Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes
Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyze...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 61; no. 42; pp. e202211853 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
WEINHEIM
Wiley
17.10.2022
Wiley Subscription Services, Inc |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Methylene‐bridged naphthotubes have been successfully developed. The three‐membered naphthotubes possess a rigid and well‐defined cavity, while four‐membered naphthotubes possess a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. They show quite strong binding affinities (up to 108 M−1) to organic cations and can be used as chirality sensors for chiral organic cations. |
|---|---|
| AbstractList | Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.
Methylene‐bridged naphthotubes have been successfully developed. The three‐membered naphthotubes possess a rigid and well‐defined cavity, while four‐membered naphthotubes possess a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. They show quite strong binding affinities (up to 108 M−1) to organic cations and can be used as chirality sensors for chiral organic cations. Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10⁸ M⁻¹) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10 8 M −1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene‐bridged naphthotubes, with well‐defined cavities. They were synthesized through TFA‐catalyzed Friedel–Crafts reactions between alkoxy‐substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three‐membered macrocycles possess a single cavity, while four‐membered macrocycles adopt a double‐cavity conformation or a self‐filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M−1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well‐defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10(8) M-1) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M-1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms.Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 108 M-1 ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a new class of macrocyclic hosts, namely methylene-bridged naphthotubes, with well-defined cavities. They were synthesized through TFA-catalyzed Friedel-Crafts reactions between alkoxy-substituted bisnaphthalenes and paraformaldehyde. A configurational selection was observed. Three-membered macrocycles possess a single cavity, while four-membered macrocycles adopt a double-cavity conformation or a self-filling conformation depending on the alkoxy length. The small homologue shows quite strong binding affinities (up to 10 M ) to organic cations, which is better than structurally similar but flexible macrocycles. This demonstrates the advantage of a well-defined cavity in molecular recognition. Moreover, these naphthotubes can be used as chirality sensors for chiral organic cations through different chirality transfer mechanisms. |
| ArticleNumber | 202211853 |
| Author | Yang, Liu‐Pan Quan, Mao Wang, Yan‐Fang Jiang, Wei Yao, Huan |
| Author_xml | – sequence: 1 givenname: Yan‐Fang surname: Wang fullname: Wang, Yan‐Fang organization: Southern University of Science and Technology – sequence: 2 givenname: Huan surname: Yao fullname: Yao, Huan organization: Southern University of Science and Technology – sequence: 3 givenname: Liu‐Pan surname: Yang fullname: Yang, Liu‐Pan organization: Southern University of Science and Technology – sequence: 4 givenname: Mao surname: Quan fullname: Quan, Mao email: quanm@sustech.edu.cn organization: Southern University of Science and Technology – sequence: 5 givenname: Wei orcidid: 0000-0001-7683-5811 surname: Jiang fullname: Jiang, Wei email: jiangw@sustech.edu.cn organization: Southern University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36042003$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhSNURH9gyxJFYoMEGfwTx85yiApUaotEYR05zvWMq4w9tR2h7HgEnpEnwelMi1QJlY19JX_n2L73HGcH1lnIspcYLTBC5L20BhYEEYKxYPRJdoQZwQXlnB6kuqS04ILhw-w4hOvEC4GqZ9khrVBJEKJHWbyabFxDMOFd3jirzWr0Mhpn5ZAv0zLdnly4AdQ4SJ9_BeVW1sxELm2fN2vj5WDilF-BDcaucqfzC4jraQALv3_--uBNv4I-v5TbdVy7OHYQnmdPtRwCvNjvJ9n3j6ffms_F-ZdPZ83yvFAlJ7SQmolKCAZ1zTiDSpCyp2UNpOqRYkJrIXpSAmKclwJ3pdJa1rTToqsV4-l7J9mbne_Wu5sRQmw3JigYBmnBjaElAuNa1IjRx1GOBKcMk9n19QP02o0-9WqmCCWcoZon6tWeGrsN9O3Wm430U3vX-gSIHfADOqeDMmAV3GMIoTRPTIlIFcKNibdTadxoY5K-_X9possdrbwLwYNu1d4temmGFqN2jlI7R6m9j1KSLR7I7i74p6Dev8oMMD1Ct8vLs9O_2j_s7tnM |
| CitedBy_id | crossref_primary_10_1002_anie_202409790 crossref_primary_10_1002_anie_202310115 crossref_primary_10_1002_ange_202400767 crossref_primary_10_1039_D4SC05236F crossref_primary_10_1039_D4RA09021G crossref_primary_10_1002_idm2_12117 crossref_primary_10_1016_j_ccr_2024_215762 crossref_primary_10_1002_ange_202424276 crossref_primary_10_1002_chem_202203030 crossref_primary_10_1039_D4CE01320D crossref_primary_10_1002_chem_202404217 crossref_primary_10_1002_chem_202401625 crossref_primary_10_1002_anie_202217971 crossref_primary_10_1007_s11426_025_2659_3 crossref_primary_10_1002_anie_202305214 crossref_primary_10_3390_molecules29174142 crossref_primary_10_1039_D4SC02814G crossref_primary_10_1002_agt2_628 crossref_primary_10_1002_ange_202409790 crossref_primary_10_1093_chemle_upae184 crossref_primary_10_1002_ange_202310115 crossref_primary_10_1002_anie_202424276 crossref_primary_10_1039_D3SC06349F crossref_primary_10_1039_D3QM00540B crossref_primary_10_1039_D5CS00100E crossref_primary_10_1002_ange_202217971 crossref_primary_10_1002_ange_202305214 crossref_primary_10_1039_D3QO00258F crossref_primary_10_1002_adfm_202303339 crossref_primary_10_1039_D5TA02670A crossref_primary_10_1002_anie_202400767 |
| Cites_doi | 10.1002/ange.202202527 10.1021/acs.joc.6b00252 10.1002/ange.202201258 10.1002/anie.202000909 10.1002/anie.201210267 10.1002/anie.202117872 10.1002/ange.201905563 10.1002/anie.201803349 10.6023/cjoc201612033 10.1002/ange.201813972 10.1002/ange.202003423 10.1021/ja047639d 10.1039/C8CC04195D 10.1021/jacsau.1c00343 10.1039/C4SC02422B 10.1021/cr040675a 10.1002/ange.202011566 10.1007/978-3-319-31867-7 10.1038/s41557-019-0235-8 10.1002/anie.202108209 10.1039/D1SC02199K 10.1021/acs.orglett.1c02800 10.1002/anie.201813972 10.1021/acs.orglett.2c00819 10.1002/anie.202003423 10.1002/ange.201913340 10.1002/anie.202204589 10.1007/1-4020-3687-6 10.1002/chem.201204097 10.1002/ange.201913055 10.1039/D1SC04728K 10.1002/anie.202202527 10.1021/jacs.7b10767 10.1002/ange.201910318 10.1039/D0CS00341G 10.1002/anie.201805980 10.1021/acs.accounts.9b00415 10.1039/C9CC06154A 10.1002/chem.202201743 10.31635/ccschem.021.202101036 10.1002/anie.201711077 10.1039/D1CC00916H 10.1039/C6CC00349D 10.1002/anie.201905563 10.1002/ange.201803349 10.1021/acs.chemrev.5b00765 10.1021/acs.orglett.7b01511 10.1021/acs.orglett.7b04045 10.1021/ja00986a052 10.1080/10610278.2022.2039653 10.1002/ange.201600911 10.1002/anie.202011566 10.1021/acs.joc.0c01558 10.1021/jacs.0c00624 10.1002/ange.202117872 10.1021/jacs.9b12216 10.1021/jacs.7b05021 10.1039/D2SC01782B 10.1021/acs.accounts.2c00043 10.1002/anie.201913055 10.1002/ange.202102701 10.1002/ange.202000909 10.1002/9783527621484 10.31635/ccschem.021.202101178 10.1002/ange.201210267 10.1021/ja711260m 10.1021/acs.accounts.8b00268 10.1002/anie.199507131 10.6023/cjoc202005007 10.1021/acs.joc.5b00099 10.1038/s41467-021-26729-3 10.1002/ange.201711077 10.1002/anie.202201258 10.1021/acs.orglett.5b01871 10.1021/jacs.9b03559 10.1002/ange.19951070704 10.1002/ange.202108209 10.1002/smll.202003490 10.1021/acs.orglett.6b01842 10.1021/ja064776x 10.1021/acs.accounts.8b00255 10.1002/anie.201913340 10.1002/ange.202204589 10.31635/ccschem.021.202100870 10.1002/anie.201600911 10.1002/anie.202102701 10.1039/C5NJ03616J 10.1002/anie.201910318 10.1039/c2cc36027f 10.1002/ange.201805980 10.6023/cjoc202100035 10.1039/c5nj03616j 10.1002/anie.202117273 10.1039/d2sc01782b 10.1039/c6cc00349d 10.1039/d1sc02199k 10.1039/d1cc00916h 10.1039/c4sc02422b 10.1039/d0cs00341g 10.1039/d1sc04728k 10.1002/anie.202202559 10.1039/c8cc04195d 10.1039/c9cc06154a |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7S9 L.6 |
| DOI | 10.1002/anie.202211853 |
| DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef ProQuest Health & Medical Complete (Alumni) Web of Science MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 36042003 000853132800001 10_1002_anie_202211853 ANIE202211853 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22125105; 22101125 – fundername: Shenzhen "Pengcheng Scholar", Guangdong Provincial Key Laboratory of Catalysis grantid: 2020B121201002 – fundername: Shenzhen Science and Technology Innovation Committee grantid: JCYJ20180504165810828 – fundername: Guangdong HighLevel Personnel of Special Support Program grantid: 2019TX05C157 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22125105; 22101125 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4723-af586885e99575e6824d349e26d0c58ff88d24e0577481b4cffa93bf8b9c57003 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000853132800001 |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 18:33:31 EDT 2025 Sun Nov 09 13:18:26 EST 2025 Tue Oct 07 07:29:09 EDT 2025 Thu Apr 03 07:00:31 EDT 2025 Fri Dec 05 22:41:14 EST 2025 Tue Oct 28 00:14:20 EDT 2025 Tue Nov 18 22:11:13 EST 2025 Sat Nov 29 02:36:50 EST 2025 Wed Jan 22 16:23:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 42 |
| Keywords | Host-Guest Chemistry BIS-NAPHTHALENE Naphthotubes Chirality Sensing CAVITY COMPLEXES Macrocycles Molecular Recognition MACROCYCLIC HOSTS CALIXARENES FAMILY |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-c4723-af586885e99575e6824d349e26d0c58ff88d24e0577481b4cffa93bf8b9c57003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7683-5811 0009-0005-4890-0651 |
| PMID | 36042003 |
| PQID | 2723275097 |
| PQPubID | 946352 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2811989053 wiley_primary_10_1002_anie_202211853_ANIE202211853 webofscience_primary_000853132800001CitationCount proquest_miscellaneous_2708735120 crossref_citationtrail_10_1002_anie_202211853 webofscience_primary_000853132800001 proquest_journals_2723275097 pubmed_primary_36042003 crossref_primary_10_1002_anie_202211853 |
| PublicationCentury | 2000 |
| PublicationDate | October 17, 2022 |
| PublicationDateYYYYMMDD | 2022-10-17 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 17, 2022 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | WEINHEIM |
| PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2022 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2004; 126 2021; 23 2019; 55 2019; 11 2020 2020; 59 132 2020; 16 2022; 24 2015; 80 2022; 28 2013 2013; 52 125 2013; 19 2022 2022; 61 134 2021; 33 2020; 53 2017; 37 2018 2018; 57 130 2020; 49 2016; 40 2016; 116 2016; 81 2021; 41 2006; 128 1988 2015; 6 2015; 17 2018; 140 2021; 3 2020; 85 2020; 40 2020; 142 1967; 89 2008 2016; 52 2005 2021; 1 2016; 18 2019; 141 2018; 20 2019 2019; 58 131 2017; 139 2021; 57 2016 2016; 55 128 2021; 12 2022; 4 1995 1995; 34 107 2021 2021; 60 133 2022; 13 2016 2017; 19 2018; 51 2022; 55 2012; 48 2018; 54 2006; 106 2008; 130 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_3 e_1_2_7_15_2 Abraham R. J. (e_1_2_7_85_1) 1988 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_87_3 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_49_2 (e_1_2_7_59_3) 2022; 134 e_1_2_7_90_1 e_1_2_7_71_2 e_1_2_7_71_3 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_82_1 e_1_2_7_40_2 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 (e_1_2_7_89_2) 2022; 134 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_32_3 e_1_2_7_55_3 e_1_2_7_78_3 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_1 e_1_2_7_9_2 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_43_3 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_2 (e_1_2_7_57_3) 2022; 134 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_73_3 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_77_3 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_6_1 e_1_2_7_2_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_80_2 e_1_2_7_14_3 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_88_2 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_72_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_53_3 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 (e_1_2_7_60_2) 2022; 134 Guo, MJ (WOS:000422813300019) 2018; 140 Quan, M (WOS:000790023400001) 2022; 61 Wang, YM (WOS:000484981000018) 2019; 55 Fang, S (WOS:000794325100001) 2022; 13 Ke, H (WOS:000465518600014) 2019; 11 Pfeuffer-Rooschüz, J (WOS:000730355700007) 2021; 1 Cheng, XJ (WOS:000321298800041) 2013; 52 Han, X (WOS:000820402300001) 2022; 61 Wang, LL (WOS:000404809600014) 2017; 139 Yang, WW (WOS:000508248800001) 2020; 59 Zhang, GW (WOS:000374564300034) 2016; 55 Li (000853132800001.15) 2019; 131 PEDERSEN, CJ (WOS:A1967A393800035) 1967; 89 Chao, Y (WOS:000789997500001) 2022; 61 Zhang, ZY (WOS:000771914800011) 2022; 55 (000853132800001.41) 2021; 133 Ma, YL (WOS:000810728900016) 2022; 4 Li, Q (WOS:000381847500022) 2016; 18 Jäkel, C (WOS:000238973000013) 2006; 106 Xu, K (000853132800001.17) 2020; 132 Han, X.-N. (000853132800001.63) 2022; 134 (000853132800001.52) 2018; 130 Xu, KD (WOS:000526818900037) 2020; 59 Wang, YL (WOS:000476452700040) 2019; 58 Li, J (WOS:000569376800039) 2020; 85 Jie, KC (WOS:000445441200018) 2018; 51 Cui, JS (WOS:000435766800040) 2018; 57 Han, XN (WOS:000535173500027) 2020; 142 BOHMER, V (WOS:A1995QU30500001) 1995; 34 Neri, P. (000853132800001.5) 2016 Chao, Y (000853132800001.58) 2022; 134 Diederich, F. (000853132800001.2) 2008 Wang, XP (WOS:000545930500012) 2020; 49 Chao, Y (WOS:000766475900001) 2021; 33 Zhao, YY (WOS:000722647100001) 2021; 12 Boinski, T (WOS:000352463100013) 2015; 80 Ma (000853132800001.75) 2018; 130 Zhou (000853132800001.61) 2022; 134 Lei (000853132800001.55) 2020; 132 Ogoshi, T (WOS:000254933000011) 2008; 130 Zhai, C (WOS:000841527700001) 2022; 28 Yang, LP (WOS:000558775000001) 2020; 59 Ma, YL (WOS:000419594700015) 2018; 57 (000853132800001.38) 2020; 132 Yao, H (WOS:000401297800006) 2017; 37 Huang, GB (WOS:000379431000024) 2016; 52 Bohmer (000853132800001.7) 1995; 107 Zhang (000853132800001.26) 2016; 128 Gloe, K. (000853132800001.1) 2005 Wang, YF (WOS:000669363500039) 2021; 41 Chen, CF (WOS:000445441200021) 2018; 51 Li, B (WOS:000462680700035) 2019; 58 Zafrani, Y (WOS:000406356500009) 2017; 19 Cui (000853132800001.79) 2018; 130 Yang, LP (WOS:000509420300017) 2020; 53 Han, XN (WOS:000714754400049) 2021; 12 He, ZF (WOS:000359393800061) 2015; 17 Della Sala, P (WOS:000510531900018) 2020; 142 (000853132800001.13) 2019; 131 Hua, B (WOS:000375586400092) 2016; 40 Shorthill, BJ (WOS:000224357700011) 2004; 126 Wang, JQ (WOS:000632509700001) 2021; 57 Du, XS (WOS:000648095000001) 2021; 60 Della Sala, P (WOS:000662328800001) 2021; 12 Del Regno, R (WOS:000716793100006) 2021; 23 Wang, LL (WOS:000578273200001) 2020; 59 Huang, WH (WOS:000242021700005) 2006; 128 Chai, HX (WOS:000442118800025) 2018; 54 Kumar, P (WOS:000426804200009) 2018; 20 Lei, SN (WOS:000506705200001) 2020; 59 Quan, ZY (WOS:000750924000001) 2022; 61 Chen, HQ (WOS:000345901600018) 2015; 6 Du (000853132800001.43) 2021; 133 Abraham, R.J. (000853132800001.86) 1988 Yu, XK (WOS:000794318300032) 2022; 4 Ogoshi, T (WOS:000380730100006) 2016; 116 Li, J (WOS:000598969200014) 2020; 40 Zheng, LS (WOS:000485592500001) 2019; 58 Yang, P (WOS:000373520200029) 2016; 81 Li, J (WOS:000689685500001) 2021; 60 Hu, XB (WOS:000309840400019) 2012; 48 Del Regno, R (WOS:000791817200025) 2022; 24 Zhou, HY (WOS:000757798700001) 2022; 61 Han, XN (WOS:000794257100026) 2022; 4 Wu, JR (WOS:000439741900048) 2018; 57 Yang (000853132800001.31) 2020; 132 Wu, JR (WOS:000480497100019) 2019; 141 Wu, JR (WOS:000550885400001) 2020; 16 (000853132800001.73) 2020; 132 Zheng (000853132800001.81) 2019; 131 Schneebeli, ST (WOS:000316009800012) 2013; 19 |
| References_xml | – volume: 54 start-page: 7677 year: 2018 end-page: 7680 publication-title: Chem. Commun. – volume: 59 132 start-page: 10059 10145 year: 2020 2020 end-page: 10065 10151 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 3994 4023 year: 2020 2020 end-page: 3999 4028 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2005 – volume: 55 start-page: 10924 year: 2019 end-page: 10927 publication-title: Chem. Commun. – volume: 58 131 start-page: 3885 3925 year: 2019 2019 end-page: 3889 3929 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 10281 10387 year: 2019 2019 end-page: 10284 10390 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 8436 year: 2017 end-page: 8439 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 709 717 year: 2018 2018 end-page: 713 721 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 15136 15280 year: 2019 2019 end-page: 15141 15285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 9078 year: 2016 end-page: 9081 publication-title: Chem. Commun. – volume: 11 start-page: 470 year: 2019 end-page: 477 publication-title: Nat. Chem. – volume: 141 start-page: 12280 year: 2019 end-page: 12287 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 4176 year: 2020 end-page: 4188 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2064 year: 2018 end-page: 2072 publication-title: Acc. Chem. Res. – volume: 18 start-page: 4020 year: 2016 end-page: 4023 publication-title: Org. Lett. – volume: 40 start-page: 3714 year: 2020 end-page: 3737 publication-title: Chin. J. Org. Chem. – volume: 85 start-page: 11465 year: 2020 end-page: 11474 publication-title: J. Org. Chem. – volume: 142 start-page: 1752 year: 2020 end-page: 1756 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6378 year: 2021 publication-title: Nat. Commun. – volume: 140 start-page: 74 year: 2018 end-page: 77 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 198 year: 2020 end-page: 208 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 7214 7281 year: 2020 2020 end-page: 7218 7285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 4756 year: 2016 end-page: 4760 publication-title: New J. Chem. – volume: 41 start-page: 2141 year: 2021 end-page: 2142 publication-title: Chin. J. Org. Chem. – volume: 116 start-page: 7937 year: 2016 end-page: 8002 publication-title: Chem. Rev. – volume: 55 start-page: 916 year: 2022 end-page: 929 publication-title: Acc. Chem. Res. – volume: 55 128 start-page: 5304 5390 year: 2016 2016 end-page: 5308 5394 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 603 year: 2017 end-page: 607 publication-title: Chin. J. Org. Chem. – volume: 16 year: 2020 publication-title: Small – volume: 12 start-page: 15528 year: 2021 end-page: 15532 publication-title: Chem. Sci. – year: 2008 – volume: 57 start-page: 3987 year: 2021 end-page: 3990 publication-title: Chem. Commun. – volume: 33 start-page: 442 year: 2021 end-page: 449 publication-title: Supramol. Chem. – volume: 60 133 start-page: 13021 13131 year: 2021 2021 end-page: 13028 13138 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 197 year: 2015 end-page: 202 publication-title: Chem. Sci. – volume: 106 start-page: 2912 year: 2006 end-page: 2942 publication-title: Chem. Rev. – volume: 28 year: 2022 publication-title: Chem. Eur. J. – volume: 4 start-page: 318 year: 2022 end-page: 330 publication-title: CCS Chem. – volume: 1 start-page: 1885 year: 2021 end-page: 1891 publication-title: JACS Au – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 23817 24025 year: 2020 2020 end-page: 23824 24032 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1295 year: 2018 end-page: 1299 publication-title: Org. Lett. – volume: 142 start-page: 8262 year: 2020 end-page: 8269 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 21927 22098 year: 2021 2021 end-page: 21933 22104 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 80 start-page: 3488 year: 2015 end-page: 3495 publication-title: J. Org. Chem. – volume: 128 start-page: 14744 year: 2006 end-page: 14745 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 10999 year: 2012 end-page: 11001 publication-title: Chem. Commun. – volume: 34 107 start-page: 713 785 year: 1995 1995 end-page: 745 818 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 3 start-page: 1945 year: 2021 end-page: 1953 publication-title: CCS Chem. – volume: 13 start-page: 6254 year: 2022 end-page: 6261 publication-title: Chem. Sci. – volume: 17 start-page: 3880 year: 2015 end-page: 3883 publication-title: Org. Lett. – volume: 126 start-page: 12732 year: 2004 end-page: 12733 publication-title: J. Am. Chem. Soc. – year: 2016 – volume: 19 start-page: 3719 year: 2017 end-page: 3722 publication-title: Org. Lett. – volume: 57 130 start-page: 7809 7935 year: 2018 2018 end-page: 7814 7940 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 2711 year: 2022 end-page: 2715 publication-title: Org. Lett. – volume: 51 start-page: 2093 year: 2018 end-page: 2106 publication-title: Acc. Chem. Res. – volume: 3 start-page: 2143 year: 2021 end-page: 2155 publication-title: CCS Chem. – volume: 89 start-page: 2495 year: 1967 end-page: 2496 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3860 year: 2013 end-page: 3868 publication-title: Chem. Eur. J. – volume: 23 start-page: 8143 year: 2021 end-page: 8146 publication-title: Org. Lett. – volume: 52 125 start-page: 7252 7393 year: 2013 2013 end-page: 7255 7396 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1988 – volume: 57 130 start-page: 9853 10001 year: 2018 2018 end-page: 9858 10006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 5022 year: 2008 end-page: 5023 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 15794 15926 year: 2020 2020 end-page: 15796 15928 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 9952 year: 2021 end-page: 9961 publication-title: Chem. Sci. – volume: 81 start-page: 2974 year: 2016 end-page: 2980 publication-title: J. Org. Chem. – volume: 134 start-page: e202202527 year: 2022 ident: e_1_2_7_60_2 publication-title: Angew. Chem. doi: 10.1002/ange.202202527 – ident: e_1_2_7_51_2 doi: 10.1021/acs.joc.6b00252 – volume: 134 start-page: e202201258 year: 2022 ident: e_1_2_7_89_2 publication-title: Angew. Chem. doi: 10.1002/ange.202201258 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202000909 – ident: e_1_2_7_87_2 doi: 10.1002/anie.201210267 – ident: e_1_2_7_59_2 doi: 10.1002/anie.202117872 – ident: e_1_2_7_14_3 doi: 10.1002/ange.201905563 – ident: e_1_2_7_77_2 doi: 10.1002/anie.201803349 – ident: e_1_2_7_81_2 doi: 10.6023/cjoc201612033 – ident: e_1_2_7_8_1 – ident: e_1_2_7_15_3 doi: 10.1002/ange.201813972 – ident: e_1_2_7_32_3 doi: 10.1002/ange.202003423 – ident: e_1_2_7_64_1 doi: 10.1021/ja047639d – ident: e_1_2_7_30_1 – ident: e_1_2_7_67_2 doi: 10.1039/C8CC04195D – ident: e_1_2_7_45_1 doi: 10.1021/jacsau.1c00343 – ident: e_1_2_7_13_2 doi: 10.1039/C4SC02422B – ident: e_1_2_7_90_1 doi: 10.1021/cr040675a – ident: e_1_2_7_71_3 doi: 10.1002/ange.202011566 – ident: e_1_2_7_6_1 doi: 10.1007/978-3-319-31867-7 – ident: e_1_2_7_74_2 doi: 10.1038/s41557-019-0235-8 – ident: e_1_2_7_41_1 doi: 10.1002/anie.202108209 – ident: e_1_2_7_33_2 doi: 10.1039/D1SC02199K – ident: e_1_2_7_34_2 doi: 10.1021/acs.orglett.1c02800 – ident: e_1_2_7_15_2 doi: 10.1002/anie.201813972 – ident: e_1_2_7_35_2 doi: 10.1021/acs.orglett.2c00819 – ident: e_1_2_7_32_2 doi: 10.1002/anie.202003423 – ident: e_1_2_7_55_3 doi: 10.1002/ange.201913340 – ident: e_1_2_7_57_2 doi: 10.1002/anie.202204589 – ident: e_1_2_7_2_2 doi: 10.1007/1-4020-3687-6 – ident: e_1_2_7_11_1 doi: 10.1002/chem.201204097 – ident: e_1_2_7_39_3 doi: 10.1002/ange.201913055 – ident: e_1_2_7_56_2 doi: 10.1039/D1SC04728K – ident: e_1_2_7_60_1 doi: 10.1002/anie.202202527 – ident: e_1_2_7_38_2 doi: 10.1021/jacs.7b10767 – ident: e_1_2_7_78_3 doi: 10.1002/ange.201910318 – ident: e_1_2_7_61_1 doi: 10.1039/D0CS00341G – ident: e_1_2_7_53_2 doi: 10.1002/anie.201805980 – ident: e_1_2_7_63_1 doi: 10.1021/acs.accounts.9b00415 – ident: e_1_2_7_68_2 doi: 10.1039/C9CC06154A – ident: e_1_2_7_36_2 doi: 10.1002/chem.202201743 – ident: e_1_2_7_46_1 doi: 10.31635/ccschem.021.202101036 – ident: e_1_2_7_86_1 – ident: e_1_2_7_73_2 doi: 10.1002/anie.201711077 – ident: e_1_2_7_44_2 doi: 10.1039/D1CC00916H – ident: e_1_2_7_66_2 doi: 10.1039/C6CC00349D – volume-title: Introduction to NMR Spectroscopy year: 1988 ident: e_1_2_7_85_1 – ident: e_1_2_7_14_2 doi: 10.1002/anie.201905563 – ident: e_1_2_7_77_3 doi: 10.1002/ange.201803349 – ident: e_1_2_7_10_2 doi: 10.1021/acs.chemrev.5b00765 – ident: e_1_2_7_42_1 – ident: e_1_2_7_52_2 doi: 10.1021/acs.orglett.7b01511 – ident: e_1_2_7_54_2 doi: 10.1021/acs.orglett.7b04045 – ident: e_1_2_7_26_1 – ident: e_1_2_7_4_1 doi: 10.1021/ja00986a052 – ident: e_1_2_7_40_2 doi: 10.1080/10610278.2022.2039653 – ident: e_1_2_7_79_1 – ident: e_1_2_7_27_3 doi: 10.1002/ange.201600911 – ident: e_1_2_7_71_2 doi: 10.1002/anie.202011566 – ident: e_1_2_7_29_2 doi: 10.1021/acs.joc.0c01558 – ident: e_1_2_7_22_2 doi: 10.1021/jacs.0c00624 – ident: e_1_2_7_82_1 – ident: e_1_2_7_47_1 – volume: 134 start-page: e202117872 year: 2022 ident: e_1_2_7_59_3 publication-title: Angew. Chem. doi: 10.1002/ange.202117872 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.9b12216 – ident: e_1_2_7_70_2 doi: 10.1021/jacs.7b05021 – ident: e_1_2_7_58_2 doi: 10.1039/D2SC01782B – ident: e_1_2_7_17_2 doi: 10.1021/acs.accounts.2c00043 – ident: e_1_2_7_21_1 – ident: e_1_2_7_39_2 doi: 10.1002/anie.201913055 – ident: e_1_2_7_43_3 doi: 10.1002/ange.202102701 – ident: e_1_2_7_16_3 doi: 10.1002/ange.202000909 – ident: e_1_2_7_3_2 doi: 10.1002/9783527621484 – ident: e_1_2_7_75_1 doi: 10.31635/ccschem.021.202101178 – ident: e_1_2_7_87_3 doi: 10.1002/ange.201210267 – ident: e_1_2_7_9_2 doi: 10.1021/ja711260m – ident: e_1_2_7_65_1 – ident: e_1_2_7_28_2 doi: 10.1021/acs.accounts.8b00268 – ident: e_1_2_7_76_1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_7_1 doi: 10.1002/anie.199507131 – ident: e_1_2_7_5_1 doi: 10.6023/cjoc202005007 – ident: e_1_2_7_48_2 doi: 10.1021/acs.joc.5b00099 – ident: e_1_2_7_23_2 doi: 10.1038/s41467-021-26729-3 – ident: e_1_2_7_73_3 doi: 10.1002/ange.201711077 – ident: e_1_2_7_89_1 doi: 10.1002/anie.202201258 – ident: e_1_2_7_80_2 doi: 10.1021/acs.orglett.5b01871 – ident: e_1_2_7_19_2 doi: 10.1021/jacs.9b03559 – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_2 doi: 10.1002/ange.19951070704 – ident: e_1_2_7_41_2 doi: 10.1002/ange.202108209 – ident: e_1_2_7_20_2 doi: 10.1002/smll.202003490 – ident: e_1_2_7_88_2 doi: 10.1021/acs.orglett.6b01842 – ident: e_1_2_7_84_1 doi: 10.1021/ja064776x – ident: e_1_2_7_62_1 doi: 10.1021/acs.accounts.8b00255 – ident: e_1_2_7_55_2 doi: 10.1002/anie.201913340 – volume: 134 start-page: e202204589 year: 2022 ident: e_1_2_7_57_3 publication-title: Angew. Chem. doi: 10.1002/ange.202204589 – ident: e_1_2_7_24_2 doi: 10.31635/ccschem.021.202100870 – ident: e_1_2_7_69_1 – ident: e_1_2_7_27_2 doi: 10.1002/anie.201600911 – ident: e_1_2_7_72_1 – ident: e_1_2_7_43_2 doi: 10.1002/anie.202102701 – ident: e_1_2_7_49_2 doi: 10.1039/C5NJ03616J – ident: e_1_2_7_18_1 – ident: e_1_2_7_50_1 – ident: e_1_2_7_78_2 doi: 10.1002/anie.201910318 – ident: e_1_2_7_83_1 doi: 10.1039/c2cc36027f – ident: e_1_2_7_12_1 – ident: e_1_2_7_53_3 doi: 10.1002/ange.201805980 – ident: e_1_2_7_25_2 doi: 10.6023/cjoc202100035 – volume: 128 start-page: 14744 year: 2006 ident: WOS:000242021700005 article-title: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja064776x – volume: 139 start-page: 8436 year: 2017 ident: WOS:000404809600014 article-title: Molecular Recognition and Chirality Sensing of Epoxides in Water Using Endo-Functionalized Molecular Tubes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05021 – volume: 132 start-page: 10145 year: 2020 ident: 000853132800001.55 publication-title: Angew. Chem – volume: 131 start-page: 3925 year: 2019 ident: 000853132800001.15 publication-title: Angew. Chem – volume: 52 start-page: 7252 year: 2013 ident: WOS:000321298800041 article-title: Twisted Cucurbit[14]uril publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201210267 – volume: 53 start-page: 198 year: 2020 ident: WOS:000509420300017 article-title: Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00415 – volume: 61 start-page: ARTN e202201258 year: 2022 ident: WOS:000790023400001 article-title: Circular Dichroism Based Chirality Sensing with Supramolecular Host-Guest Chemistry publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202201258 – volume: 57 start-page: 9853 year: 2018 ident: WOS:000439741900048 article-title: Desymmetrized Leaning Pillar[6]arene publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201805980 – volume: 134 year: 2022 ident: 000853132800001.63 publication-title: Angew. Chem – volume: 40 start-page: 4756 year: 2016 ident: WOS:000375586400092 article-title: A water-soluble hybrid[4]arene: synthesis, host-guest complexation and application in the construction of a supra-amphiphile publication-title: NEW JOURNAL OF CHEMISTRY doi: 10.1039/c5nj03616j – volume: 130 start-page: 717 year: 2018 ident: 000853132800001.75 publication-title: Angew. Chem – volume: 4 start-page: 1977 year: 2022 ident: WOS:000810728900016 article-title: Biomimetic Recognition-Based Bioorthogonal Host-Guest Pairs for Cell Targeting and Tissue Imaging in Living Animals publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202101178 – volume: 17 start-page: 3880 year: 2015 ident: WOS:000359393800061 article-title: Synthesis, Solid-State Structures, and Molecular Recognition of Chiral Molecular Tweezer and Related Structures Based on a Rigid Bis-Naphthalene Cleft publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b01871 – volume: 28 start-page: ARTN e202201743 year: 2022 ident: WOS:000841527700001 article-title: New Synthetic Route to Water-Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202201743 – volume: 131 start-page: 15280 year: 2019 ident: 000853132800001.81 publication-title: Angew. Chem – volume: 58 start-page: 10281 year: 2019 ident: WOS:000476452700040 article-title: Efficient Separation of cis- and trans-1,2-Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201905563 – volume: 61 start-page: ARTN e202117273 year: 2022 ident: WOS:000750924000001 article-title: Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202117273 – volume: 128 start-page: 5390 year: 2016 ident: 000853132800001.26 publication-title: Angew. Chem – volume: 85 start-page: 11465 year: 2020 ident: WOS:000569376800039 article-title: Helic[1]triptycene[3]arene: Synthesis, Complexation, and Formation of [2]Rotaxane Shuttle publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.0c01558 – volume: 89 start-page: 7017 year: 1967 ident: WOS:A1967A393800035 article-title: CYCLIC POLYETHERS AND THEIR COMPLEXES WITH METAL SALTS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 13 start-page: 6254 year: 2022 ident: WOS:000794325100001 article-title: Cagearenes: synthesis, characterization, and application for programmed vapour release publication-title: CHEMICAL SCIENCE doi: 10.1039/d2sc01782b – volume: 106 start-page: 2912 year: 2006 ident: WOS:000238973000013 article-title: High-throughput and parallel screening methods in asymmetric hydrogenation publication-title: CHEMICAL REVIEWS doi: 10.1021/cr040675a – volume: 81 start-page: 2974 year: 2016 ident: WOS:000373520200029 article-title: Calix[3]carbazole: One-Step Synthesis and Host-Guest Binding publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.6b00252 – volume: 59 start-page: 3994 year: 2020 ident: WOS:000508248800001 article-title: Tiara[5]arenes: Synthesis, Solid-State Conformational Studies, Host-Guest Properties, and Application as Nonporous Adaptive Crystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201913055 – volume: 52 start-page: 9078 year: 2016 ident: WOS:000379431000024 article-title: endo-Functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc00349d – year: 2008 ident: 000853132800001.2 publication-title: Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis – year: 1988 ident: 000853132800001.86 publication-title: Introduction to NMR Spectroscopy – year: 2016 ident: 000853132800001.5 publication-title: Calixarenes and Beyond – volume: 132 start-page: 7281 year: 2020 ident: 000853132800001.17 publication-title: Angew. Chem – volume: 133 start-page: 13131 year: 2021 ident: 000853132800001.43 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000853132800001.58 publication-title: Angew. Chem – volume: 48 start-page: 10999 year: 2012 ident: WOS:000309840400019 article-title: Pillar[n]arenes (n=8-10) with two cavities: synthesis, structures and complexing properties publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c2cc36027f – volume: 40 start-page: 3714 year: 2020 ident: WOS:000598969200014 article-title: Recent Advances in Novel Macrocyclic Arenes publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY doi: 10.6023/cjoc202005007 – volume: 1 start-page: 1885 year: 2021 ident: WOS:000730355700007 article-title: Xanthene[n]arenes: Exceptionally Large, Bow Shaped Macrocyclic Building Blocks Suitable for Self-Assembly publication-title: JACS AU doi: 10.1021/jacsau.1c00343 – volume: 130 start-page: 5022 year: 2008 ident: WOS:000254933000011 article-title: para-bridged symmetrical pillar[5]arenes:: Their Lewis acid catalyzed synthesis and host-guest property publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja711260m – volume: 141 start-page: 12280 year: 2019 ident: WOS:000480497100019 article-title: Geminiarene: Molecular Scale Dual Selectivity for Chlorobenzene and Chlorocyclohexane Fractionation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b03559 – volume: 130 start-page: 7935 year: 2018 ident: 000853132800001.79 publication-title: Angew. Chem – volume: 12 start-page: 9952 year: 2021 ident: WOS:000662328800001 article-title: An intramolecularly self-templated synthesis of macrocycles: self-filling effects on the formation of prismarenes publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc02199k – volume: 57 start-page: 3987 year: 2021 ident: WOS:000632509700001 article-title: 3,6-Fluoren[5]arenes: synthesis, structure and complexation with fullerenes C60 and C70 publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d1cc00916h – volume: 131 start-page: 10387 year: 2019 ident: 000853132800001.13 publication-title: Angew. Chem – volume: 58 start-page: 15136 year: 2019 ident: WOS:000485592500001 article-title: Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane-Based Molecular Shuttles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910318 – volume: 126 start-page: 12732 year: 2004 ident: WOS:000224357700011 article-title: Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja047639d – volume: 142 start-page: 1752 year: 2020 ident: WOS:000510531900018 article-title: Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12216 – volume: 140 start-page: 74 year: 2018 ident: WOS:000422813300019 article-title: Rim-Differentiated C5-Symmetric Tiara-Pillar[5]arenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b10767 – volume: 4 start-page: 1806 year: 2022 ident: WOS:000794318300032 article-title: Bisindole [3]arenes-Indolyl Macrocyclic Arenes Having Significant Iodine Capture Capacity publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202101036 – volume: 6 start-page: 197 year: 2015 ident: WOS:000345901600018 article-title: Biphen[n]arenes publication-title: CHEMICAL SCIENCE doi: 10.1039/c4sc02422b – volume: 142 start-page: 8262 year: 2020 ident: WOS:000535173500027 article-title: Pagoda[4]arene and i-Pagoda[4]arene publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c00624 – volume: 130 start-page: 10001 year: 2018 ident: 000853132800001.52 publication-title: Angew. Chem – volume: 116 start-page: 7937 year: 2016 ident: WOS:000380730100006 article-title: Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00765 – volume: 132 start-page: 15926 year: 2020 ident: 000853132800001.31 publication-title: Angew. Chem – volume: 55 start-page: 5304 year: 2016 ident: WOS:000374564300034 article-title: Triptycene-Based Chiral Macrocyclic Hosts for Highly Enantioselective Recognition of Chiral Guests Containing a Trimethylamino Group publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600911 – volume: 57 start-page: 7809 year: 2018 ident: WOS:000435766800040 article-title: Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201803349 – volume: 58 start-page: 3885 year: 2019 ident: WOS:000462680700035 article-title: Terphen[n]arenes and Quaterphen[n]arenes (n=3-6): One-Pot Synthesis, Self-Assembly into Supramolecular Gels, and Iodine Capture publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201813972 – volume: 49 start-page: 4176 year: 2020 ident: WOS:000545930500012 article-title: Conformationally adaptive macrocycles with flipping aromatic sidewalls publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00341g – volume: 57 start-page: 709 year: 2018 ident: WOS:000419594700015 article-title: Achieving Strong Positive Cooperativity through Activating Weak Non-Covalent Interactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201711077 – volume: 41 start-page: 2141 year: 2021 ident: WOS:000669363500039 article-title: Pagoda[5]arene: An Emerging Anthracene-Based Macrocyclic Arene with a Deep and Well-Defined Cavity publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY doi: 10.6023/cjoc202100035 – volume: 12 start-page: 15528 year: 2021 ident: WOS:000722647100001 article-title: Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc04728k – volume: 34 start-page: 713 year: 1995 ident: WOS:A1995QU30500001 article-title: CALIXARENES, MACROCYCLES WITH (ALMOST) UNLIMITED POSSIBILITIES publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH – volume: 33 start-page: 442 year: 2021 ident: WOS:000766475900001 article-title: Tiara[6]arenes publication-title: SUPRAMOLECULAR CHEMISTRY doi: 10.1080/10610278.2022.2039653 – volume: 61 start-page: ARTN e202202559 year: 2022 ident: WOS:000820402300001 article-title: Spatiotemporal Release of Reactive Oxygen Species and NO for Overcoming Biofilm Heterogeneity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202202559 – volume: 132 start-page: 4023 year: 2020 ident: 000853132800001.38 publication-title: Angew. Chem – volume: 24 start-page: 2711 year: 2022 ident: WOS:000791817200025 article-title: Molecular Recognition in an Aqueous Medium Using Water-Soluble Prismarene Hosts publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.2c00819 – volume: 37 start-page: 603 year: 2017 ident: WOS:000401297800006 article-title: Synthesis of Bis-naphthalene and Their Derivatives and Their Complexation with Organic Cation publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY doi: 10.6023/cjoc201612033 – volume: 59 start-page: 15794 year: 2020 ident: WOS:000558775000001 article-title: Prismarene: An Emerging Naphthol-Based Macrocyclic Arene publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202003423 – volume: 59 start-page: 23817 year: 2020 ident: WOS:000578273200001 article-title: A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011566 – volume: 133 start-page: 22098 year: 2021 ident: 000853132800001.41 publication-title: Angew. Chem – volume: 11 start-page: 470 year: 2019 ident: WOS:000465518600014 article-title: Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-019-0235-8 – volume: 134 year: 2022 ident: 000853132800001.61 publication-title: Angew. Chem – volume: 61 start-page: ARTN e202204589 year: 2022 ident: WOS:000789997500001 article-title: "Rim-Differentiated" Pillar[6]arenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202204589 – volume: 54 start-page: 7677 year: 2018 ident: WOS:000442118800025 article-title: Allosteric cooperativity in ternary complexes with low symmetry publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c8cc04195d – volume: 19 start-page: 3860 year: 2013 ident: WOS:000316009800012 article-title: Asararenes-A Family of Large Aromatic Macrocycles publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201204097 – volume: 61 start-page: ARTN e202117872 year: 2022 ident: WOS:000757798700001 article-title: A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202117872 – volume: 55 start-page: 916 year: 2022 ident: WOS:000771914800011 article-title: Biphen[n]arenes: Modular Synthesis, Customizable Cavity Sizes, and Diverse Skeletons publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00043 – volume: 107 start-page: 785 year: 1995 ident: 000853132800001.7 publication-title: Angew. Chem – volume: 51 start-page: 2093 year: 2018 ident: WOS:000445441200021 article-title: Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00268 – volume: 59 start-page: 7214 year: 2020 ident: WOS:000526818900037 article-title: A Modular Synthetic Strategy for Functional Macrocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202000909 – volume: 18 start-page: 4020 year: 2016 ident: WOS:000381847500022 article-title: Twisted Cucurbit[n]urils publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b01842 – volume: 60 start-page: 13021 year: 2021 ident: WOS:000648095000001 article-title: Towards the Highly Efficient Synthesis and Selective Methylation of C(sp3)-Bridged [6]Cycloparaphenylenes from Fluoren[3]arenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102701 – volume: 132 start-page: 24025 year: 2020 ident: 000853132800001.73 publication-title: Angew. Chem – volume: 55 start-page: 10924 year: 2019 ident: WOS:000484981000018 article-title: Unexpected solvent effect on the binding of positively-charged macrocycles to neutral aromatic hydrocarbons publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c9cc06154a – volume: 19 start-page: 3719 year: 2017 ident: WOS:000406356500009 article-title: Calix[4,5]tetrolarenes: A New Family of Macrocycles publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b01511 – volume: 59 start-page: 10059 year: 2020 ident: WOS:000506705200001 article-title: BowtieArene: A Dual Macrocycle Exhibiting Stimuli-Responsive Fluorescence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201913340 – volume: 80 start-page: 3488 year: 2015 ident: WOS:000352463100013 article-title: Hybrid [n]Arenes through Thermodynamically Driven Macrocyclization Reactions publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.5b00099 – volume: 51 start-page: 2064 year: 2018 ident: WOS:000445441200018 article-title: Nonporous Adaptive Crystals of Pillararenes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00255 – volume: 4 start-page: 318 year: 2022 ident: WOS:000794257100026 article-title: Pagoda[5]arene with Large and Rigid Cavity for the Formation of 1:2 Host-Guest Complexes and Acid/Base-Responsive Crystalline Vapochromic Properties publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202100870 – volume: 16 start-page: ARTN 2003490 year: 2020 ident: WOS:000550885400001 article-title: Elongated-Geminiarene: Syntheses, Solid-State Conformational Investigations, and Application in Aromatics/Cyclic Aliphatics Separation publication-title: SMALL doi: 10.1002/smll.202003490 – volume: 60 start-page: 21927 year: 2021 ident: WOS:000689685500001 article-title: Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202108209 – volume: 20 start-page: 1295 year: 2018 ident: WOS:000426804200009 article-title: Coumarin[4]arene: A Fluorescent Macrocycle publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b04045 – volume: 12 start-page: ARTN 6378 year: 2021 ident: WOS:000714754400049 article-title: Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-26729-3 – year: 2005 ident: 000853132800001.1 publication-title: Current Trends and Future Perspectives – volume: 23 start-page: 8143 year: 2021 ident: WOS:000716793100006 article-title: per-Hydroxylated Prism[n]arenes: Supramolecularly Assisted Demethylation of Methoxy-Prism[5]arene publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c02800 |
| SSID | ssj0028806 |
| Score | 2.5784163 |
| Snippet | Macrocyclic hosts with a well‐defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a... Macrocyclic hosts with a well-defined cavity are particularly appealing for supramolecular chemistry, but they are still rare. In this research, we reported a... |
| Source | Web of Science |
| SourceID | proquest pubmed webofscience crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202211853 |
| SubjectTerms | Alcohols binding capacity Cations Chemical reactions Chemical synthesis Chemistry Chemistry, Multidisciplinary Chirality Chirality Sensing Conformation Friedel-Crafts reaction Holes Homology Host–Guest Chemistry Macrocycles macrocyclic compounds Methylene Molecular Conformation Molecular Recognition Naphthotubes optical isomerism Physical Sciences Recognition Science & Technology |
| Title | Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211853 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000853132800001 https://www.ncbi.nlm.nih.gov/pubmed/36042003 https://www.proquest.com/docview/2723275097 https://www.proquest.com/docview/2708735120 https://www.proquest.com/docview/2811989053 |
| Volume | 61 |
| WOS | 000853132800001 |
| WOSCitedRecordID | wos000853132800001 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLRJcKG9CS2WkSlwaNbGT2D6WpSuQ6Aq1VNpblMR2uxLKVpssEjd-Ar-xv6QzedEF8RDcknjyGo8z3ziebwD2bOYCk2UOgxwX-JHjxscjzg9MiN7AOp1r1xSbkNOpms30hxtZ_C0_xDDhRiOj-V7TAM_y6uA7aShlYGN8xzGCQZezAZscjTceweabk8nZ-yHoQvtsM4yE8KkQfU_cGPCD9SusO6af0OYPjmkdyzbOaLL1_69xH-51QJQdtpbzAG7Z8iHcGff13x5BffqlRHRYzat9RnmB8_PVsps5ZD2VyT477svrspN-KdKiZFlp2PhivmxAPjulRfLlOVs4dmzRMNDR2auv3143uWKGTbNLmpytV7mtHsPZ5Ojj-K3f1Wjwi0hygR0bq0Sp2GqNwM8mikdGRNryxARFrJxTyvDIIiqUESLkqHAu0yJ3KtcFUeuLJzAqF6V9Bsy6XMqwyDFkJZ7AUEfWKWF0YmMnkzzzwO87KC06AnOqo_EpbamXeUq6TAddevBqkL9sqTt-KbnT93faDeEq5fh6RH6vpQcvh2bsA_qjkpV2sSKZQEmBmCn4jYwKaV1aQLd52trS8DgiwW8mKsGDvZvGNbQ3iJjINVXzF8aD8G_Exp1yiNWg9oA35vcHFaSH03dHw97zfzlpG-7SNjn2UO7AqF6u7Au4XXyu59VyFzbkTO12o_MaPVo59Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5Bi1ReuAuBAkaqxEujJrY3th_L0lUrdiPUQ-pblMMuK6Fstcki8cZP4DfyS5jJBQviEOIxzuQajz3fOJ5vAHZt6oIiTR0GOS7wpeOFjy3OD4oQvYF1JjOuKTah4lhfXJi33W5CyoVp-SGGBTcaGc18TQOcFqT3v7GGUgo2BngcQxj0OddhU6ItoZFvvj6ZnE-HqAsNtE0xEsKnSvQ9c2PA99fvsO6ZfoKbP3imdTDbeKPJ7f_wHXfgVgdF2UFrO3fhmi3vwda4rwB3H-rTjyXiw2pe7THKDJxfrpbd2iHryUz22KwvsMtO-s1Ii5KlZcHG7-bLBuazU9omX16yhWMzi6aBrs5--fT5VZMtVrA4vaLl2XqV2eoBnE8Oz8ZHflelwc-l4gK7dqQjrUfWGIR-NtJcFkIay6MiyEfaOa0LLi3iQiURI8vcudSIzOnM5ESuL7Zho1yU9hEw6zKlwjzDoJWYAkMjrdOiMJEdORVlqQd-30NJ3lGYUyWN90lLvswT0mUy6NKDl4P8VUve8UvJnb7Dk24QVwnHzyP6e6M8eDGcxj6gfyppaRcrkgm0Eoiagt_I6JB2pgX0mIetMQ2vIyKcNVEJHux-b13D-QYTE72mbv7DeBD-jdi4Uw7xGtQe8Mb-_qCC5CA-PhyOHv_LRc9h6-hsNk2mx_GbJ3CT2snNh2oHNurlyj6FG_mHel4tn3WD9CubVjz9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEXngUCBYxUiUujJo43to9l2xUVbVS1VOotSmK7rISyq00WiRs_gd_IL2EmL1gQDyGOcSav8djzjeP5BmDbZi4wWeYwyHGBLxw3PrY4PzAhegPrdK5dU2xCJom6uNAn3W5CyoVp-SGGBTcaGc18TQPcLozb_cYaSinYGOBxDGHQ51yFDUGVZEawsX86PT8aoi400DbFKIp8qkTfMzcGfHf9Duue6Se4-YNnWgezjTea3v4P33EHbnVQlO21tnMXrtjyHtyY9BXg7kN99rFEfFjNqh1GmYGzy9WyWztkPZnJDjvuC-yy034z0rxkWWnY5N1s2cB8dkbb5MtLNnfs2KJpoKuzXz59ftVkixmWZAtanq1Xua024Xx68Hby2u-qNPiFkDzCrh2rWKmx1Rqhn40VFyYS2vLYBMVYOaeU4cIiLpQCMbIonMt0lDuV64LI9aMHMCrnpX0EzLpcyrDIMWglpsBQC-tUZHRsx07GeeaB3_dQWnQU5lRJ433aki_zlHSZDrr04OUgv2jJO34pudV3eNoN4irl-HlEf6-lBy-G09gH9E8lK-18RTKBkhGipuA3MiqknWkBPeZha0zD60QxzpqoBA-2v7eu4XyDiYleUzX_YTwI_0Zs0imHeA1qD3hjf39QQbqXHB4MR4__5aLncP1kf5oeHSZvnsBNaiYvH8otGNXLlX0K14oP9axaPuvG6FfMmDx4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+Configurational+Analysis%2C+Molecular+Recognition+and+Chirality+Sensing+of+Methylene-Bridged+Naphthotubes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Yan-Fang&rft.au=Yao%2C+Huan&rft.au=Yang%2C+Liu-Pan&rft.au=Quan%2C+Mao&rft.date=2022-10-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.spage=e202211853&rft_id=info:doi/10.1002%2Fanie.202211853&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |