6
e_1_2_12_113_2
e_1_2_12_132_2
e_1_2_12_41_2
e_1_2_12_64_2
e_1_2_12_87_2
e_1_2_12_129_2
e_1_2_12_106_2
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_68_2
Fiers W (e_1_2_12_101_2) 1995; 47
e_1_2_12_60_2
e_1_2_12_83_2
e_1_2_12_140_2
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_121_2
e_1_2_12_125_2
e_1_2_12_102_2
e_1_2_12_144_2
e_1_2_12_52_2
e_1_2_12_75_2
e_1_2_12_118_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_90_2
e_1_2_12_71_2
e_1_2_12_94_2
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_135_2
e_1_2_12_39_2
e_1_2_12_131_2
Nauts HC (e_1_2_12_11_2) 1953; 276
Shear MJ (e_1_2_12_16_2) 1944; 44
e_1_2_12_112_2
e_1_2_12_65_2
e_1_2_12_105_2
e_1_2_12_128_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_23_2
e_1_2_12_69_2
e_1_2_12_109_2
e_1_2_12_46_2
e_1_2_12_88_2
e_1_2_12_61_2
e_1_2_12_80_2
Ehrlich P (e_1_2_12_14_2) 1913; 2
e_1_2_12_27_2
e_1_2_12_120_2
e_1_2_12_147_2
e_1_2_12_124_2
e_1_2_12_143_2
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_117_2
e_1_2_12_53_2
e_1_2_12_95_2
e_1_2_12_34_2
e_1_2_12_57_2
e_1_2_12_99_2
e_1_2_12_72_2
e_1_2_12_9_2
e_1_2_12_91_2
References_xml – reference: Pickart CM. Back to the future with ubiquitin. Cell 2004;116:181-190.
– reference: Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009;10:348-355.
– reference: Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22:245-257.
– reference: Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181-190.
– reference: Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362.
– reference: Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004;430:694-699.
– reference: Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010;11:700-714.
– reference: Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-756.
– reference: Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425-479.
– reference: Shear MJ, Perrault A. A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J Natl Cancer Inst 1944;44:461-476.
– reference: Welz PS, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 2011;477:330-334.
– reference: Xu M, Skaug B, Zeng W, Chen ZJ. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009;36:302-314.
– reference: Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 2010;6:750-757.
– reference: Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700.
– reference: Varfolomeev E, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 2005;280:40599-40608.
– reference: Wertz IE, Dixit VM. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 2009;17:14-24.
– reference: Shembade N, Harhaj NS, Liebl DJ, Harhaj EW. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J 2007;26:3910-3922.
– reference: Gentle IE, Silke J. New perspectives in TNF-R1-induced NF-kappaB signaling. Adv Exp Med Biol 2011;691:79-88.
– reference: Verhoef C, de Wilt JH, Grunhagen DJ, van Geel AN, ten Hagen TL, Eggermont AM. Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr Treat Options Oncol 2007;8:417-427.
– reference: Ozkaynak E, Finley D, Varshavsky A. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 1984;312:663-666.
– reference: Mauro C, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006;281:18482-18488.
– reference: Zhang DW, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332-336.
– reference: Massoumi R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010;35:392-399.
– reference: Hitomi J, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311-1323.
– reference: Enesa K, et al. Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 2008;283:18582-18590.
– reference: Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 2011; doi: 10.1007/s12253-011-9433-4
– reference: Cheung PC, Nebreda AR, Cohen P. TAB 3, a new binding partner of the protein kinase TAK1. Biochem J 2004;378:27-34.
– reference: Ehrlich P. Chemotheraphy. Collected Papers 1913;2:505-518.
– reference: Tsao DH, et al. Solution structure of N-TRADD and characterization of the interaction of N-TRADD and C-TRAF2, a key step in the TNFR1 signaling pathway. Mol Cell 2000;5:1051-1057.
– reference: Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229-232.
– reference: Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776-788.
– reference: Tenno T, et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004;9:865-875.
– reference: Ermolaeva MA, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 2008;9:1037-1046.
– reference: Ciechanover A, Elias S, Heller H, Hershko A. "Covalent affinity" purification of ubiquitin-activating enzyme. J Biol Chem 1982;257:2537-2542.
– reference: Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-444.
– reference: Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010;400:8-15.
– reference: Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009;37:937-953.
– reference: Marin I, Lucas JI, Gradilla AC, Ferrus A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004;17:253-263.
– reference: Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363-397.
– reference: Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45-53.
– reference: Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 2011;108:10662-10667.
– reference: Chau V, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989;243:1576-1583.
– reference: Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634-1635.
– reference: Chiu YH, Zhao M, Chen ZJ. Ubiquitin in NF-kappaB signaling. Chem Rev 2009;109:1549-1560.
– reference: Kovalenko A, Wallach D. If the prophet does not come to the mountain: dynamics of signaling complexes in NF-kappaB activation. Mol Cell 2006;22:433-436.
– reference: Feoktistova M, et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011;43:449-463.
– reference: Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci 2010;67:1567-1579.
– reference: Ware CF. Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunol Rev 2008;223:186-201.
– reference: Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000;12:301-311.
– reference: Ikeda F, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 2011;471:637-641.
– reference: Wagner S, et al. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 2008;27:3739-3745.
– reference: Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009;78:105-114.
– reference: Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 2004;279:7055-7063.
– reference: Cho YS, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009;137:1112-1123.
– reference: Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 1995;15:1265-1273.
– reference: Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009;33:275-286.
– reference: Kirisako T, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006;25:4877-4887.
– reference: Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 2008;7:4566-4576.
– reference: Hershko A. Ubiquitin: roles in protein modification and breakdown. Cell 1983;34:11-12.
– reference: Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996;4:387-396.
– reference: Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 2006;8:398-406.
– reference: Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 2010;21:22-39.
– reference: Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 2006;281:13636-13643.
– reference: Yamamoto M, et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006;7:962-970.
– reference: Pobezinskaya YL, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 2008;9:1047-1054.
– reference: Varfolomeev E, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008;283:24295-24299.
– reference: Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 2003;278:45924-45930.
– reference: Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045.
– reference: Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J 1985;4:755-759.
– reference: Zeng W, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141:315-330.
– reference: Xu G, et al. Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J Biol Chem 2010;285:969-978.
– reference: Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009;10:659-671.
– reference: Jung J, et al. Newly identified tumor-associated role of human Sharpin. Mol Cell Biochem 2010;340:161-167.
– reference: Sims JJ, Cohen RE. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 2009;33:775-783.
– reference: Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666-3670.
– reference: Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 2010;87:401-406.
– reference: Dynek JN, et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010;29:4198-4209.
– reference: Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009;10:466-473.
– reference: Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J. RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ 2010;17:482-487.
– reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
– reference: Tokunaga F, et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 2011;471:633-636.
– reference: Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 2011;471:373-376.
– reference: Fiers W, et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 1995;47:67-75.
– reference: Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999;13:2514-2526.
– reference: Rahighi S, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009;136:1098-1109.
– reference: Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005;7:758-765.
– reference: Martinon F, Holler N, Richard C, Tschopp J. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000;468:134-136.
– reference: Gustafsson N, Zhao C, Gustafsson JA, Dahlman-Wright K. RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1. Cancer Res 2010;70:1265-1274.
– reference: Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 2011;278:862-876.
– reference: Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010;17:939-947.
– reference: Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258:8206-8214.
– reference: Pan G, et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998;431:351-356.
– reference: Cherix S, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for non-resectable soft tissue sarcomas: long-term results on efficacy and limb salvage in a selected group of patients. J Surg Oncol 2008;98:148-155.
– reference: Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ. Isolation and characterization of two novel A20-like proteins. Biochem J 2001;357:617-623.
– reference: Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011;12:439-452.
– reference: Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008;105:11778-11783.
– reference: Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313-321.
– reference: Dikic I. Journal club. A new ubiquitin chain, a new signal. Nat Rev Mol Cell Biol 2009;10:306.
– reference: Fesik SW. Insights into programmed cell death through structural biology. Cell 2000;103:273-282.
– reference: Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729-733.
– reference: Bignell GR, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000;25:160-165.
– reference: Feng S, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007;19:2056-2067.
– reference: Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 1953;276:1-103.
– reference: An J, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008;14:394-407.
– reference: Iha H, et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J 2008;27:629-641.
– reference: Imtiyaz HZ, et al. The Fas-associated death domain protein is required in apoptosis and TLR-induced proliferative responses in B cells. J Immunol 2006;176:6852-6861.
– reference: Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002;2:364-371.
– reference: He S, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100-1111.
– reference: Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009;9:361-371.
– reference: O'Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev 1988;46:389-391.
– reference: Tokunaga F, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009;11:123-132.
– reference: Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-1308.
– reference: Vince JE, et al. TRAF2 must bind to cIAPs for TNF to efficiently activate NF-{kappa}B and to prevent TNF-induced apoptosis. J Biol Chem 2009;284:35906-35915.
– reference: Banner DW, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431-445.
– reference: Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009;10:550-563.
– reference: Oberst A, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011;471:363-367.
– reference: Seymour RE, et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 2007;8:416-421.
– reference: Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010;140:771-776.
– reference: Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 2011;6:e17477.
– reference: Eck MJ, Sprang SR. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem 1989;264:17595-17605.
– reference: Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010;7:302-313;doi: 10.1007/s12253-011-9433-4.
– reference: Haas TL, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009;36:831-844.
– reference: Kanayama A, et al. TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004;15:535-548.
– reference: Jones EY, Stuart DI, Walker NP. Structure of tumour necrosis factor. Nature 1989;338:225-228.
– reference: Xia ZP, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009;461:114-119.
– reference: Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003;424:793-796.
– reference: Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995;81:495-504.
– reference: Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D. Two-sided ubiquitin binding explains specificity of the TAB 2 NZF domain. Nat Struct Mol Biol 2009;16:1328-1330.
– reference: Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996;93:13973-13978.
– reference: Fang S, Weissman AM. A field guide to ubiquitylation. Cell Mol Life Sci 2004;61:1546-1561.
– reference: Parascandola J. The theoretical basis of Paul Ehrlich's chemotherapy. J Hist Med Allied Sci 1981;36:19-43.
– reference: HogenEsch H, Gijbels MJ, Offerman E, van Hooft J, van Bekkum DW, Zurcher C. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am J Pathol 1993;143:972-982.
– reference: Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011;12:715-723.
– reference: Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378-390.
– reference: Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci USA 1968;61:1250-1255.
– reference: Gerlach B, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011;471:591-596.
– reference: Israel A. NF-kappaB activation: nondegradative ubiquitination implicates NEMO. Trends Immunol 2006;27:395-397.
– reference: Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 2007;21:3357-3364.
– reference: Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996;15:6189-6196.
– reference: Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003;424:801-805.
– reference: Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946;6:205-216.
– reference: Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112-119.
– reference: Baker RT, Board PG. The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Res 1987;15:443-463.
– reference: Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10:45-65.
– reference: Lo YC, et al. Structural basis for recognition of diubiquitins by NEMO. Mol Cell 2009;33:602-615.
– volume: 243
  start-page: 1576
  year: 1989
  end-page: 1583
  article-title: A multiubiquitin chain is confined to specific lysine in a targeted short‐lived protein
  publication-title: Science
– volume: 10
  start-page: 659
  year: 2009
  end-page: 671
  article-title: Ubiquitin‐binding domains – from structures to functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 7
  start-page: 302
  year: 2010
  end-page: 313
  article-title: Virus inhibition of RIP3‐dependent necrosis
  publication-title: Cell Host Microbe
– volume: 138
  start-page: 229
  year: 2009
  end-page: 232
  article-title: RIP kinases at the crossroads of cell death and survival
  publication-title: Cell
– volume: 285
  start-page: 969
  year: 2010
  end-page: 978
  article-title: Ubiquitin‐specific peptidase 21 inhibits tumor necrosis factor alpha‐induced nuclear factor kappaB activation via binding to and deubiquitinating receptor‐interacting protein 1
  publication-title: J Biol Chem
– volume: 17
  start-page: 939
  year: 2010
  end-page: 947
  article-title: Lys11‐linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
  publication-title: Nat Struct Mol Biol
– volume: 461
  start-page: 114
  year: 2009
  end-page: 119
  article-title: Direct activation of protein kinases by unanchored polyubiquitin chains
  publication-title: Nature
– volume: 2
  start-page: 505
  year: 1913
  end-page: 518
  article-title: Chemotheraphy
  publication-title: Collected Papers
– volume: 15
  start-page: 1265
  year: 1995
  end-page: 1273
  article-title: A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
  publication-title: Mol Cell Biol
– volume: 22
  start-page: 245
  year: 2006
  end-page: 257
  article-title: Activation of IKK by TNFalpha requires site‐specific ubiquitination of RIP1 and polyubiquitin binding by NEMO
  publication-title: Mol Cell
– volume: 10
  start-page: 45
  year: 2003
  end-page: 65
  article-title: Tumor necrosis factor signaling
  publication-title: Cell Death Differ
– volume: 8
  start-page: 416
  year: 2007
  end-page: 421
  article-title: Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis
  publication-title: Genes Immun
– volume: 9
  start-page: 361
  year: 2009
  end-page: 371
  article-title: Tumour necrosis factor and cancer
  publication-title: Nat Rev Cancer
– volume: 477
  start-page: 330
  year: 2011
  end-page: 334
  article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation
  publication-title: Nature
– volume: 19
  start-page: 2056
  year: 2007
  end-page: 2067
  article-title: Cleavage of RIP3 inactivates its caspase‐independent apoptosis pathway by removal of kinase domain
  publication-title: Cell Signal
– volume: 258
  start-page: 8206
  year: 1983
  end-page: 8214
  article-title: Components of ubiquitin‐protein ligase system. Resolution, affinity purification, and role in protein breakdown
  publication-title: J Biol Chem
– volume: 25
  start-page: 4877
  year: 2006
  end-page: 4887
  article-title: A ubiquitin ligase complex assembles linear polyubiquitin chains
  publication-title: EMBO J
– volume: 279
  start-page: 7055
  year: 2004
  end-page: 7063
  article-title: Solution conformation of Lys63‐linked di‐ubiquitin chain provides clues to functional diversity of polyubiquitin signaling
  publication-title: J Biol Chem
– volume: 6
  start-page: 750
  year: 2010
  end-page: 757
  article-title: Engineered diubiquitin synthesis reveals Lys29‐isopeptide specificity of an OTU deubiquitinase
  publication-title: Nat Chem Biol
– volume: 43
  start-page: 449
  year: 2011
  end-page: 463
  article-title: cIAPs block ripoptosome formation, a RIP1/Caspase‐8 containing intracellular cell death complex differentially regulated by cFLIP isoforms
  publication-title: Mol Cell
– volume: 108
  start-page: 10662
  year: 2011
  end-page: 10667
  article-title: B regulatory cells and the tumor‐promoting actions of TNF‐alpha during squamous carcinogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 357
  start-page: 617
  year: 2001
  end-page: 623
  article-title: Isolation and characterization of two novel A20‐like proteins
  publication-title: Biochem J
– volume: 12
  start-page: 439
  year: 2011
  end-page: 452
  article-title: Ubiquitylation in apoptosis: a post‐translational modification at the edge of life and death
  publication-title: Nat Rev Mol Cell Biol
– volume: 9
  start-page: 378
  year: 2008
  end-page: 390
  article-title: Expansion and evolution of cell death programmes
  publication-title: Nat Rev Mol Cell Biol
– volume: 38
  start-page: 101
  year: 2010
  end-page: 113
  article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation
  publication-title: Mol Cell
– volume: 135
  start-page: 1311
  year: 2008
  end-page: 1323
  article-title: Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway
  publication-title: Cell
– volume: 3
  start-page: 745
  year: 2003
  end-page: 756
  article-title: Signalling pathways of the TNF superfamily: a double‐edged sword
  publication-title: Nat Rev Immunol
– volume: 27
  start-page: 395
  year: 2006
  end-page: 397
  article-title: NF‐kappaB activation: nondegradative ubiquitination implicates NEMO
  publication-title: Trends Immunol
– volume: 9
  start-page: 1047
  year: 2008
  end-page: 1054
  article-title: The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF‐dependent Toll‐like receptors
  publication-title: Nat Immunol
– volume: 16
  start-page: 1328
  year: 2009
  end-page: 1330
  article-title: Two‐sided ubiquitin binding explains specificity of the TAB 2 NZF domain
  publication-title: Nat Struct Mol Biol
– volume: 98
  start-page: 148
  year: 2008
  end-page: 155
  article-title: Isolated limb perfusion with tumor necrosis factor and melphalan for non‐resectable soft tissue sarcomas: long‐term results on efficacy and limb salvage in a selected group of patients
  publication-title: J Surg Oncol
– volume: 468
  start-page: 134
  year: 2000
  end-page: 136
  article-title: Activation of a pro‐apoptotic amplification loop through inhibition of NF‐kappaB‐dependent survival signals by caspase‐mediated inactivation of RIP
  publication-title: FEBS Lett
– volume: 312
  start-page: 663
  year: 1984
  end-page: 666
  article-title: The yeast ubiquitin gene: head‐to‐tail repeats encoding a polyubiquitin precursor protein
  publication-title: Nature
– volume: 109
  start-page: 1549
  year: 2009
  end-page: 1560
  article-title: Ubiquitin in NF‐kappaB signaling
  publication-title: Chem Rev
– volume: 116
  start-page: 181
  year: 2004
  end-page: 190
  article-title: Back to the future with ubiquitin
  publication-title: Cell
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation
  publication-title: Cell
– volume: 8
  start-page: 417
  year: 2007
  end-page: 427
  article-title: Isolated limb perfusion with melphalan and TNF‐alpha in the treatment of extremity sarcoma
  publication-title: Curr Treat Options Oncol
– volume: 140
  start-page: 771
  year: 2010
  end-page: 776
  article-title: Inflammation 2010: new adventures of an old flame
  publication-title: Cell
– volume: 471
  start-page: 633
  year: 2011
  end-page: 636
  article-title: SHARPIN is a component of the NF‐kappaB‐activating linear ubiquitin chain assembly complex
  publication-title: Nature
– volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis
  publication-title: Science
– volume: 132
  start-page: 344
  year: 2008
  end-page: 362
  article-title: Shared principles in NF‐kappaB signaling
  publication-title: Cell
– volume: 81
  start-page: 495
  year: 1995
  end-page: 504
  article-title: The TNF receptor 1‐associated protein TRADD signals cell death and NF‐kappa B activation
  publication-title: Cell
– volume: 93
  start-page: 13973
  year: 1996
  end-page: 13978
  article-title: The tumor necrosis factor receptor 2 signal transducers TRAF2 and c‐IAP1 are components of the tumor necrosis factor receptor 1 signaling complex
  publication-title: Proc Natl Acad Sci USA
– volume: 223
  start-page: 186
  year: 2008
  end-page: 201
  article-title: Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways
  publication-title: Immunol Rev
– volume: 257
  start-page: 2537
  year: 1982
  end-page: 2542
  article-title: “Covalent affinity” purification of ubiquitin‐activating enzyme
  publication-title: J Biol Chem
– volume: 6
  start-page: e17477
  year: 2011
  article-title: Optineurin is required for CYLD‐dependent inhibition of TNFalpha‐induced NF‐kappaB activation
  publication-title: PLoS ONE
– volume: 385
  start-page: 729
  year: 1997
  end-page: 733
  article-title: A metalloproteinase disintegrin that releases tumour‐necrosis factor‐alpha from cells
  publication-title: Nature
– volume: 4
  start-page: 313
  year: 2008
  end-page: 321
  article-title: Identification of RIP1 kinase as a specific cellular target of necrostatins
  publication-title: Nat Chem Biol
– volume: 7
  start-page: 962
  year: 2006
  end-page: 970
  article-title: Key function for the Ubc13 E2 ubiquitin‐conjugating enzyme in immune receptor signaling
  publication-title: Nat Immunol
– volume: 37
  start-page: 937
  year: 2009
  end-page: 953
  article-title: The emerging complexity of protein ubiquitination
  publication-title: Biochem Soc Trans
– volume: 21
  start-page: 3357
  year: 2007
  end-page: 3364
  article-title: Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins
  publication-title: Rapid Commun Mass Spectrom
– volume: 11
  start-page: 123
  year: 2009
  end-page: 132
  article-title: Involvement of linear polyubiquitylation of NEMO in NF‐kappaB activation
  publication-title: Nat Cell Biol
– volume: 338
  start-page: 225
  year: 1989
  end-page: 228
  article-title: Structure of tumour necrosis factor
  publication-title: Nature
– volume: 10
  start-page: 348
  year: 2009
  end-page: 355
  article-title: Death receptor signal transducers: nodes of coordination in immune signaling networks
  publication-title: Nat Immunol
– volume: 280
  start-page: 40599
  year: 2005
  end-page: 40608
  article-title: Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor‐related apoptosis‐inducing ligand
  publication-title: J Biol Chem
– volume: 36
  start-page: 302
  year: 2009
  end-page: 314
  article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL‐1beta
  publication-title: Mol Cell
– volume: 15
  start-page: 443
  year: 1987
  end-page: 463
  article-title: The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily
  publication-title: Nucleic Acids Res
– volume: 87
  start-page: 401
  year: 2010
  end-page: 406
  article-title: Cancer and inflammation: implications for pharmacology and therapeutics
  publication-title: Clin Pharmacol Ther
– volume: 11
  start-page: 700
  year: 2010
  end-page: 714
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat Rev Mol Cell Biol
– volume: 21
  start-page: 22
  year: 2010
  end-page: 39
  article-title: Deubiquitinases in the regulation of NF‐kappaB signaling
  publication-title: Cell Res
– volume: 10
  start-page: 550
  year: 2009
  end-page: 563
  article-title: Breaking the chains: structure and function of the deubiquitinases
  publication-title: Nat Rev Mol Cell Biol
– volume: 33
  start-page: 775
  year: 2009
  end-page: 783
  article-title: Linkage‐specific avidity defines the lysine 63‐linked polyubiquitin‐binding preference of rap80
  publication-title: Mol Cell
– volume: 36
  start-page: 19
  year: 1981
  end-page: 43
  article-title: The theoretical basis of Paul Ehrlich’s chemotherapy
  publication-title: J Hist Med Allied Sci
– volume: 143
  start-page: 972
  year: 1993
  end-page: 982
  article-title: A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice
  publication-title: Am J Pathol
– volume: 73
  start-page: 431
  year: 1993
  end-page: 445
  article-title: Crystal structure of the soluble human 55 kd TNF receptor‐human TNF beta complex: implications for TNF receptor activation
  publication-title: Cell
– volume: 471
  start-page: 363
  year: 2011
  end-page: 367
  article-title: Catalytic activity of the caspase‐8‐FLIP(L) complex inhibits RIPK3‐dependent necrosis
  publication-title: Nature
– volume: 67
  start-page: 425
  year: 1998
  end-page: 479
  article-title: The ubiquitin system
  publication-title: Annu Rev Biochem
– volume: 30
  start-page: 689
  year: 2008
  end-page: 700
  article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
  publication-title: Mol Cell
– volume: 471
  start-page: 373
  year: 2011
  end-page: 376
  article-title: Functional complementation between FADD and RIP1 in embryos and lymphocytes
  publication-title: Nature
– volume: 141
  start-page: 315
  year: 2010
  end-page: 330
  article-title: Reconstitution of the RIG‐I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
  publication-title: Cell
– volume: 105
  start-page: 11778
  year: 2008
  end-page: 11783
  article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation
  publication-title: Proc Natl Acad Sci USA
– volume: 281
  start-page: 13636
  year: 2006
  end-page: 13643
  article-title: Ubiquitination of RIP is required for tumor necrosis factor alpha‐induced NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 430
  start-page: 694
  year: 2004
  end-page: 699
  article-title: De‐ubiquitination and ubiquitin ligase domains of A20 downregulate NF‐kappaB signalling
  publication-title: Nature
– volume: 15
  start-page: 6189
  year: 1996
  end-page: 6196
  article-title: RIP mediates tumor necrosis factor receptor 1 activation of NF‐kappaB but not Fas/APO‐1‐initiated apoptosis
  publication-title: EMBO J
– volume: 70
  start-page: 1265
  year: 2010
  end-page: 1274
  article-title: RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1
  publication-title: Cancer Res
– volume: 136
  start-page: 1098
  year: 2009
  end-page: 1109
  article-title: Specific recognition of linear ubiquitin chains by NEMO is important for NF‐kappaB activation
  publication-title: Cell
– volume: 22
  start-page: 433
  year: 2006
  end-page: 436
  article-title: If the prophet does not come to the mountain: dynamics of signaling complexes in NF‐kappaB activation
  publication-title: Mol Cell
– volume: 278
  start-page: 862
  year: 2011
  end-page: 876
  article-title: TNFR1‐induced activation of the classical NF‐kappaB pathway
  publication-title: FEBS J
– volume: 14
  start-page: 394
  year: 2008
  end-page: 407
  article-title: Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia‐induced NF‐kappaB activation
  publication-title: Cancer Cell
– volume: 114
  start-page: 181
  year: 2003
  end-page: 190
  article-title: Induction of TNF receptor I‐mediated apoptosis via two sequential signaling complexes
  publication-title: Cell
– volume: 6
  start-page: 776
  year: 2006
  end-page: 788
  article-title: Ubiquitin and ubiquitin‐like proteins in cancer pathogenesis
  publication-title: Nat Rev Cancer
– volume: 12
  start-page: 715
  year: 2011
  end-page: 723
  article-title: Inflammation meets cancer, with NF‐kappaB as the matchmaker
  publication-title: Nat Immunol
– volume: 424
  start-page: 793
  year: 2003
  end-page: 796
  article-title: CYLD is a deubiquitinating enzyme that negatively regulates NF‐kappaB activation by TNFR family members
  publication-title: Nature
– volume: 44
  start-page: 461
  year: 1944
  end-page: 476
  article-title: A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage‐producing bacterial polysaccharide
  publication-title: J Natl Cancer Inst
– volume: 27
  start-page: 629
  year: 2008
  end-page: 641
  article-title: Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐kappaB activation
  publication-title: EMBO J
– volume: 340
  start-page: 161
  year: 2010
  end-page: 167
  article-title: Newly identified tumor‐associated role of human Sharpin
  publication-title: Mol Cell Biochem
– volume: 53
  start-page: 45
  year: 1988
  end-page: 53
  article-title: A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF
  publication-title: Cell
– volume: 25
  start-page: 160
  year: 2000
  end-page: 165
  article-title: Identification of the familial cylindromatosis tumour‐suppressor gene
  publication-title: Nat Genet
– volume: 296
  start-page: 1634
  year: 2002
  end-page: 1635
  article-title: TNF‐R1 signaling: a beautiful pathway
  publication-title: Science
– volume: 17
  start-page: 253
  year: 2004
  end-page: 263
  article-title: Parkin and relatives: the RBR family of ubiquitin ligases
  publication-title: Physiol Genomics
– volume: 103
  start-page: 273
  year: 2000
  end-page: 282
  article-title: Insights into programmed cell death through structural biology
  publication-title: Cell
– volume: 431
  start-page: 351
  year: 1998
  end-page: 356
  article-title: Identification and functional characterization of DR6, a novel death domain‐containing TNF receptor
  publication-title: FEBS Lett
– volume: 12
  start-page: 301
  year: 2000
  end-page: 311
  article-title: Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation
  publication-title: Immunity
– volume: 47
  start-page: 67
  year: 1995
  end-page: 75
  article-title: TNF‐induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis
  publication-title: J Inflamm
– volume: 17
  start-page: 482
  year: 2010
  end-page: 487
  article-title: RIPK1 is not essential for TNFR1‐induced activation of NF‐kappaB
  publication-title: Cell Death Differ
– volume: 36
  start-page: 831
  year: 2009
  end-page: 844
  article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction
  publication-title: Mol Cell
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha
  publication-title: Cell
– volume: 29
  start-page: 4198
  year: 2010
  end-page: 4209
  article-title: c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling
  publication-title: EMBO J
– volume: 35
  start-page: 392
  year: 2010
  end-page: 399
  article-title: Ubiquitin chain cleavage: CYLD at work
  publication-title: Trends Biochem Sci
– volume: 471
  start-page: 591
  year: 2011
  end-page: 596
  article-title: Linear ubiquitination prevents inflammation and regulates immune signalling
  publication-title: Nature
– volume: 10
  start-page: 306
  year: 2009
  article-title: Journal club. A new ubiquitin chain, a new signal
  publication-title: Nat Rev Mol Cell Biol
– volume: 281
  start-page: 18482
  year: 2006
  end-page: 18488
  article-title: ABIN‐1 binds to NEMO/IKKgamma and co‐operates with A20 in inhibiting NF‐kappaB
  publication-title: J Biol Chem
– volume: 34
  start-page: 11
  year: 1983
  end-page: 12
  article-title: Ubiquitin: roles in protein modification and breakdown
  publication-title: Cell
– volume: 9
  start-page: 1037
  year: 2008
  end-page: 1046
  article-title: Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF‐dependent inflammatory responses
  publication-title: Nat Immunol
– volume: 7
  start-page: 4566
  year: 2008
  end-page: 4576
  article-title: Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry
  publication-title: J Proteome Res
– volume: 15
  start-page: 535
  year: 2004
  end-page: 548
  article-title: TAB 2 and TAB 3 activate the NF‐kappaB pathway through binding to polyubiquitin chains
  publication-title: Mol Cell
– volume: 454
  start-page: 436
  year: 2008
  end-page: 444
  article-title: Cancer‐related inflammation
  publication-title: Nature
– volume: 78
  start-page: 105
  year: 2009
  end-page: 114
  article-title: ABINs: A20 binding inhibitors of NF‐kappa B and apoptosis signaling
  publication-title: Biochem Pharmacol
– volume: 276
  start-page: 1
  year: 1953
  end-page: 103
  article-title: A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study
  publication-title: Acta Med Scand Suppl
– volume: 78
  start-page: 363
  year: 2009
  end-page: 397
  article-title: Regulation and cellular roles of ubiquitin‐specific deubiquitinating enzymes
  publication-title: Annu Rev Biochem
– volume: 27
  start-page: 3739
  year: 2008
  end-page: 3745
  article-title: Ubiquitin binding mediates the NF‐kappaB inhibitory potential of ABIN proteins
  publication-title: Oncogene
– volume: 13
  start-page: 2514
  year: 1999
  end-page: 2526
  article-title: Cleavage of the death domain kinase RIP by caspase‐8 prompts TNF‐induced apoptosis
  publication-title: Genes Dev
– volume: 61
  start-page: 1250
  year: 1968
  end-page: 1255
  article-title: Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin
  publication-title: Proc Natl Acad Sci USA
– volume: 264
  start-page: 17595
  year: 1989
  end-page: 17605
  article-title: The structure of tumor necrosis factor‐alpha at 2.6 A resolution. Implications for receptor binding
  publication-title: J Biol Chem
– volume: 176
  start-page: 6852
  year: 2006
  end-page: 6861
  article-title: The Fas‐associated death domain protein is required in apoptosis and TLR‐induced proliferative responses in B cells
  publication-title: J Immunol
– volume: 61
  start-page: 1546
  year: 2004
  end-page: 1561
  article-title: A field guide to ubiquitylation
  publication-title: Cell Mol Life Sci
– volume: 281
  start-page: 1305
  year: 1998
  end-page: 1308
  article-title: Death receptors: signaling and modulation
  publication-title: Science
– volume: 691
  start-page: 79
  year: 2011
  end-page: 88
  article-title: New perspectives in TNF‐R1‐induced NF‐kappaB signaling
  publication-title: Adv Exp Med Biol
– volume: 278
  start-page: 45924
  year: 2003
  end-page: 45930
  article-title: The crystal structure of C3stau2 from and its complex with NAD
  publication-title: J Biol Chem
– volume: 17
  start-page: 14
  year: 2009
  end-page: 24
  article-title: Regulation of death receptor signaling by the ubiquitin system
  publication-title: Cell Death Differ
– volume: 378
  start-page: 27
  year: 2004
  end-page: 34
  article-title: TAB 3, a new binding partner of the protein kinase TAK1
  publication-title: Biochem J
– volume: 9
  start-page: 865
  year: 2004
  end-page: 875
  article-title: Structural basis for distinct roles of Lys63‐ and Lys48‐linked polyubiquitin chains
  publication-title: Genes Cells
– volume: 400
  start-page: 8
  year: 2010
  end-page: 15
  article-title: Asymmetric recruitment of cIAPs by TRAF2
  publication-title: J Mol Biol
– volume: 4
  start-page: 387
  year: 1996
  end-page: 396
  article-title: TNF‐dependent recruitment of the protein kinase RIP to the TNF receptor‐1 signaling complex
  publication-title: Immunity
– volume: 424
  start-page: 801
  year: 2003
  end-page: 805
  article-title: The tumour suppressor CYLD negatively regulates NF‐kappaB signalling by deubiquitination
  publication-title: Nature
– volume: 26
  start-page: 3910
  year: 2007
  end-page: 3922
  article-title: Essential role for TAX1BP1 in the termination of TNF‐alpha‐, IL‐1‐ and LPS‐mediated NF‐kappaB and JNK signaling
  publication-title: EMBO J
– year: 2011
  article-title: Necroptosis: biochemical, physiological and pathological aspects
  publication-title: Pathol Oncol Res
– volume: 2
  start-page: 364
  year: 2002
  end-page: 371
  article-title: Development of anti‐TNF therapy for rheumatoid arthritis
  publication-title: Nat Rev Immunol
– volume: 8
  start-page: 398
  year: 2006
  end-page: 406
  article-title: Sensing of Lys 63‐linked polyubiquitination by NEMO is a key event in NF‐kappaB activation [corrected]
  publication-title: Nat Cell Biol
– volume: 46
  start-page: 389
  year: 1988
  end-page: 391
  article-title: Journal of the National Cancer Institute, Vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with polysaccharide, and induced tolerance
  publication-title: Nutr Rev
– volume: 33
  start-page: 602
  year: 2009
  end-page: 615
  article-title: Structural basis for recognition of diubiquitins by NEMO
  publication-title: Mol Cell
– volume: 471
  start-page: 637
  year: 2011
  end-page: 641
  article-title: SHARPIN forms a linear ubiquitin ligase complex regulating NF‐kappaB activity and apoptosis
  publication-title: Nature
– start-page: 21
  year: 1997
  end-page: 127
– volume: 7
  start-page: 758
  year: 2005
  end-page: 765
  article-title: Ubiquitin signalling in the NF‐kappaB pathway
  publication-title: Nat Cell Biol
– volume: 10
  start-page: 466
  year: 2009
  end-page: 473
  article-title: Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains
  publication-title: EMBO Rep
– volume: 72
  start-page: 3666
  year: 1975
  end-page: 3670
  article-title: An endotoxin‐induced serum factor that causes necrosis of tumors
  publication-title: Proc Natl Acad Sci USA
– volume: 283
  start-page: 24295
  year: 2008
  end-page: 24299
  article-title: c‐IAP1 and c‐IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)‐induced NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 5
  start-page: 1051
  year: 2000
  end-page: 1057
  article-title: Solution structure of N‐TRADD and characterization of the interaction of N‐TRADD and C‐TRAF2, a key step in the TNFR1 signaling pathway
  publication-title: Mol Cell
– volume: 284
  start-page: 35906
  year: 2009
  end-page: 35915
  article-title: TRAF2 must bind to cIAPs for TNF to efficiently activate NF‐{kappa}B and to prevent TNF‐induced apoptosis
  publication-title: J Biol Chem
– volume: 4
  start-page: 755
  year: 1985
  end-page: 759
  article-title: The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences
  publication-title: EMBO J
– volume: 67
  start-page: 1567
  year: 2010
  end-page: 1579
  article-title: Tumor necrosis factor‐mediated cell death: to break or to burst, that’s the question
  publication-title: Cell Mol Life Sci
– volume: 33
  start-page: 275
  year: 2009
  end-page: 286
  article-title: Nonproteolytic functions of ubiquitin in cell signaling
  publication-title: Mol Cell
– volume: 1
  start-page: 112
  year: 2005
  end-page: 119
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
– volume: 283
  start-page: 7036
  year: 2008
  end-page: 7045
  article-title: NF‐kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro‐inflammatory signaling
  publication-title: J Biol Chem
– volume: 283
  start-page: 18582
  year: 2008
  end-page: 18590
  article-title: Hydrogen peroxide prolongs nuclear localization of NF‐kappaB in activated cells by suppressing negative regulatory mechanisms
  publication-title: J Biol Chem
– volume: 6
  start-page: 205
  year: 1946
  end-page: 216
  article-title: The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research
  publication-title: Cancer Res
– ident: e_1_2_12_9_2
– ident: e_1_2_12_67_2
  doi: 10.1016/S1097-2765(00)80270-1
– ident: e_1_2_12_129_2
  doi: 10.1074/jbc.M109.042689
– ident: e_1_2_12_109_2
  doi: 10.1007/s12253-011-9433-4
– ident: e_1_2_12_122_2
  doi: 10.1038/nrm3143
– ident: e_1_2_12_133_2
  doi: 10.1371/journal.pone.0017477
– ident: e_1_2_12_38_2
  doi: 10.1016/S0021-9258(18)34957-3
– ident: e_1_2_12_81_2
  doi: 10.1038/ncb1384
– ident: e_1_2_12_44_2
  doi: 10.1126/science.2538923
– ident: e_1_2_12_82_2
  doi: 10.1074/jbc.M600620200
– ident: e_1_2_12_99_2
  doi: 10.1038/nrm2393
– ident: e_1_2_12_78_2
  doi: 10.1074/jbc.C800128200
– ident: e_1_2_12_29_2
  doi: 10.1073/pnas.61.4.1250
– ident: e_1_2_12_33_2
  doi: 10.1016/S0014-5793(98)00791-1
– ident: e_1_2_12_12_2
  doi: 10.1073/pnas.72.9.3666
– ident: e_1_2_12_55_2
  doi: 10.1038/nrm2767
– ident: e_1_2_12_75_2
  doi: 10.1016/j.jmb.2010.04.055
– ident: e_1_2_12_128_2
  doi: 10.1038/nature01802
– ident: e_1_2_12_145_2
  doi: 10.1007/s11010-010-0413-x
– ident: e_1_2_12_93_2
  doi: 10.1152/physiolgenomics.00226.2003
– volume: 6
  start-page: 205
  year: 1946
  ident: e_1_2_12_10_2
  article-title: The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research
  publication-title: Cancer Res
– ident: e_1_2_12_30_2
  doi: 10.1111/j.1600-065X.2008.00629.x
– ident: e_1_2_12_49_2
  doi: 10.1038/312663a0
– ident: e_1_2_12_104_2
  doi: 10.1038/nchembio.83
– ident: e_1_2_12_2_2
  doi: 10.1111/j.1742-4658.2011.08015.x
– ident: e_1_2_12_139_2
  doi: 10.1038/nature09852
– ident: e_1_2_12_28_2
  doi: 10.1038/385729a0
– ident: e_1_2_12_80_2
  doi: 10.1016/j.molcel.2006.03.026
– ident: e_1_2_12_126_2
  doi: 10.1074/jbc.M708690200
– ident: e_1_2_12_113_2
  doi: 10.1002/rcm.3227
– ident: e_1_2_12_142_2
  doi: 10.1016/S0014-5793(00)01212-6
– ident: e_1_2_12_25_2
  doi: 10.1016/0092-8674(88)90486-2
– ident: e_1_2_12_31_2
  doi: 10.1016/S0092-8674(00)00119-7
– ident: e_1_2_12_71_2
  doi: 10.1016/0092-8674(93)90132-A
– ident: e_1_2_12_66_2
  doi: 10.1016/0092-8674(95)90070-5
– volume: 276
  start-page: 1
  year: 1953
  ident: e_1_2_12_11_2
  article-title: A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study
  publication-title: Acta Med Scand Suppl
– ident: e_1_2_12_13_2
  doi: 10.1038/nrc2628
– ident: e_1_2_12_36_2
  doi: 10.1038/ni.1714
– ident: e_1_2_12_37_2
  doi: 10.1016/S0092-8674(03)01074-2
– ident: e_1_2_12_5_2
  doi: 10.1126/science.1071924
– ident: e_1_2_12_57_2
  doi: 10.1016/j.cell.2009.03.007
– ident: e_1_2_12_64_2
  doi: 10.1074/jbc.M309184200
– ident: e_1_2_12_96_2
  doi: 10.1038/nature09814
– ident: e_1_2_12_76_2
  doi: 10.1016/j.molcel.2010.03.009
– ident: e_1_2_12_6_2
  doi: 10.1038/nri1184
– ident: e_1_2_12_40_2
  doi: 10.1016/S0021-9258(20)82050-X
– ident: e_1_2_12_95_2
  doi: 10.1038/sj.gene.6364403
– ident: e_1_2_12_110_2
  doi: 10.1016/j.chom.2010.03.006
– ident: e_1_2_12_127_2
  doi: 10.1038/nature01803
– ident: e_1_2_12_39_2
  doi: 10.1016/0092-8674(83)90131-9
– ident: e_1_2_12_43_2
  doi: 10.1146/annurev.biochem.67.1.425
– ident: e_1_2_12_137_2
  doi: 10.1016/j.molcel.2011.06.011
– ident: e_1_2_12_18_2
  doi: 10.1038/nri802
– ident: e_1_2_12_8_2
  doi: 10.1007/978-1-4419-6612-4_8
– ident: e_1_2_12_136_2
  doi: 10.1016/j.tibs.2010.02.007
– ident: e_1_2_12_123_2
  doi: 10.1042/bj3570617
– ident: e_1_2_12_45_2
  doi: 10.1016/j.molcel.2009.01.014
– ident: e_1_2_12_72_2
  doi: 10.1016/S1074-7613(00)80252-6
– volume: 2
  start-page: 505
  year: 1913
  ident: e_1_2_12_14_2
  article-title: Chemotheraphy
  publication-title: Collected Papers
– ident: e_1_2_12_24_2
  doi: 10.1038/ni.2060
– volume: 44
  start-page: 461
  year: 1944
  ident: e_1_2_12_16_2
  article-title: A Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage‐producing bacterial polysaccharide
  publication-title: J Natl Cancer Inst
– ident: e_1_2_12_54_2
  doi: 10.1038/nrm2685
– ident: e_1_2_12_100_2
  doi: 10.1007/s00018-010-0283-0
– volume: 47
  start-page: 67
  year: 1995
  ident: e_1_2_12_101_2
  article-title: TNF‐induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis
  publication-title: J Inflamm
– ident: e_1_2_12_48_2
  doi: 10.1093/nar/15.2.443
– ident: e_1_2_12_107_2
  doi: 10.1016/j.cell.2009.05.021
– ident: e_1_2_12_102_2
  doi: 10.1038/nchembio711
– ident: e_1_2_12_60_2
  doi: 10.1038/nsmb.1873
– ident: e_1_2_12_61_2
  doi: 10.1042/BST0370937
– ident: e_1_2_12_92_2
  doi: 10.1016/j.cell.2010.03.029
– ident: e_1_2_12_146_2
  doi: 10.1038/76006
– ident: e_1_2_12_83_2
  doi: 10.1016/j.it.2006.07.003
– ident: e_1_2_12_22_2
  doi: 10.1038/clpt.2009.312
– ident: e_1_2_12_21_2
  doi: 10.1073/pnas.1100994108
– ident: e_1_2_12_51_2
  doi: 10.1002/j.1460-2075.1985.tb03693.x
– ident: e_1_2_12_105_2
  doi: 10.1038/nrm2970
– ident: e_1_2_12_114_2
  doi: 10.1038/cdd.2009.178
– ident: e_1_2_12_15_2
  doi: 10.1093/jhmas/XXXVI.1.19
– ident: e_1_2_12_32_2
  doi: 10.1126/science.281.5381.1305
– ident: e_1_2_12_74_2
  doi: 10.1074/jbc.M109.072256
– ident: e_1_2_12_86_2
  doi: 10.1038/sj.emboj.7601823
– ident: e_1_2_12_27_2
  doi: 10.1038/338225a0
– ident: e_1_2_12_117_2
  doi: 10.1073/pnas.0711122105
– ident: e_1_2_12_84_2
  doi: 10.1016/j.molcel.2004.08.008
– ident: e_1_2_12_59_2
  doi: 10.1016/j.molcel.2009.02.011
– ident: e_1_2_12_77_2
  doi: 10.1016/j.molcel.2008.05.014
– ident: e_1_2_12_89_2
  doi: 10.1021/cr800554j
– ident: e_1_2_12_46_2
  doi: 10.1128/MCB.15.3.1265
– ident: e_1_2_12_103_2
  doi: 10.1016/j.cell.2009.07.006
– ident: e_1_2_12_131_2
  doi: 10.1038/nrm2731
– ident: e_1_2_12_79_2
  doi: 10.1038/nature02794
– ident: e_1_2_12_7_2
  doi: 10.1038/sj.cdd.4401189
– ident: e_1_2_12_85_2
  doi: 10.1074/jbc.M601502200
– ident: e_1_2_12_52_2
  doi: 10.1016/j.molcel.2009.10.013
– ident: e_1_2_12_90_2
  doi: 10.1038/ncb0805-758
– ident: e_1_2_12_112_2
  doi: 10.1021/pr800468j
– ident: e_1_2_12_87_2
  doi: 10.1038/emboj.2008.5
– ident: e_1_2_12_125_2
  doi: 10.1074/jbc.M801312200
– ident: e_1_2_12_138_2
  doi: 10.4049/jimmunol.176.11.6852
– ident: e_1_2_12_19_2
  doi: 10.1002/jso.21081
– ident: e_1_2_12_47_2
  doi: 10.1038/sj.emboj.7601360
– ident: e_1_2_12_120_2
  doi: 10.1016/S1074-7613(00)80183-1
– ident: e_1_2_12_119_2
  doi: 10.1038/nsmb.1731
– ident: e_1_2_12_53_2
  doi: 10.1038/nature09816
– ident: e_1_2_12_63_2
  doi: 10.1111/j.1365-2443.2004.00780.x
– ident: e_1_2_12_144_2
  doi: 10.1158/0008-5472.CAN-09-2674
– ident: e_1_2_12_68_2
  doi: 10.1038/ni.1639
– ident: e_1_2_12_34_2
  doi: 10.1016/S0092-8674(03)00521-X
– ident: e_1_2_12_94_2
  doi: 10.1038/ncb1821
– ident: e_1_2_12_69_2
  doi: 10.1073/pnas.93.24.13973
– ident: e_1_2_12_62_2
  doi: 10.1038/embor.2009.55
– ident: e_1_2_12_140_2
  doi: 10.1038/nature09878
– ident: e_1_2_12_130_2
  doi: 10.1038/sj.onc.1211042
– ident: e_1_2_12_41_2
  doi: 10.1007/s00018-004-4129-5
– ident: e_1_2_12_134_2
  doi: 10.1016/j.cell.2010.03.006
– ident: e_1_2_12_4_2
  doi: 10.1016/j.molcel.2006.05.002
– ident: e_1_2_12_26_2
  doi: 10.1016/S0021-9258(18)71533-0
– ident: e_1_2_12_70_2
  doi: 10.1038/ni.1638
– ident: e_1_2_12_56_2
  doi: 10.1016/j.molcel.2009.01.012
– ident: e_1_2_12_97_2
  doi: 10.1038/nature09815
– ident: e_1_2_12_116_2
  doi: 10.1038/ni1367
– ident: e_1_2_12_23_2
  doi: 10.1038/nature07205
– ident: e_1_2_12_118_2
  doi: 10.1042/BJ20031794
– ident: e_1_2_12_42_2
  doi: 10.1038/nrc1994
– ident: e_1_2_12_35_2
  doi: 10.1074/jbc.M509560200
– ident: e_1_2_12_115_2
  doi: 10.1016/j.molcel.2009.10.002
– ident: e_1_2_12_88_2
  doi: 10.1038/cdd.2009.168
– ident: e_1_2_12_108_2
  doi: 10.1126/science.1172308
– ident: e_1_2_12_135_2
  doi: 10.1038/nature10273
– ident: e_1_2_12_147_2
  doi: 10.1016/j.ccr.2008.10.007
– ident: e_1_2_12_17_2
  doi: 10.1111/j.1753-4887.1988.tb05376.x
– ident: e_1_2_12_91_2
  doi: 10.1038/nature08247
– ident: e_1_2_12_143_2
  doi: 10.1016/j.cellsig.2007.05.016
– ident: e_1_2_12_65_2
  doi: 10.1038/nchembio.426
– ident: e_1_2_12_20_2
  doi: 10.1007/s11864-007-0044-y
– ident: e_1_2_12_121_2
  doi: 10.1038/cr.2010.166
– ident: e_1_2_12_124_2
  doi: 10.1074/jbc.M307719200
– ident: e_1_2_12_141_2
  doi: 10.1101/gad.13.19.2514
– ident: e_1_2_12_58_2
  doi: 10.1038/emboj.2010.300
– ident: e_1_2_12_106_2
  doi: 10.1016/j.cell.2009.05.037
– ident: e_1_2_12_132_2
  doi: 10.1016/j.bcp.2009.02.009
– ident: e_1_2_12_73_2
  doi: 10.1002/j.1460-2075.1996.tb01007.x
– ident: e_1_2_12_111_2
  doi: 10.1016/j.cell.2008.10.044
– ident: e_1_2_12_50_2
  doi: 10.1146/annurev.biochem.78.082307.091526
– ident: e_1_2_12_3_2
  doi: 10.1016/j.cell.2008.01.020
– volume: 143
  start-page: 972
  year: 1993
  ident: e_1_2_12_98_2
  article-title: A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice
  publication-title: Am J Pathol
SSID ssj0017324
Score 2.4697423
SecondaryResourceType review_article
Snippet Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Apoptosis - genetics
Apoptosis - immunology
apoptosis/autophagy
Autophagy - genetics
Autophagy - immunology
cytokines
cytotoxicity
Humans
Immunity, Innate
Inflammation - genetics
Inflammation - immunology
Inflammation - metabolism
Neoplasms - genetics
Neoplasms - immunology
Neoplasms - metabolism
Protein Binding - genetics
Receptors, Tumor Necrosis Factor, Type I - genetics
Receptors, Tumor Necrosis Factor, Type I - immunology
Receptors, Tumor Necrosis Factor, Type I - metabolism
Receptors, Tumor Necrosis Factor, Type II - genetics
Receptors, Tumor Necrosis Factor, Type II - immunology
Receptors, Tumor Necrosis Factor, Type II - metabolism
signal transduction
Signal Transduction - genetics
Signal Transduction - immunology
signaling proteins
Transcriptional Activation - immunology
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - immunology
Tumor Necrosis Factor-alpha - metabolism
Ubiquitin - genetics
Ubiquitin - immunology
Ubiquitin - metabolism
Ubiquitination - genetics
Ubiquitination - immunology
Title TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer
URI https://api.istex.fr/ark:/67375/WNG-J2FXH3GW-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01066.x
https://www.ncbi.nlm.nih.gov/pubmed/22017428
https://www.proquest.com/docview/900634802
Volume 244
WOSCitedRecordID wos000297507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-065X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017324
  issn: 0105-2896
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6abAO9JH2krZs26FB6isuurId1LE3cB-lSQkL2UBC2HrA08bb7KMm_74ztmC7kEEJvBjOSPfpG-kbSzAC8zULkgWoAujwOU2HQQTFCxdQjlZCZz1R0TRLXYz0e55OJ-d7df6JYmDY_RL_hRpbRzNdk4GW1WDdyRVHRSk66TJzo3aj3yCcHHGGMmB8cnhRnx_2Zgs54m-l7KFN0M9T6vZ5b21pbrAak96vbmOg6sW1WpmLnf_7TY9ju-Cn70ALqCTwI9VPYaitWXj-DH6fjgpW1Z6tq-ns1XU5rVi4ZkkjW_sGs9As2iwxhGRjFTLQ7vgeMDgiYJ755wBDUiMPL7g215gh78104K45OP35OuwINqROaq9Sh7yRL6ZACCJe7KrqoKoEzlhLO5DGGkYhEaOSoEl7HzBsjuaf4VyGyoH32HDbrWR1eAqPiRRTuFySvyGfLsYfKGcrWH8IomgT0zUhY12UvpyIaF_YfLwZ1Z0l3lnRnG93ZqwRGveSvNoPHHWTeNYPdC5Tzn3QDTkt7Pv5kv_KC5qhzmyfAbtBg0S5Jl2UdZquFNUT-RD7kCbxoUdI3xrErjW5fAqoBw50_y375dkJPr-4ruAePmj3xJpbyNWwu56vwBh66P8vpYr4PG3qS73dm8xd0MQ-X
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Vu0X0UsqrpFDwAXFq0G5iO_ERAWkL2whVW3UPSFbih7SizdJ9oPLvO5OkESv1UKHeIkW2k_E39jdjzwzA-9j5yFENQJP6QcgVGiiKSx9apBIitrH0pk7iOkryPJ1M1I-2HBDFwjT5ITqHG2lGvV6TgpNDel3LJYVFSzFpU3GieSM_IqHsc0QV70H_y2l2NuoOFZI4alJ9D0SIdoZcv9hzZ19ru1WfBH99FxVdZ7b11pQ9edCf2oHtlqGyTw2knsKGq57Bo6Zm5d_n8HOcZ6yoLFuV06vVdDmtWLFkSCNZ8wuzwi7YzDMEpmMUNdH4fA8YHREwS4zzgCGsEYmX7RvqzRD65i_gLPs6_nwUtiUaQsOTSIYGrSdRCIMkgJvUlN54WXJcsyQ3KvXeDbknSiOGJbeJj61SIrIUAct57BIbv4ReNavcK2BUvogC_pyISrLaUhyhNIry9Ts39CqA5HYqtGnzl1MZjQv9jx2DstMkO02y07Xs9HUAw67l7yaHxz3afKhnu2tQzH_RHbhE6PP8UH-LMlqlznUaALuFg0bNJFkWlZutFloR_ePpIApgt4FJ11mEQyVo-AUgazTc-7P08ckpPe39b8N38PhofDLSo-P8-2vYqj3kdWTlG-gt5yu3D5vmz3K6mL9ttecGbCESnw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hXah6oYWWNvSBD1VPpNpNbCc-Imha2m2EEIg9VLISP6RV2yzsA8G_ZyYJUVfigKreIkVjJ-Nv7G9szwzAh9j5yFENQJP6QcgVOiiKSx9apBIitrH0pk7iOkryPB2P1UlbDohiYZr8EN2GG1lGPV-TgbtL61etXFJYtBTjNhUnujfyExLKPhdIzHvQPzrNzkfdoUISR02q74EI0c-Qqxd7HmxrZbXqk-JvHqKiq8y2XpqyZ__1p57DZstQ2UEDqS1Yc9U2bDQ1K29fwM-zPGNFZdmynFwtJ4tJxYoFQxrJml-YFnbOpp4hMB2jqIlmz3ef0REBs8Q49xnCGpH4p31DrRlC3-wlnGefzw6_hm2JhtDwJJKhQe9JFMIgCeAmNaU3XpYc5yzJjUq9d0PuidKIYclt4mOrlIgsRcByHrvExjvQq6aVew2MyhdRwJ8TUUleW4o9lEZRvn7nhl4FkNwPhTZt_nIqo_Fb_-XHoO406U6T7nStO30TwLCTvGxyeDxC5mM92p1AMftFd-ASoS_yL_pblNEsdaHTANg9HDRaJumyqNx0OdeK6B9PB1EArxqYdI1F2FWCjl8AskbDoz9LH_84pafdfxXcgycnR5keHeff38DTeoO8Dqx8C73FbOnewbq5Xkzms_et8dwB16wSGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TNF+and+ubiquitin+at+the+crossroads+of+gene+activation%2C+cell+death%2C+inflammation%2C+and+cancer&rft.jtitle=Immunological+reviews&rft.au=Walczak%2C+Henning&rft.date=2011-11-01&rft.issn=1600-065X&rft.eissn=1600-065X&rft.volume=244&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01066.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon