Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes

Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyze...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 61; no. 42; pp. e202211853 - n/a
Main Authors: Wang, Yan‐Fang, Yao, Huan, Yang, Liu‐Pan, Quan, Mao, Jiang, Wei
Format: Journal Article
Language:English
Published: WEINHEIM Wiley 17.10.2022
Wiley Subscription Services, Inc
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Methylene‐bridged naphthotubes have been successfully developed. The three‐membered naphthotubes possess a rigid and well‐defined cavity, while four‐membered naphthotubes possess a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. They show quite strong binding affinities (up to 108 M−1) to organic cations and can be used as chirality sensors for chiral organic cations.
AbstractList Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Methylene‐bridged naphthotubes have been successfully developed. The three‐membered naphthotubes possess a rigid and well‐defined cavity, while four‐membered naphthotubes possess a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. They show quite strong binding affinities (up to 108 M−1) to organic cations and can be used as chirality sensors for chiral organic cations.
Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10⁸ M⁻¹) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10 8  M −1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10(8) M-1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108  M-1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108  M-1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10  M ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
ArticleNumber 202211853
Author Yang, Liu‐Pan
Quan, Mao
Wang, Yan‐Fang
Jiang, Wei
Yao, Huan
Author_xml – sequence: 1
  givenname: Yan‐Fang
  surname: Wang
  fullname: Wang, Yan‐Fang
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Huan
  surname: Yao
  fullname: Yao, Huan
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Liu‐Pan
  surname: Yang
  fullname: Yang, Liu‐Pan
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Mao
  surname: Quan
  fullname: Quan, Mao
  email: quanm@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-7683-5811
  surname: Jiang
  fullname: Jiang, Wei
  email: jiangw@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36042003$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH9gyxJFYoMEGfwTx85yiApUaotEYR05zvWMq4w9tR2h7HgEnpEnwelMi1QJlY19JX_n2L73HGcH1lnIspcYLTBC5L20BhYEEYKxYPRJdoQZwQXlnB6kuqS04ILhw-w4hOvEC4GqZ9khrVBJEKJHWbyabFxDMOFd3jirzWr0Mhpn5ZAv0zLdnly4AdQ4SJ9_BeVW1sxELm2fN2vj5WDilF-BDcaucqfzC4jraQALv3_--uBNv4I-v5TbdVy7OHYQnmdPtRwCvNjvJ9n3j6ffms_F-ZdPZ83yvFAlJ7SQmolKCAZ1zTiDSpCyp2UNpOqRYkJrIXpSAmKclwJ3pdJa1rTToqsV4-l7J9mbne_Wu5sRQmw3JigYBmnBjaElAuNa1IjRx1GOBKcMk9n19QP02o0-9WqmCCWcoZon6tWeGrsN9O3Wm430U3vX-gSIHfADOqeDMmAV3GMIoTRPTIlIFcKNibdTadxoY5K-_X9possdrbwLwYNu1d4temmGFqN2jlI7R6m9j1KSLR7I7i74p6Dev8oMMD1Ct8vLs9O_2j_s7tnM
CitedBy_id crossref_primary_10_1002_anie_202409790
crossref_primary_10_1002_anie_202310115
crossref_primary_10_1002_ange_202400767
crossref_primary_10_1039_D4SC05236F
crossref_primary_10_1039_D4RA09021G
crossref_primary_10_1002_idm2_12117
crossref_primary_10_1016_j_ccr_2024_215762
crossref_primary_10_1002_ange_202424276
crossref_primary_10_1002_chem_202203030
crossref_primary_10_1039_D4CE01320D
crossref_primary_10_1002_chem_202404217
crossref_primary_10_1002_chem_202401625
crossref_primary_10_1002_anie_202217971
crossref_primary_10_1007_s11426_025_2659_3
crossref_primary_10_1002_anie_202305214
crossref_primary_10_3390_molecules29174142
crossref_primary_10_1039_D4SC02814G
crossref_primary_10_1002_agt2_628
crossref_primary_10_1002_ange_202409790
crossref_primary_10_1093_chemle_upae184
crossref_primary_10_1002_ange_202310115
crossref_primary_10_1002_anie_202424276
crossref_primary_10_1039_D3SC06349F
crossref_primary_10_1039_D3QM00540B
crossref_primary_10_1039_D5CS00100E
crossref_primary_10_1002_ange_202217971
crossref_primary_10_1002_ange_202305214
crossref_primary_10_1039_D3QO00258F
crossref_primary_10_1002_adfm_202303339
crossref_primary_10_1039_D5TA02670A
crossref_primary_10_1002_anie_202400767
Cites_doi 10.1002/ange.202202527
10.1021/acs.joc.6b00252
10.1002/ange.202201258
10.1002/anie.202000909
10.1002/anie.201210267
10.1002/anie.202117872
10.1002/ange.201905563
10.1002/anie.201803349
10.6023/cjoc201612033
10.1002/ange.201813972
10.1002/ange.202003423
10.1021/ja047639d
10.1039/C8CC04195D
10.1021/jacsau.1c00343
10.1039/C4SC02422B
10.1021/cr040675a
10.1002/ange.202011566
10.1007/978-3-319-31867-7
10.1038/s41557-019-0235-8
10.1002/anie.202108209
10.1039/D1SC02199K
10.1021/acs.orglett.1c02800
10.1002/anie.201813972
10.1021/acs.orglett.2c00819
10.1002/anie.202003423
10.1002/ange.201913340
10.1002/anie.202204589
10.1007/1-4020-3687-6
10.1002/chem.201204097
10.1002/ange.201913055
10.1039/D1SC04728K
10.1002/anie.202202527
10.1021/jacs.7b10767
10.1002/ange.201910318
10.1039/D0CS00341G
10.1002/anie.201805980
10.1021/acs.accounts.9b00415
10.1039/C9CC06154A
10.1002/chem.202201743
10.31635/ccschem.021.202101036
10.1002/anie.201711077
10.1039/D1CC00916H
10.1039/C6CC00349D
10.1002/anie.201905563
10.1002/ange.201803349
10.1021/acs.chemrev.5b00765
10.1021/acs.orglett.7b01511
10.1021/acs.orglett.7b04045
10.1021/ja00986a052
10.1080/10610278.2022.2039653
10.1002/ange.201600911
10.1002/anie.202011566
10.1021/acs.joc.0c01558
10.1021/jacs.0c00624
10.1002/ange.202117872
10.1021/jacs.9b12216
10.1021/jacs.7b05021
10.1039/D2SC01782B
10.1021/acs.accounts.2c00043
10.1002/anie.201913055
10.1002/ange.202102701
10.1002/ange.202000909
10.1002/9783527621484
10.31635/ccschem.021.202101178
10.1002/ange.201210267
10.1021/ja711260m
10.1021/acs.accounts.8b00268
10.1002/anie.199507131
10.6023/cjoc202005007
10.1021/acs.joc.5b00099
10.1038/s41467-021-26729-3
10.1002/ange.201711077
10.1002/anie.202201258
10.1021/acs.orglett.5b01871
10.1021/jacs.9b03559
10.1002/ange.19951070704
10.1002/ange.202108209
10.1002/smll.202003490
10.1021/acs.orglett.6b01842
10.1021/ja064776x
10.1021/acs.accounts.8b00255
10.1002/anie.201913340
10.1002/ange.202204589
10.31635/ccschem.021.202100870
10.1002/anie.201600911
10.1002/anie.202102701
10.1039/C5NJ03616J
10.1002/anie.201910318
10.1039/c2cc36027f
10.1002/ange.201805980
10.6023/cjoc202100035
10.1039/c5nj03616j
10.1002/anie.202117273
10.1039/d2sc01782b
10.1039/c6cc00349d
10.1039/d1sc02199k
10.1039/d1cc00916h
10.1039/c4sc02422b
10.1039/d0cs00341g
10.1039/d1sc04728k
10.1002/anie.202202559
10.1039/c8cc04195d
10.1039/c9cc06154a
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7S9
L.6
DOI 10.1002/anie.202211853
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
ProQuest Health & Medical Complete (Alumni)
Web of Science
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36042003
000853132800001
10_1002_anie_202211853
ANIE202211853
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22125105; 22101125
– fundername: Shenzhen "Pengcheng Scholar", Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: JCYJ20180504165810828
– fundername: Guangdong HighLevel Personnel of Special Support Program
  grantid: 2019TX05C157
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22125105; 22101125
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c4723-af586885e99575e6824d349e26d0c58ff88d24e0577481b4cffa93bf8b9c57003
IEDL.DBID DRFUL
ISICitedReferencesCount 48
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000853132800001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 18:33:31 EDT 2025
Sun Nov 09 13:18:26 EST 2025
Tue Oct 07 07:29:09 EDT 2025
Thu Apr 03 07:00:31 EDT 2025
Fri Dec 05 22:41:14 EST 2025
Tue Oct 28 00:14:20 EDT 2025
Tue Nov 18 22:11:13 EST 2025
Sat Nov 29 02:36:50 EST 2025
Wed Jan 22 16:23:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords Host-Guest Chemistry
BIS-NAPHTHALENE
Naphthotubes
Chirality Sensing
CAVITY
COMPLEXES
Macrocycles
Molecular Recognition
MACROCYCLIC HOSTS
CALIXARENES
FAMILY
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4723-af586885e99575e6824d349e26d0c58ff88d24e0577481b4cffa93bf8b9c57003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7683-5811
0009-0005-4890-0651
PMID 36042003
PQID 2723275097
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2811989053
wiley_primary_10_1002_anie_202211853_ANIE202211853
webofscience_primary_000853132800001CitationCount
proquest_miscellaneous_2708735120
crossref_citationtrail_10_1002_anie_202211853
webofscience_primary_000853132800001
proquest_journals_2723275097
pubmed_primary_36042003
crossref_primary_10_1002_anie_202211853
PublicationCentury 2000
PublicationDate October 17, 2022
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: October 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2004; 126
2021; 23
2019; 55
2019; 11
2020 2020; 59 132
2020; 16
2022; 24
2015; 80
2022; 28
2013 2013; 52 125
2013; 19
2022 2022; 61 134
2021; 33
2020; 53
2017; 37
2018 2018; 57 130
2020; 49
2016; 40
2016; 116
2016; 81
2021; 41
2006; 128
1988
2015; 6
2015; 17
2018; 140
2021; 3
2020; 85
2020; 40
2020; 142
1967; 89
2008
2016; 52
2005
2021; 1
2016; 18
2019; 141
2018; 20
2019 2019; 58 131
2017; 139
2021; 57
2016 2016; 55 128
2021; 12
2022; 4
1995 1995; 34 107
2021 2021; 60 133
2022; 13
2016
2017; 19
2018; 51
2022; 55
2012; 48
2018; 54
2006; 106
2008; 130
e_1_2_7_3_2
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_3
e_1_2_7_15_2
Abraham R. J. (e_1_2_7_85_1) 1988
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_87_3
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_49_2
(e_1_2_7_59_3) 2022; 134
e_1_2_7_90_1
e_1_2_7_71_2
e_1_2_7_71_3
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_3
e_1_2_7_16_2
e_1_2_7_82_1
e_1_2_7_40_2
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
(e_1_2_7_89_2) 2022; 134
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_32_3
e_1_2_7_55_3
e_1_2_7_78_3
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_5_1
e_1_2_7_9_2
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_43_3
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_2
(e_1_2_7_57_3) 2022; 134
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_73_3
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_77_3
e_1_2_7_39_2
e_1_2_7_39_3
e_1_2_7_6_1
e_1_2_7_2_2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_80_2
e_1_2_7_14_3
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_42_1
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_88_2
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_72_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_53_3
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_38_2
(e_1_2_7_60_2) 2022; 134
Guo, MJ (WOS:000422813300019) 2018; 140
Quan, M (WOS:000790023400001) 2022; 61
Wang, YM (WOS:000484981000018) 2019; 55
Fang, S (WOS:000794325100001) 2022; 13
Ke, H (WOS:000465518600014) 2019; 11
Pfeuffer-Rooschüz, J (WOS:000730355700007) 2021; 1
Cheng, XJ (WOS:000321298800041) 2013; 52
Han, X (WOS:000820402300001) 2022; 61
Wang, LL (WOS:000404809600014) 2017; 139
Yang, WW (WOS:000508248800001) 2020; 59
Zhang, GW (WOS:000374564300034) 2016; 55
Li (000853132800001.15) 2019; 131
PEDERSEN, CJ (WOS:A1967A393800035) 1967; 89
Chao, Y (WOS:000789997500001) 2022; 61
Zhang, ZY (WOS:000771914800011) 2022; 55
(000853132800001.41) 2021; 133
Ma, YL (WOS:000810728900016) 2022; 4
Li, Q (WOS:000381847500022) 2016; 18
Jäkel, C (WOS:000238973000013) 2006; 106
Xu, K (000853132800001.17) 2020; 132
Han, X.-N. (000853132800001.63) 2022; 134
(000853132800001.52) 2018; 130
Xu, KD (WOS:000526818900037) 2020; 59
Wang, YL (WOS:000476452700040) 2019; 58
Li, J (WOS:000569376800039) 2020; 85
Jie, KC (WOS:000445441200018) 2018; 51
Cui, JS (WOS:000435766800040) 2018; 57
Han, XN (WOS:000535173500027) 2020; 142
BOHMER, V (WOS:A1995QU30500001) 1995; 34
Neri, P. (000853132800001.5) 2016
Chao, Y (000853132800001.58) 2022; 134
Diederich, F. (000853132800001.2) 2008
Wang, XP (WOS:000545930500012) 2020; 49
Chao, Y (WOS:000766475900001) 2021; 33
Zhao, YY (WOS:000722647100001) 2021; 12
Boinski, T (WOS:000352463100013) 2015; 80
Ma (000853132800001.75) 2018; 130
Zhou (000853132800001.61) 2022; 134
Lei (000853132800001.55) 2020; 132
Ogoshi, T (WOS:000254933000011) 2008; 130
Zhai, C (WOS:000841527700001) 2022; 28
Yang, LP (WOS:000558775000001) 2020; 59
Ma, YL (WOS:000419594700015) 2018; 57
(000853132800001.38) 2020; 132
Yao, H (WOS:000401297800006) 2017; 37
Huang, GB (WOS:000379431000024) 2016; 52
Bohmer (000853132800001.7) 1995; 107
Zhang (000853132800001.26) 2016; 128
Gloe, K. (000853132800001.1) 2005
Wang, YF (WOS:000669363500039) 2021; 41
Chen, CF (WOS:000445441200021) 2018; 51
Li, B (WOS:000462680700035) 2019; 58
Zafrani, Y (WOS:000406356500009) 2017; 19
Cui (000853132800001.79) 2018; 130
Yang, LP (WOS:000509420300017) 2020; 53
Han, XN (WOS:000714754400049) 2021; 12
He, ZF (WOS:000359393800061) 2015; 17
Della Sala, P (WOS:000510531900018) 2020; 142
(000853132800001.13) 2019; 131
Hua, B (WOS:000375586400092) 2016; 40
Shorthill, BJ (WOS:000224357700011) 2004; 126
Wang, JQ (WOS:000632509700001) 2021; 57
Du, XS (WOS:000648095000001) 2021; 60
Della Sala, P (WOS:000662328800001) 2021; 12
Del Regno, R (WOS:000716793100006) 2021; 23
Wang, LL (WOS:000578273200001) 2020; 59
Huang, WH (WOS:000242021700005) 2006; 128
Chai, HX (WOS:000442118800025) 2018; 54
Kumar, P (WOS:000426804200009) 2018; 20
Lei, SN (WOS:000506705200001) 2020; 59
Quan, ZY (WOS:000750924000001) 2022; 61
Chen, HQ (WOS:000345901600018) 2015; 6
Du (000853132800001.43) 2021; 133
Abraham, R.J. (000853132800001.86) 1988
Yu, XK (WOS:000794318300032) 2022; 4
Ogoshi, T (WOS:000380730100006) 2016; 116
Li, J (WOS:000598969200014) 2020; 40
Zheng, LS (WOS:000485592500001) 2019; 58
Yang, P (WOS:000373520200029) 2016; 81
Li, J (WOS:000689685500001) 2021; 60
Hu, XB (WOS:000309840400019) 2012; 48
Del Regno, R (WOS:000791817200025) 2022; 24
Zhou, HY (WOS:000757798700001) 2022; 61
Han, XN (WOS:000794257100026) 2022; 4
Wu, JR (WOS:000439741900048) 2018; 57
Yang (000853132800001.31) 2020; 132
Wu, JR (WOS:000480497100019) 2019; 141
Wu, JR (WOS:000550885400001) 2020; 16
(000853132800001.73) 2020; 132
Zheng (000853132800001.81) 2019; 131
Schneebeli, ST (WOS:000316009800012) 2013; 19
References_xml – volume: 54
  start-page: 7677
  year: 2018
  end-page: 7680
  publication-title: Chem. Commun.
– volume: 59 132
  start-page: 10059 10145
  year: 2020 2020
  end-page: 10065 10151
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 3994 4023
  year: 2020 2020
  end-page: 3999 4028
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2005
– volume: 55
  start-page: 10924
  year: 2019
  end-page: 10927
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 3885 3925
  year: 2019 2019
  end-page: 3889 3929
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 10281 10387
  year: 2019 2019
  end-page: 10284 10390
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 8436
  year: 2017
  end-page: 8439
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 709 717
  year: 2018 2018
  end-page: 713 721
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 15136 15280
  year: 2019 2019
  end-page: 15141 15285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 9078
  year: 2016
  end-page: 9081
  publication-title: Chem. Commun.
– volume: 11
  start-page: 470
  year: 2019
  end-page: 477
  publication-title: Nat. Chem.
– volume: 141
  start-page: 12280
  year: 2019
  end-page: 12287
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 4176
  year: 2020
  end-page: 4188
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2064
  year: 2018
  end-page: 2072
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 4020
  year: 2016
  end-page: 4023
  publication-title: Org. Lett.
– volume: 40
  start-page: 3714
  year: 2020
  end-page: 3737
  publication-title: Chin. J. Org. Chem.
– volume: 85
  start-page: 11465
  year: 2020
  end-page: 11474
  publication-title: J. Org. Chem.
– volume: 142
  start-page: 1752
  year: 2020
  end-page: 1756
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6378
  year: 2021
  publication-title: Nat. Commun.
– volume: 140
  start-page: 74
  year: 2018
  end-page: 77
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 198
  year: 2020
  end-page: 208
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 7214 7281
  year: 2020 2020
  end-page: 7218 7285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 4756
  year: 2016
  end-page: 4760
  publication-title: New J. Chem.
– volume: 41
  start-page: 2141
  year: 2021
  end-page: 2142
  publication-title: Chin. J. Org. Chem.
– volume: 116
  start-page: 7937
  year: 2016
  end-page: 8002
  publication-title: Chem. Rev.
– volume: 55
  start-page: 916
  year: 2022
  end-page: 929
  publication-title: Acc. Chem. Res.
– volume: 55 128
  start-page: 5304 5390
  year: 2016 2016
  end-page: 5308 5394
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 603
  year: 2017
  end-page: 607
  publication-title: Chin. J. Org. Chem.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 12
  start-page: 15528
  year: 2021
  end-page: 15532
  publication-title: Chem. Sci.
– year: 2008
– volume: 57
  start-page: 3987
  year: 2021
  end-page: 3990
  publication-title: Chem. Commun.
– volume: 33
  start-page: 442
  year: 2021
  end-page: 449
  publication-title: Supramol. Chem.
– volume: 60 133
  start-page: 13021 13131
  year: 2021 2021
  end-page: 13028 13138
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 197
  year: 2015
  end-page: 202
  publication-title: Chem. Sci.
– volume: 106
  start-page: 2912
  year: 2006
  end-page: 2942
  publication-title: Chem. Rev.
– volume: 28
  year: 2022
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 318
  year: 2022
  end-page: 330
  publication-title: CCS Chem.
– volume: 1
  start-page: 1885
  year: 2021
  end-page: 1891
  publication-title: JACS Au
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 23817 24025
  year: 2020 2020
  end-page: 23824 24032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1295
  year: 2018
  end-page: 1299
  publication-title: Org. Lett.
– volume: 142
  start-page: 8262
  year: 2020
  end-page: 8269
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 21927 22098
  year: 2021 2021
  end-page: 21933 22104
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 80
  start-page: 3488
  year: 2015
  end-page: 3495
  publication-title: J. Org. Chem.
– volume: 128
  start-page: 14744
  year: 2006
  end-page: 14745
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 10999
  year: 2012
  end-page: 11001
  publication-title: Chem. Commun.
– volume: 34 107
  start-page: 713 785
  year: 1995 1995
  end-page: 745 818
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 3
  start-page: 1945
  year: 2021
  end-page: 1953
  publication-title: CCS Chem.
– volume: 13
  start-page: 6254
  year: 2022
  end-page: 6261
  publication-title: Chem. Sci.
– volume: 17
  start-page: 3880
  year: 2015
  end-page: 3883
  publication-title: Org. Lett.
– volume: 126
  start-page: 12732
  year: 2004
  end-page: 12733
  publication-title: J. Am. Chem. Soc.
– year: 2016
– volume: 19
  start-page: 3719
  year: 2017
  end-page: 3722
  publication-title: Org. Lett.
– volume: 57 130
  start-page: 7809 7935
  year: 2018 2018
  end-page: 7814 7940
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 2711
  year: 2022
  end-page: 2715
  publication-title: Org. Lett.
– volume: 51
  start-page: 2093
  year: 2018
  end-page: 2106
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 2143
  year: 2021
  end-page: 2155
  publication-title: CCS Chem.
– volume: 89
  start-page: 2495
  year: 1967
  end-page: 2496
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3860
  year: 2013
  end-page: 3868
  publication-title: Chem. Eur. J.
– volume: 23
  start-page: 8143
  year: 2021
  end-page: 8146
  publication-title: Org. Lett.
– volume: 52 125
  start-page: 7252 7393
  year: 2013 2013
  end-page: 7255 7396
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1988
– volume: 57 130
  start-page: 9853 10001
  year: 2018 2018
  end-page: 9858 10006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 5022
  year: 2008
  end-page: 5023
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 15794 15926
  year: 2020 2020
  end-page: 15796 15928
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 9952
  year: 2021
  end-page: 9961
  publication-title: Chem. Sci.
– volume: 81
  start-page: 2974
  year: 2016
  end-page: 2980
  publication-title: J. Org. Chem.
– volume: 134
  start-page: e202202527
  year: 2022
  ident: e_1_2_7_60_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202202527
– ident: e_1_2_7_51_2
  doi: 10.1021/acs.joc.6b00252
– volume: 134
  start-page: e202201258
  year: 2022
  ident: e_1_2_7_89_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202201258
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.202000909
– ident: e_1_2_7_87_2
  doi: 10.1002/anie.201210267
– ident: e_1_2_7_59_2
  doi: 10.1002/anie.202117872
– ident: e_1_2_7_14_3
  doi: 10.1002/ange.201905563
– ident: e_1_2_7_77_2
  doi: 10.1002/anie.201803349
– ident: e_1_2_7_81_2
  doi: 10.6023/cjoc201612033
– ident: e_1_2_7_8_1
– ident: e_1_2_7_15_3
  doi: 10.1002/ange.201813972
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.202003423
– ident: e_1_2_7_64_1
  doi: 10.1021/ja047639d
– ident: e_1_2_7_30_1
– ident: e_1_2_7_67_2
  doi: 10.1039/C8CC04195D
– ident: e_1_2_7_45_1
  doi: 10.1021/jacsau.1c00343
– ident: e_1_2_7_13_2
  doi: 10.1039/C4SC02422B
– ident: e_1_2_7_90_1
  doi: 10.1021/cr040675a
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.202011566
– ident: e_1_2_7_6_1
  doi: 10.1007/978-3-319-31867-7
– ident: e_1_2_7_74_2
  doi: 10.1038/s41557-019-0235-8
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.202108209
– ident: e_1_2_7_33_2
  doi: 10.1039/D1SC02199K
– ident: e_1_2_7_34_2
  doi: 10.1021/acs.orglett.1c02800
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.201813972
– ident: e_1_2_7_35_2
  doi: 10.1021/acs.orglett.2c00819
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.202003423
– ident: e_1_2_7_55_3
  doi: 10.1002/ange.201913340
– ident: e_1_2_7_57_2
  doi: 10.1002/anie.202204589
– ident: e_1_2_7_2_2
  doi: 10.1007/1-4020-3687-6
– ident: e_1_2_7_11_1
  doi: 10.1002/chem.201204097
– ident: e_1_2_7_39_3
  doi: 10.1002/ange.201913055
– ident: e_1_2_7_56_2
  doi: 10.1039/D1SC04728K
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.202202527
– ident: e_1_2_7_38_2
  doi: 10.1021/jacs.7b10767
– ident: e_1_2_7_78_3
  doi: 10.1002/ange.201910318
– ident: e_1_2_7_61_1
  doi: 10.1039/D0CS00341G
– ident: e_1_2_7_53_2
  doi: 10.1002/anie.201805980
– ident: e_1_2_7_63_1
  doi: 10.1021/acs.accounts.9b00415
– ident: e_1_2_7_68_2
  doi: 10.1039/C9CC06154A
– ident: e_1_2_7_36_2
  doi: 10.1002/chem.202201743
– ident: e_1_2_7_46_1
  doi: 10.31635/ccschem.021.202101036
– ident: e_1_2_7_86_1
– ident: e_1_2_7_73_2
  doi: 10.1002/anie.201711077
– ident: e_1_2_7_44_2
  doi: 10.1039/D1CC00916H
– ident: e_1_2_7_66_2
  doi: 10.1039/C6CC00349D
– volume-title: Introduction to NMR Spectroscopy
  year: 1988
  ident: e_1_2_7_85_1
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.201905563
– ident: e_1_2_7_77_3
  doi: 10.1002/ange.201803349
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.chemrev.5b00765
– ident: e_1_2_7_42_1
– ident: e_1_2_7_52_2
  doi: 10.1021/acs.orglett.7b01511
– ident: e_1_2_7_54_2
  doi: 10.1021/acs.orglett.7b04045
– ident: e_1_2_7_26_1
– ident: e_1_2_7_4_1
  doi: 10.1021/ja00986a052
– ident: e_1_2_7_40_2
  doi: 10.1080/10610278.2022.2039653
– ident: e_1_2_7_79_1
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.201600911
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.202011566
– ident: e_1_2_7_29_2
  doi: 10.1021/acs.joc.0c01558
– ident: e_1_2_7_22_2
  doi: 10.1021/jacs.0c00624
– ident: e_1_2_7_82_1
– ident: e_1_2_7_47_1
– volume: 134
  start-page: e202117872
  year: 2022
  ident: e_1_2_7_59_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202117872
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.9b12216
– ident: e_1_2_7_70_2
  doi: 10.1021/jacs.7b05021
– ident: e_1_2_7_58_2
  doi: 10.1039/D2SC01782B
– ident: e_1_2_7_17_2
  doi: 10.1021/acs.accounts.2c00043
– ident: e_1_2_7_21_1
– ident: e_1_2_7_39_2
  doi: 10.1002/anie.201913055
– ident: e_1_2_7_43_3
  doi: 10.1002/ange.202102701
– ident: e_1_2_7_16_3
  doi: 10.1002/ange.202000909
– ident: e_1_2_7_3_2
  doi: 10.1002/9783527621484
– ident: e_1_2_7_75_1
  doi: 10.31635/ccschem.021.202101178
– ident: e_1_2_7_87_3
  doi: 10.1002/ange.201210267
– ident: e_1_2_7_9_2
  doi: 10.1021/ja711260m
– ident: e_1_2_7_65_1
– ident: e_1_2_7_28_2
  doi: 10.1021/acs.accounts.8b00268
– ident: e_1_2_7_76_1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.199507131
– ident: e_1_2_7_5_1
  doi: 10.6023/cjoc202005007
– ident: e_1_2_7_48_2
  doi: 10.1021/acs.joc.5b00099
– ident: e_1_2_7_23_2
  doi: 10.1038/s41467-021-26729-3
– ident: e_1_2_7_73_3
  doi: 10.1002/ange.201711077
– ident: e_1_2_7_89_1
  doi: 10.1002/anie.202201258
– ident: e_1_2_7_80_2
  doi: 10.1021/acs.orglett.5b01871
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.9b03559
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_2
  doi: 10.1002/ange.19951070704
– ident: e_1_2_7_41_2
  doi: 10.1002/ange.202108209
– ident: e_1_2_7_20_2
  doi: 10.1002/smll.202003490
– ident: e_1_2_7_88_2
  doi: 10.1021/acs.orglett.6b01842
– ident: e_1_2_7_84_1
  doi: 10.1021/ja064776x
– ident: e_1_2_7_62_1
  doi: 10.1021/acs.accounts.8b00255
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.201913340
– volume: 134
  start-page: e202204589
  year: 2022
  ident: e_1_2_7_57_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202204589
– ident: e_1_2_7_24_2
  doi: 10.31635/ccschem.021.202100870
– ident: e_1_2_7_69_1
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.201600911
– ident: e_1_2_7_72_1
– ident: e_1_2_7_43_2
  doi: 10.1002/anie.202102701
– ident: e_1_2_7_49_2
  doi: 10.1039/C5NJ03616J
– ident: e_1_2_7_18_1
– ident: e_1_2_7_50_1
– ident: e_1_2_7_78_2
  doi: 10.1002/anie.201910318
– ident: e_1_2_7_83_1
  doi: 10.1039/c2cc36027f
– ident: e_1_2_7_12_1
– ident: e_1_2_7_53_3
  doi: 10.1002/ange.201805980
– ident: e_1_2_7_25_2
  doi: 10.6023/cjoc202100035
– volume: 128
  start-page: 14744
  year: 2006
  ident: WOS:000242021700005
  article-title: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja064776x
– volume: 139
  start-page: 8436
  year: 2017
  ident: WOS:000404809600014
  article-title: Molecular Recognition and Chirality Sensing of Epoxides in Water Using Endo-Functionalized Molecular Tubes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b05021
– volume: 132
  start-page: 10145
  year: 2020
  ident: 000853132800001.55
  publication-title: Angew. Chem
– volume: 131
  start-page: 3925
  year: 2019
  ident: 000853132800001.15
  publication-title: Angew. Chem
– volume: 52
  start-page: 7252
  year: 2013
  ident: WOS:000321298800041
  article-title: Twisted Cucurbit[14]uril
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201210267
– volume: 53
  start-page: 198
  year: 2020
  ident: WOS:000509420300017
  article-title: Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00415
– volume: 61
  start-page: ARTN e202201258
  year: 2022
  ident: WOS:000790023400001
  article-title: Circular Dichroism Based Chirality Sensing with Supramolecular Host-Guest Chemistry
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202201258
– volume: 57
  start-page: 9853
  year: 2018
  ident: WOS:000439741900048
  article-title: Desymmetrized Leaning Pillar[6]arene
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201805980
– volume: 134
  year: 2022
  ident: 000853132800001.63
  publication-title: Angew. Chem
– volume: 40
  start-page: 4756
  year: 2016
  ident: WOS:000375586400092
  article-title: A water-soluble hybrid[4]arene: synthesis, host-guest complexation and application in the construction of a supra-amphiphile
  publication-title: NEW JOURNAL OF CHEMISTRY
  doi: 10.1039/c5nj03616j
– volume: 130
  start-page: 717
  year: 2018
  ident: 000853132800001.75
  publication-title: Angew. Chem
– volume: 4
  start-page: 1977
  year: 2022
  ident: WOS:000810728900016
  article-title: Biomimetic Recognition-Based Bioorthogonal Host-Guest Pairs for Cell Targeting and Tissue Imaging in Living Animals
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.021.202101178
– volume: 17
  start-page: 3880
  year: 2015
  ident: WOS:000359393800061
  article-title: Synthesis, Solid-State Structures, and Molecular Recognition of Chiral Molecular Tweezer and Related Structures Based on a Rigid Bis-Naphthalene Cleft
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b01871
– volume: 28
  start-page: ARTN e202201743
  year: 2022
  ident: WOS:000841527700001
  article-title: New Synthetic Route to Water-Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.202201743
– volume: 131
  start-page: 15280
  year: 2019
  ident: 000853132800001.81
  publication-title: Angew. Chem
– volume: 58
  start-page: 10281
  year: 2019
  ident: WOS:000476452700040
  article-title: Efficient Separation of cis- and trans-1,2-Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201905563
– volume: 61
  start-page: ARTN e202117273
  year: 2022
  ident: WOS:000750924000001
  article-title: Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202117273
– volume: 128
  start-page: 5390
  year: 2016
  ident: 000853132800001.26
  publication-title: Angew. Chem
– volume: 85
  start-page: 11465
  year: 2020
  ident: WOS:000569376800039
  article-title: Helic[1]triptycene[3]arene: Synthesis, Complexation, and Formation of [2]Rotaxane Shuttle
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.0c01558
– volume: 89
  start-page: 7017
  year: 1967
  ident: WOS:A1967A393800035
  article-title: CYCLIC POLYETHERS AND THEIR COMPLEXES WITH METAL SALTS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 13
  start-page: 6254
  year: 2022
  ident: WOS:000794325100001
  article-title: Cagearenes: synthesis, characterization, and application for programmed vapour release
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d2sc01782b
– volume: 106
  start-page: 2912
  year: 2006
  ident: WOS:000238973000013
  article-title: High-throughput and parallel screening methods in asymmetric hydrogenation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr040675a
– volume: 81
  start-page: 2974
  year: 2016
  ident: WOS:000373520200029
  article-title: Calix[3]carbazole: One-Step Synthesis and Host-Guest Binding
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.6b00252
– volume: 59
  start-page: 3994
  year: 2020
  ident: WOS:000508248800001
  article-title: Tiara[5]arenes: Synthesis, Solid-State Conformational Studies, Host-Guest Properties, and Application as Nonporous Adaptive Crystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913055
– volume: 52
  start-page: 9078
  year: 2016
  ident: WOS:000379431000024
  article-title: endo-Functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c6cc00349d
– year: 2008
  ident: 000853132800001.2
  publication-title: Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis
– year: 1988
  ident: 000853132800001.86
  publication-title: Introduction to NMR Spectroscopy
– year: 2016
  ident: 000853132800001.5
  publication-title: Calixarenes and Beyond
– volume: 132
  start-page: 7281
  year: 2020
  ident: 000853132800001.17
  publication-title: Angew. Chem
– volume: 133
  start-page: 13131
  year: 2021
  ident: 000853132800001.43
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000853132800001.58
  publication-title: Angew. Chem
– volume: 48
  start-page: 10999
  year: 2012
  ident: WOS:000309840400019
  article-title: Pillar[n]arenes (n=8-10) with two cavities: synthesis, structures and complexing properties
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c2cc36027f
– volume: 40
  start-page: 3714
  year: 2020
  ident: WOS:000598969200014
  article-title: Recent Advances in Novel Macrocyclic Arenes
  publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.6023/cjoc202005007
– volume: 1
  start-page: 1885
  year: 2021
  ident: WOS:000730355700007
  article-title: Xanthene[n]arenes: Exceptionally Large, Bow Shaped Macrocyclic Building Blocks Suitable for Self-Assembly
  publication-title: JACS AU
  doi: 10.1021/jacsau.1c00343
– volume: 130
  start-page: 5022
  year: 2008
  ident: WOS:000254933000011
  article-title: para-bridged symmetrical pillar[5]arenes:: Their Lewis acid catalyzed synthesis and host-guest property
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja711260m
– volume: 141
  start-page: 12280
  year: 2019
  ident: WOS:000480497100019
  article-title: Geminiarene: Molecular Scale Dual Selectivity for Chlorobenzene and Chlorocyclohexane Fractionation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b03559
– volume: 130
  start-page: 7935
  year: 2018
  ident: 000853132800001.79
  publication-title: Angew. Chem
– volume: 12
  start-page: 9952
  year: 2021
  ident: WOS:000662328800001
  article-title: An intramolecularly self-templated synthesis of macrocycles: self-filling effects on the formation of prismarenes
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc02199k
– volume: 57
  start-page: 3987
  year: 2021
  ident: WOS:000632509700001
  article-title: 3,6-Fluoren[5]arenes: synthesis, structure and complexation with fullerenes C60 and C70
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d1cc00916h
– volume: 131
  start-page: 10387
  year: 2019
  ident: 000853132800001.13
  publication-title: Angew. Chem
– volume: 58
  start-page: 15136
  year: 2019
  ident: WOS:000485592500001
  article-title: Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane-Based Molecular Shuttles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910318
– volume: 126
  start-page: 12732
  year: 2004
  ident: WOS:000224357700011
  article-title: Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja047639d
– volume: 142
  start-page: 1752
  year: 2020
  ident: WOS:000510531900018
  article-title: Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12216
– volume: 140
  start-page: 74
  year: 2018
  ident: WOS:000422813300019
  article-title: Rim-Differentiated C5-Symmetric Tiara-Pillar[5]arenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b10767
– volume: 4
  start-page: 1806
  year: 2022
  ident: WOS:000794318300032
  article-title: Bisindole [3]arenes-Indolyl Macrocyclic Arenes Having Significant Iodine Capture Capacity
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.021.202101036
– volume: 6
  start-page: 197
  year: 2015
  ident: WOS:000345901600018
  article-title: Biphen[n]arenes
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c4sc02422b
– volume: 142
  start-page: 8262
  year: 2020
  ident: WOS:000535173500027
  article-title: Pagoda[4]arene and i-Pagoda[4]arene
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c00624
– volume: 130
  start-page: 10001
  year: 2018
  ident: 000853132800001.52
  publication-title: Angew. Chem
– volume: 116
  start-page: 7937
  year: 2016
  ident: WOS:000380730100006
  article-title: Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00765
– volume: 132
  start-page: 15926
  year: 2020
  ident: 000853132800001.31
  publication-title: Angew. Chem
– volume: 55
  start-page: 5304
  year: 2016
  ident: WOS:000374564300034
  article-title: Triptycene-Based Chiral Macrocyclic Hosts for Highly Enantioselective Recognition of Chiral Guests Containing a Trimethylamino Group
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201600911
– volume: 57
  start-page: 7809
  year: 2018
  ident: WOS:000435766800040
  article-title: Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201803349
– volume: 58
  start-page: 3885
  year: 2019
  ident: WOS:000462680700035
  article-title: Terphen[n]arenes and Quaterphen[n]arenes (n=3-6): One-Pot Synthesis, Self-Assembly into Supramolecular Gels, and Iodine Capture
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201813972
– volume: 49
  start-page: 4176
  year: 2020
  ident: WOS:000545930500012
  article-title: Conformationally adaptive macrocycles with flipping aromatic sidewalls
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00341g
– volume: 57
  start-page: 709
  year: 2018
  ident: WOS:000419594700015
  article-title: Achieving Strong Positive Cooperativity through Activating Weak Non-Covalent Interactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201711077
– volume: 41
  start-page: 2141
  year: 2021
  ident: WOS:000669363500039
  article-title: Pagoda[5]arene: An Emerging Anthracene-Based Macrocyclic Arene with a Deep and Well-Defined Cavity
  publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.6023/cjoc202100035
– volume: 12
  start-page: 15528
  year: 2021
  ident: WOS:000722647100001
  article-title: Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc04728k
– volume: 34
  start-page: 713
  year: 1995
  ident: WOS:A1995QU30500001
  article-title: CALIXARENES, MACROCYCLES WITH (ALMOST) UNLIMITED POSSIBILITIES
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH
– volume: 33
  start-page: 442
  year: 2021
  ident: WOS:000766475900001
  article-title: Tiara[6]arenes
  publication-title: SUPRAMOLECULAR CHEMISTRY
  doi: 10.1080/10610278.2022.2039653
– volume: 61
  start-page: ARTN e202202559
  year: 2022
  ident: WOS:000820402300001
  article-title: Spatiotemporal Release of Reactive Oxygen Species and NO for Overcoming Biofilm Heterogeneity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202202559
– volume: 132
  start-page: 4023
  year: 2020
  ident: 000853132800001.38
  publication-title: Angew. Chem
– volume: 24
  start-page: 2711
  year: 2022
  ident: WOS:000791817200025
  article-title: Molecular Recognition in an Aqueous Medium Using Water-Soluble Prismarene Hosts
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.2c00819
– volume: 37
  start-page: 603
  year: 2017
  ident: WOS:000401297800006
  article-title: Synthesis of Bis-naphthalene and Their Derivatives and Their Complexation with Organic Cation
  publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.6023/cjoc201612033
– volume: 59
  start-page: 15794
  year: 2020
  ident: WOS:000558775000001
  article-title: Prismarene: An Emerging Naphthol-Based Macrocyclic Arene
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202003423
– volume: 59
  start-page: 23817
  year: 2020
  ident: WOS:000578273200001
  article-title: A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011566
– volume: 133
  start-page: 22098
  year: 2021
  ident: 000853132800001.41
  publication-title: Angew. Chem
– volume: 11
  start-page: 470
  year: 2019
  ident: WOS:000465518600014
  article-title: Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0235-8
– volume: 134
  year: 2022
  ident: 000853132800001.61
  publication-title: Angew. Chem
– volume: 61
  start-page: ARTN e202204589
  year: 2022
  ident: WOS:000789997500001
  article-title: "Rim-Differentiated" Pillar[6]arenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202204589
– volume: 54
  start-page: 7677
  year: 2018
  ident: WOS:000442118800025
  article-title: Allosteric cooperativity in ternary complexes with low symmetry
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c8cc04195d
– volume: 19
  start-page: 3860
  year: 2013
  ident: WOS:000316009800012
  article-title: Asararenes-A Family of Large Aromatic Macrocycles
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201204097
– volume: 61
  start-page: ARTN e202117872
  year: 2022
  ident: WOS:000757798700001
  article-title: A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202117872
– volume: 55
  start-page: 916
  year: 2022
  ident: WOS:000771914800011
  article-title: Biphen[n]arenes: Modular Synthesis, Customizable Cavity Sizes, and Diverse Skeletons
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00043
– volume: 107
  start-page: 785
  year: 1995
  ident: 000853132800001.7
  publication-title: Angew. Chem
– volume: 51
  start-page: 2093
  year: 2018
  ident: WOS:000445441200021
  article-title: Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00268
– volume: 59
  start-page: 7214
  year: 2020
  ident: WOS:000526818900037
  article-title: A Modular Synthetic Strategy for Functional Macrocycles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202000909
– volume: 18
  start-page: 4020
  year: 2016
  ident: WOS:000381847500022
  article-title: Twisted Cucurbit[n]urils
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b01842
– volume: 60
  start-page: 13021
  year: 2021
  ident: WOS:000648095000001
  article-title: Towards the Highly Efficient Synthesis and Selective Methylation of C(sp3)-Bridged [6]Cycloparaphenylenes from Fluoren[3]arenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102701
– volume: 132
  start-page: 24025
  year: 2020
  ident: 000853132800001.73
  publication-title: Angew. Chem
– volume: 55
  start-page: 10924
  year: 2019
  ident: WOS:000484981000018
  article-title: Unexpected solvent effect on the binding of positively-charged macrocycles to neutral aromatic hydrocarbons
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c9cc06154a
– volume: 19
  start-page: 3719
  year: 2017
  ident: WOS:000406356500009
  article-title: Calix[4,5]tetrolarenes: A New Family of Macrocycles
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b01511
– volume: 59
  start-page: 10059
  year: 2020
  ident: WOS:000506705200001
  article-title: BowtieArene: A Dual Macrocycle Exhibiting Stimuli-Responsive Fluorescence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913340
– volume: 80
  start-page: 3488
  year: 2015
  ident: WOS:000352463100013
  article-title: Hybrid [n]Arenes through Thermodynamically Driven Macrocyclization Reactions
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.5b00099
– volume: 51
  start-page: 2064
  year: 2018
  ident: WOS:000445441200018
  article-title: Nonporous Adaptive Crystals of Pillararenes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00255
– volume: 4
  start-page: 318
  year: 2022
  ident: WOS:000794257100026
  article-title: Pagoda[5]arene with Large and Rigid Cavity for the Formation of 1:2 Host-Guest Complexes and Acid/Base-Responsive Crystalline Vapochromic Properties
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.021.202100870
– volume: 16
  start-page: ARTN 2003490
  year: 2020
  ident: WOS:000550885400001
  article-title: Elongated-Geminiarene: Syntheses, Solid-State Conformational Investigations, and Application in Aromatics/Cyclic Aliphatics Separation
  publication-title: SMALL
  doi: 10.1002/smll.202003490
– volume: 60
  start-page: 21927
  year: 2021
  ident: WOS:000689685500001
  article-title: Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202108209
– volume: 20
  start-page: 1295
  year: 2018
  ident: WOS:000426804200009
  article-title: Coumarin[4]arene: A Fluorescent Macrocycle
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b04045
– volume: 12
  start-page: ARTN 6378
  year: 2021
  ident: WOS:000714754400049
  article-title: Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-26729-3
– year: 2005
  ident: 000853132800001.1
  publication-title: Current Trends and Future Perspectives
– volume: 23
  start-page: 8143
  year: 2021
  ident: WOS:000716793100006
  article-title: per-Hydroxylated Prism[n]arenes: Supramolecularly Assisted Demethylation of Methoxy-Prism[5]arene
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c02800
SSID ssj0028806
Score 2.5784163
Snippet Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a...
Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202211853
SubjectTerms Alcohols
binding capacity
Cations
Chemical reactions
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Chirality
Chirality Sensing
Conformation
Friedel-Crafts reaction
Holes
Homology
Host–Guest Chemistry
Macrocycles
macrocyclic compounds
Methylene
Molecular Conformation
Molecular Recognition
Naphthotubes
optical isomerism
Physical Sciences
Recognition
Science & Technology
Title Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211853
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000853132800001
https://www.ncbi.nlm.nih.gov/pubmed/36042003
https://www.proquest.com/docview/2723275097
https://www.proquest.com/docview/2708735120
https://www.proquest.com/docview/2811989053
Volume 61
WOS 000853132800001
WOSCitedRecordID wos000853132800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLRJcKG9CS2WkSlwaNbGT2D6WpSuQ6Aq1VNpblMR2uxLKVpssEjd-Ar-xv6QzedEF8RDcknjyGo8z3ziebwD2bOYCk2UOgxwX-JHjxscjzg9MiN7AOp1r1xSbkNOpms30hxtZ_C0_xDDhRiOj-V7TAM_y6uA7aShlYGN8xzGCQZezAZscjTceweabk8nZ-yHoQvtsM4yE8KkQfU_cGPCD9SusO6af0OYPjmkdyzbOaLL1_69xH-51QJQdtpbzAG7Z8iHcGff13x5BffqlRHRYzat9RnmB8_PVsps5ZD2VyT477svrspN-KdKiZFlp2PhivmxAPjulRfLlOVs4dmzRMNDR2auv3143uWKGTbNLmpytV7mtHsPZ5Ojj-K3f1Wjwi0hygR0bq0Sp2GqNwM8mikdGRNryxARFrJxTyvDIIiqUESLkqHAu0yJ3KtcFUeuLJzAqF6V9Bsy6XMqwyDFkJZ7AUEfWKWF0YmMnkzzzwO87KC06AnOqo_EpbamXeUq6TAddevBqkL9sqTt-KbnT93faDeEq5fh6RH6vpQcvh2bsA_qjkpV2sSKZQEmBmCn4jYwKaV1aQLd52trS8DgiwW8mKsGDvZvGNbQ3iJjINVXzF8aD8G_Exp1yiNWg9oA35vcHFaSH03dHw97zfzlpG-7SNjn2UO7AqF6u7Au4XXyu59VyFzbkTO12o_MaPVo59Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5Bi1ReuAuBAkaqxEujJrY3th_L0lUrdiPUQ-pblMMuK6Fstcki8cZP4DfyS5jJBQviEOIxzuQajz3fOJ5vAHZt6oIiTR0GOS7wpeOFjy3OD4oQvYF1JjOuKTah4lhfXJi33W5CyoVp-SGGBTcaGc18TQOcFqT3v7GGUgo2BngcQxj0OddhU6ItoZFvvj6ZnE-HqAsNtE0xEsKnSvQ9c2PA99fvsO6ZfoKbP3imdTDbeKPJ7f_wHXfgVgdF2UFrO3fhmi3vwda4rwB3H-rTjyXiw2pe7THKDJxfrpbd2iHryUz22KwvsMtO-s1Ii5KlZcHG7-bLBuazU9omX16yhWMzi6aBrs5--fT5VZMtVrA4vaLl2XqV2eoBnE8Oz8ZHflelwc-l4gK7dqQjrUfWGIR-NtJcFkIay6MiyEfaOa0LLi3iQiURI8vcudSIzOnM5ESuL7Zho1yU9hEw6zKlwjzDoJWYAkMjrdOiMJEdORVlqQd-30NJ3lGYUyWN90lLvswT0mUy6NKDl4P8VUve8UvJnb7Dk24QVwnHzyP6e6M8eDGcxj6gfyppaRcrkgm0Eoiagt_I6JB2pgX0mIetMQ2vIyKcNVEJHux-b13D-QYTE72mbv7DeBD-jdi4Uw7xGtQe8Mb-_qCC5CA-PhyOHv_LRc9h6-hsNk2mx_GbJ3CT2snNh2oHNurlyj6FG_mHel4tn3WD9CubVjz9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEXngUCBYxUiUujJo43to9l2xUVbVS1VOotSmK7rISyq00WiRs_gd_IL2EmL1gQDyGOcSav8djzjeP5BmDbZi4wWeYwyHGBLxw3PrY4PzAhegPrdK5dU2xCJom6uNAn3W5CyoVp-SGGBTcaGc18TQPcLozb_cYaSinYGOBxDGHQ51yFDUGVZEawsX86PT8aoi400DbFKIp8qkTfMzcGfHf9Duue6Se4-YNnWgezjTea3v4P33EHbnVQlO21tnMXrtjyHtyY9BXg7kN99rFEfFjNqh1GmYGzy9WyWztkPZnJDjvuC-yy034z0rxkWWnY5N1s2cB8dkbb5MtLNnfs2KJpoKuzXz59ftVkixmWZAtanq1Xua024Xx68Hby2u-qNPiFkDzCrh2rWKmx1Rqhn40VFyYS2vLYBMVYOaeU4cIiLpQCMbIonMt0lDuV64LI9aMHMCrnpX0EzLpcyrDIMWglpsBQC-tUZHRsx07GeeaB3_dQWnQU5lRJ433aki_zlHSZDrr04OUgv2jJO34pudV3eNoN4irl-HlEf6-lBy-G09gH9E8lK-18RTKBkhGipuA3MiqknWkBPeZha0zD60QxzpqoBA-2v7eu4XyDiYleUzX_YTwI_0Zs0imHeA1qD3hjf39QQbqXHB4MR4__5aLncP1kf5oeHSZvnsBNaiYvH8otGNXLlX0K14oP9axaPuvG6FfMmDx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+Configurational+Analysis%2C+Molecular+Recognition+and+Chirality+Sensing+of+Methylene-Bridged+Naphthotubes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Yan-Fang&rft.au=Yao%2C+Huan&rft.au=Yang%2C+Liu-Pan&rft.au=Quan%2C+Mao&rft.date=2022-10-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.spage=e202211853&rft_id=info:doi/10.1002%2Fanie.202211853&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon