Fuel‐Free Synthetic Micro‐/Nanomachines
Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventiona...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 29; číslo 9; s. np - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.03.2017
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.
Fuel‐free synthetic micro‐/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel‐free micro‐/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications. |
|---|---|
| AbstractList | Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H sub(2)O sub(2)), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Fuel-free synthetic micro-/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel-free micro-/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications. Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2 O2 ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H O ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Fuel‐free synthetic micro‐/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel‐free micro‐/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications. Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H 2 O 2 ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. |
| Author | Xu, Li‐Ping Zhang, Xueji Wang, Shutao Xu, Tailin Gao, Wei |
| Author_xml | – sequence: 1 givenname: Tailin surname: Xu fullname: Xu, Tailin organization: University of Science & Technology Beijing – sequence: 2 givenname: Wei surname: Gao fullname: Gao, Wei organization: University of California – sequence: 3 givenname: Li‐Ping surname: Xu fullname: Xu, Li‐Ping email: xuliping@ustb.edu.cn organization: University of Science & Technology Beijing – sequence: 4 givenname: Xueji surname: Zhang fullname: Zhang, Xueji email: zhangxueji@ustb.edu.cn organization: University of Science & Technology Beijing – sequence: 5 givenname: Shutao surname: Wang fullname: Wang, Shutao email: stwang@mail.ipc.ac.cn organization: University of Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28026067$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1LAzEQhoMoWqtXjyJ4EWRrvjc5FrUqVD2o55DNTjCyH7rZRXrzJ_gb_SVuaVUoiJ4yhOeZYebdRutVXQFCewSPCMb0xOalHVFMJGZU4DU0IIKShGMt1tEAayYSLbnaQtsxPmGMtcRyE21RhWlfpQN0POmg-Hh7nzQAB3ezqn2ENriD6-Cauv8-ubFVXVr3GCqIO2jD2yLC7vIdoofJ-f3pZTK9vbg6HU8Tx1OKEy59mjGuQFsrMis9SEF0DiL3mffEOcW88ErmUqd5JpWlPZRplvrcWQKCDdHRou9zU790EFtThuigKGwFdRcNUYoTKjVn_0AFY4LqdI4erqBPdddU_SKGaIo5VZLMZ-8vqS4rITfPTShtMzNfF-sBvgD6A8XYgDcutLYNddU2NhSGYDMPxsyDMd_B9NpoRfvq_KugF8JrKGD2B23GZ9fjH_cTEJqf9g |
| CitedBy_id | crossref_primary_10_1109_TMAG_2021_3079252 crossref_primary_10_1002_adfm_201705421 crossref_primary_10_1002_smll_202308580 crossref_primary_10_3390_mi13122144 crossref_primary_10_1002_adfm_202009475 crossref_primary_10_3389_fchem_2024_1423696 crossref_primary_10_3390_ijms26167684 crossref_primary_10_1039_C7SC02434G crossref_primary_10_1002_adma_201804540 crossref_primary_10_1002_adfm_201910108 crossref_primary_10_1002_anie_201705667 crossref_primary_10_1093_nsr_nwz185 crossref_primary_10_1002_smll_202003834 crossref_primary_10_1088_1361_648X_ab5e0e crossref_primary_10_1002_adfm_202110625 crossref_primary_10_1007_s12274_020_3092_2 crossref_primary_10_1039_D2NR03963J crossref_primary_10_1088_1361_6439_aaf408 crossref_primary_10_1016_j_jmmm_2018_08_001 crossref_primary_10_1016_j_bios_2022_114297 crossref_primary_10_1039_D3NR02443A crossref_primary_10_3390_app10238563 crossref_primary_10_1038_nature23657 crossref_primary_10_1002_smtd_202300390 crossref_primary_10_1021_acsnano_5c03911 crossref_primary_10_3762_bjnano_10_131 crossref_primary_10_1002_VIW_20200005 crossref_primary_10_1007_s12274_022_5356_2 crossref_primary_10_1021_jacs_3c07060 crossref_primary_10_1103_PhysRevResearch_2_033241 crossref_primary_10_1002_adfm_201908283 crossref_primary_10_3390_nano9121672 crossref_primary_10_1002_adfm_202112935 crossref_primary_10_1002_advs_202402888 crossref_primary_10_1038_s41467_019_13255_6 crossref_primary_10_1038_s41565_019_0487_x crossref_primary_10_1002_adma_201704047 crossref_primary_10_1016_j_cocis_2018_01_006 crossref_primary_10_1002_smll_201905446 crossref_primary_10_1002_admt_201800575 crossref_primary_10_1002_adbi_202200308 crossref_primary_10_1109_JIOT_2023_3255412 crossref_primary_10_1177_09544062211014547 crossref_primary_10_3390_prosthesis4030034 crossref_primary_10_1002_adhm_202001212 crossref_primary_10_3390_mi9020075 crossref_primary_10_3390_mi9020078 crossref_primary_10_1002_anie_201801910 crossref_primary_10_1002_agt2_128 crossref_primary_10_1002_adma_202412227 crossref_primary_10_1021_acsabm_5c00433 crossref_primary_10_1088_1361_6439_ab087d crossref_primary_10_1002_adfm_201706066 crossref_primary_10_3390_mi16020181 crossref_primary_10_1140_epje_s10189_024_00466_z crossref_primary_10_1002_ange_201808294 crossref_primary_10_1016_j_eurpolymj_2023_112557 crossref_primary_10_1109_TASE_2019_2937232 crossref_primary_10_1039_C8NR05655B crossref_primary_10_1021_jacs_1c04836 crossref_primary_10_1007_s10853_022_07915_0 crossref_primary_10_1002_adfm_202311136 crossref_primary_10_1002_aisy_202100002 crossref_primary_10_1016_j_mattod_2025_05_004 crossref_primary_10_1002_adfm_202303519 crossref_primary_10_3389_fbioe_2024_1353660 crossref_primary_10_1002_adma_202002047 crossref_primary_10_3390_mi12020222 crossref_primary_10_1063_5_0195528 crossref_primary_10_1016_j_nanoms_2024_05_013 crossref_primary_10_1002_adtp_201800056 crossref_primary_10_1016_j_chempr_2020_09_023 crossref_primary_10_3390_mi9010010 crossref_primary_10_1080_10717544_2018_1497106 crossref_primary_10_1002_admt_201800636 crossref_primary_10_1002_adma_202204996 crossref_primary_10_1002_adfm_202106204 crossref_primary_10_1002_adfm_202212452 crossref_primary_10_1007_s00604_022_05229_1 crossref_primary_10_1002_cnma_202000352 crossref_primary_10_1002_smll_201805419 crossref_primary_10_1039_D3NR01548C crossref_primary_10_1002_adhm_202001236 crossref_primary_10_1016_j_pnsc_2020_05_001 crossref_primary_10_1002_anbr_202000009 crossref_primary_10_1002_ange_202013689 crossref_primary_10_1002_anie_202007911 crossref_primary_10_1002_ange_202200240 crossref_primary_10_1002_adma_201703660 crossref_primary_10_34133_bmr_0155 crossref_primary_10_1007_s00216_022_04287_x crossref_primary_10_1002_adhm_202401833 crossref_primary_10_1016_j_matlet_2023_134538 crossref_primary_10_3390_mi9020041 crossref_primary_10_1002_anie_201808294 crossref_primary_10_1063_5_0026728 crossref_primary_10_1039_D3NR03770C crossref_primary_10_1088_1742_5468_ad4024 crossref_primary_10_1002_adfm_201705867 crossref_primary_10_1002_anie_202214754 crossref_primary_10_3390_technologies13050174 crossref_primary_10_1002_adfm_201806340 crossref_primary_10_1039_D1NR01465J crossref_primary_10_1002_smll_202102887 crossref_primary_10_1080_1061186X_2020_1797052 crossref_primary_10_1016_j_apmt_2017_07_011 crossref_primary_10_1038_s41578_021_00404_x crossref_primary_10_3390_mi13020337 crossref_primary_10_1002_adfm_201903041 crossref_primary_10_1002_smll_202006449 crossref_primary_10_1021_acs_analchem_5c00619 crossref_primary_10_3390_mi12030280 crossref_primary_10_1002_ange_202214754 crossref_primary_10_1002_adfm_201705953 crossref_primary_10_1109_TIE_2022_3222626 crossref_primary_10_3390_mi14122169 crossref_primary_10_1002_smll_201906184 crossref_primary_10_1002_adma_201705061 crossref_primary_10_1039_D0NR01169J crossref_primary_10_1021_jacs_2c02682 crossref_primary_10_1039_D4EN00863D crossref_primary_10_1002_smsc_202400110 crossref_primary_10_1002_adma_202000512 crossref_primary_10_3390_mi13112028 crossref_primary_10_3389_fchem_2025_1553461 crossref_primary_10_1021_jacs_8b13882 crossref_primary_10_1002_adfm_202307632 crossref_primary_10_1002_ange_202007911 crossref_primary_10_1039_D5SM00462D crossref_primary_10_1002_admi_202200522 crossref_primary_10_1103_PhysRevApplied_11_044064 crossref_primary_10_34133_research_0624 crossref_primary_10_1002_adhm_202400414 crossref_primary_10_1002_anie_201806759 crossref_primary_10_1021_acs_langmuir_9b03036 crossref_primary_10_1002_anie_202013689 crossref_primary_10_1016_j_colsurfa_2025_137181 crossref_primary_10_1109_TRO_2019_2946724 crossref_primary_10_1002_wnan_1703 crossref_primary_10_1016_j_apmt_2021_101034 crossref_primary_10_1016_j_tifs_2025_105268 crossref_primary_10_1002_advs_202002203 crossref_primary_10_1002_admi_202001331 crossref_primary_10_1002_smtd_202300426 crossref_primary_10_1002_adtp_201900096 crossref_primary_10_1039_D4NR04626A crossref_primary_10_1039_D2NR02441A crossref_primary_10_1021_jacs_2c00084 crossref_primary_10_1038_s41467_018_03086_2 crossref_primary_10_1002_adma_202419155 crossref_primary_10_1002_ange_201801910 crossref_primary_10_1002_chem_201900840 crossref_primary_10_3390_mi14030661 crossref_primary_10_1109_TBME_2020_2990380 crossref_primary_10_1002_anie_202200240 crossref_primary_10_1016_j_cej_2025_165816 crossref_primary_10_1002_adma_201701970 crossref_primary_10_1002_anie_202003748 crossref_primary_10_1002_adfm_202413261 crossref_primary_10_1002_smll_202000146 crossref_primary_10_1002_anie_202016260 crossref_primary_10_1039_D5NA00313J crossref_primary_10_1016_j_carbon_2019_08_039 crossref_primary_10_1002_adma_201903329 crossref_primary_10_1002_advs_202300540 crossref_primary_10_1016_j_carbon_2017_05_044 crossref_primary_10_1016_j_nanoen_2019_104120 crossref_primary_10_1002_adfm_201706100 crossref_primary_10_1002_adtp_202100228 crossref_primary_10_1002_smll_202403800 crossref_primary_10_1016_j_cej_2022_135490 crossref_primary_10_1038_s41467_018_04115_w crossref_primary_10_1002_smll_201906701 crossref_primary_10_1016_j_jenvman_2020_111750 crossref_primary_10_1002_adfm_202003195 crossref_primary_10_1002_ange_202016260 crossref_primary_10_1016_j_cocis_2022_101586 crossref_primary_10_1002_ange_202105746 crossref_primary_10_1016_j_bios_2020_112185 crossref_primary_10_1021_acsmaterialslett_5c00396 crossref_primary_10_1039_D1RA05021D crossref_primary_10_2147_IJN_S465959 crossref_primary_10_1039_D3NR05666J crossref_primary_10_1039_D0NR06281B crossref_primary_10_1073_pnas_2104481118 crossref_primary_10_3390_mi15040468 crossref_primary_10_1002_smtd_202401558 crossref_primary_10_1002_adma_202508865 crossref_primary_10_1002_cnma_202300016 crossref_primary_10_1002_ange_202003748 crossref_primary_10_1016_j_cej_2021_129091 crossref_primary_10_1039_D0BM01931C crossref_primary_10_1109_LRA_2023_3322094 crossref_primary_10_1002_anie_202105746 crossref_primary_10_1002_chem_202203913 crossref_primary_10_3389_fchem_2024_1416314 crossref_primary_10_1002_adfm_201900879 crossref_primary_10_1002_anie_202006421 crossref_primary_10_3762_bjnano_12_58 crossref_primary_10_1002_adfm_201806290 crossref_primary_10_1002_rpm_20250021 crossref_primary_10_1016_j_nantod_2024_102212 crossref_primary_10_1039_D3NR03808D crossref_primary_10_1039_D5TC00342C crossref_primary_10_1088_1402_4896_ad1912 crossref_primary_10_1016_j_talanta_2021_122517 crossref_primary_10_1002_aisy_201900100 crossref_primary_10_1002_smll_202006877 crossref_primary_10_1002_smll_202000413 crossref_primary_10_1002_smll_202410901 crossref_primary_10_1021_acs_bioconjchem_4c00480 crossref_primary_10_1002_cbic_202100347 crossref_primary_10_1002_smll_202205252 crossref_primary_10_1016_j_cej_2020_127187 crossref_primary_10_1002_adfm_202101178 crossref_primary_10_1002_adfm_202102265 crossref_primary_10_1016_j_cej_2021_130427 crossref_primary_10_1016_j_cocis_2018_10_002 crossref_primary_10_3390_mi13101780 crossref_primary_10_1002_ange_201705667 crossref_primary_10_1007_s12010_022_03878_9 crossref_primary_10_1063_1_5124007 crossref_primary_10_1007_s00604_022_05298_2 crossref_primary_10_1038_s41598_023_39231_1 crossref_primary_10_1002_sstr_202200356 crossref_primary_10_1016_j_jconrel_2022_06_020 crossref_primary_10_1002_adfm_201905745 crossref_primary_10_1146_annurev_control_032720_104318 crossref_primary_10_1038_s41377_020_00378_5 crossref_primary_10_1002_smll_202104516 crossref_primary_10_1002_advs_201800122 crossref_primary_10_1002_ange_201806759 crossref_primary_10_4155_tde_2017_0113 crossref_primary_10_1002_smll_202502844 crossref_primary_10_1039_D2NR00610C crossref_primary_10_11616_asbi_1392917 crossref_primary_10_1016_j_bios_2023_115746 crossref_primary_10_1016_j_cej_2021_130671 crossref_primary_10_1039_D3NR02299D crossref_primary_10_1016_j_nantod_2023_101853 crossref_primary_10_1039_C7CP02561K crossref_primary_10_1002_ange_202006421 crossref_primary_10_1016_j_actbio_2018_11_016 crossref_primary_10_1021_acsami_5c08683 crossref_primary_10_1002_smll_202305800 crossref_primary_10_1002_admt_201900583 |
| Cites_doi | 10.1038/531312a 10.1002/adma.200801589 10.1021/nn501407r 10.1039/c0cs00078g 10.1007/s10544-013-9791-7 10.1002/9783527651450 10.1039/C4LC00439F 10.1039/C4RA02260B 10.1038/nnano.2013.254 10.1021/ja311455k 10.1002/anie.201406096 10.1063/1.3079655 10.1002/smll.201201864 10.1039/C4CC08285K 10.1038/nnano.2014.79 10.1038/nature01823 10.1021/nl302775e 10.1038/nphoton.2016.83 10.1073/pnas.1422068112 10.1002/adma.200501767 10.1038/nmat1843 10.1039/c1sm05503h 10.1103/PhysRevLett.93.146101 10.15302/J-ENG-2015005 10.1021/acs.nanolett.5b01945 10.1002/smll.201303538 10.1002/adma.201103818 10.1021/nn5039614 10.1021/nn204762w 10.1073/pnas.1524813113 10.1002/adfm.201502248 10.1021/nn4000034 10.1021/acsnano.5b02807 10.1021/nl901869j 10.1039/C4CC07182D 10.1002/adfm.201504699 10.1038/ncomms4632 10.1002/adfm.201600034 10.1002/chem.201405011 10.1021/nn403851v 10.1063/1.4863952 10.1038/nature04090 10.1038/ncomms4676 10.1038/nnano.2007.250 10.1002/smll.201601846 10.1021/ja511012v 10.1039/B601326K 10.1039/C4NR01321B 10.1021/nn505029k 10.1039/C4NR02953D 10.1021/nn305726m 10.1021/ac500912c 10.1038/245380a0 10.1002/adma.201201820 10.1021/ja4018545 10.1039/C6LC00032K 10.1021/nn500077a 10.1039/C2NR32400H 10.1039/c2lc40151g 10.1021/nn301312z 10.1002/smll.201503969 10.1364/OL.11.000288 10.1039/c2jm16813h 10.1002/adma.201502583 10.1002/adma.201301484 10.1039/B716321E 10.1063/1.4880035 10.1021/nn301175b 10.1021/nl402031t 10.1021/ja905142q 10.1016/j.colsurfa.2015.04.032 10.1063/1.4895937 10.1039/C4CC09149C 10.1002/adfm.201403891 10.1021/acs.nanolett.5b03100 10.1073/pnas.0906489107 10.1073/pnas.1504484112 10.1021/ja405135f 10.1021/nl204378r 10.1038/nature01935 10.1002/smll.201101821 10.1146/annurev-bioeng-010510-103409 10.1021/nn3028997 10.1038/nnano.2013.208 10.1039/C2NR32600K 10.1038/ncomms10974 10.1002/smll.201001257 10.1039/C4AN02169J 10.1126/science.1115067 10.1021/ja203773g 10.1021/nn502360t 10.1038/nnano.2014.24 10.1002/anie.201309629 10.1038/nmeth.3218 10.1002/anie.201201902 10.1016/j.nano.2012.03.002 10.1038/nnano.2011.226 10.1021/nl2032487 10.1021/ja306080t 10.1039/c3nr34213a 10.1021/jacs.6b00902 10.1038/35003530 10.1126/science.1139570 10.1039/C4NR02393E 10.1016/j.nantod.2013.08.009 10.1002/anie.201301460 10.1021/nl500068n 10.1073/pnas.1209288109 10.1039/C2NR33040G 10.1016/j.cocis.2015.10.003 10.1038/ncomms6026 10.1002/chem.201203364 10.1038/nnano.2013.54 10.1021/nn800829k 10.1039/C2NR32798H 10.1002/adfm.201504463 10.1038/ncomms8855 10.1021/nn305372n 10.1126/science.1230020 10.1038/nature15373 10.1021/ja047697z 10.1038/nnano.2014.140 10.1016/j.snb.2014.01.099 10.1038/nnano.2008.150 10.1021/nl502975k 10.1038/nnano.2010.104 10.1103/PhysRevLett.101.218304 10.1039/C0NR00566E 10.1039/b910595f 10.1021/ja1072349 10.1002/anie.200804704 10.1038/nmat1563 10.1002/anie.200461890 10.1021/ja104362r 10.1039/C5NR08768F 10.1083/jcb.91.3.107s 10.1039/C3NR04760A 10.1021/nn101861n 10.1039/C4NR03124E 10.1021/acsnano.6b01415 10.1021/acsnano.5b05940 10.1002/smll.201100213 10.1021/acsnano.6b01344 10.1021/ja210874s 10.1016/j.nantod.2011.05.003 10.1038/ncomms8310 10.1039/c004450b 10.1002/smll.201101909 10.1021/acsnano.5b04142 10.1021/ja109627w 10.1021/acsnano.5b01518 10.1002/smll.201401013 10.1038/ncomms9686 10.1021/nl404815q 10.1021/nl404044d 10.1021/acs.nanolett.5b01925 10.1039/C5NR03730A 10.1002/adfm.201501050 10.1002/anie.201301643 10.1021/acsnano.5b08067 10.1021/cr400273r 10.1002/anie.201410754 10.1021/la403946j 10.1038/scientificamerican0509-72 10.1021/ja504150e 10.1021/nn503170c 10.1038/ncomms1035 10.1021/acs.nanolett.5b01929 10.1002/adma.201301208 10.1002/adma.201404444 10.1038/ncomms6119 10.1021/nn5029955 10.1002/smll.201501322 10.1039/c2sc21263c 10.1002/smll.201302856 10.1039/C5NR02347E 10.1021/nn502753x 10.1039/C0CC04126B 10.1038/nmeth873 10.1002/adfm.201502129 10.1002/adfm.201000063 10.1021/nn303309z 10.1021/ja803529u 10.1002/anie.201300913 10.1021/nn405075d 10.1002/smll.201500407 10.1021/nl200720m 10.1103/PhysRevLett.105.268302 10.1002/smll.201502605 10.1021/acsnano.5b06311 10.5772/59888 10.1021/acs.chemrev.5b00047 10.1038/nature03831 10.1021/nl080490 10.1002/anie.201100115 10.1002/smll.201403621 10.1021/am5038998 10.1021/ja904827j 10.1016/j.biomaterials.2013.06.055 10.1038/ncomms1550 10.1021/acs.nanolett.5b01981 10.1021/acs.nanolett.5b04221 10.1038/nchem.1895 10.1021/nn507097k 10.1021/nl900186w 10.1021/nl203717q 10.1073/pnas.1413325111 10.1039/C3TB20840K 10.1021/la303762a 10.1038/nmat4569 10.1021/nl072275j 10.1021/nn506200x |
| ContentType | Journal Article |
| Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201603250 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 28026067 10_1002_adma_201603250 ADMA201603250 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Beijing Municipal Science & Technology Commission funderid: Z161100000116037 – fundername: National Research Fund for Fundamental Key Projects funderid: 2012CB933800 – fundername: Key Research Program of the Chinese Academy of Sciences funderid: KJZD‐EW‐M01 – fundername: MOST funderid: 2013YQ190467 – fundername: National Natural Science Foundation of China funderid: 21425314; 21501184; 21434009; 21421061; 21504098; 21475009; 21475008 – fundername: National High Technology Research and Development Program of China funderid: 2013AA032203 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4720-46f7b348e9aa5ba6fe6519de5dfbff1cc83f5f86d697db68a2ba6b937fdca1e53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 382 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396149800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 |
| IngestDate | Sun Nov 09 11:22:24 EST 2025 Thu Oct 02 12:11:08 EDT 2025 Sun Jul 13 03:42:16 EDT 2025 Mon Jul 21 05:41:52 EDT 2025 Sat Nov 29 07:19:46 EST 2025 Tue Nov 18 20:55:32 EST 2025 Wed Jan 22 16:53:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | energy conversion nanomachines autonomous propulsion micromachines |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4720-46f7b348e9aa5ba6fe6519de5dfbff1cc83f5f86d697db68a2ba6b937fdca1e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| PMID | 28026067 |
| PQID | 1920428615 |
| PQPubID | 2045203 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_1884126943 proquest_miscellaneous_1853352973 proquest_journals_1920428615 pubmed_primary_28026067 crossref_citationtrail_10_1002_adma_201603250 crossref_primary_10_1002_adma_201603250 wiley_primary_10_1002_adma_201603250_ADMA201603250 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Mar |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-Mar |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2015; 140 2010; 10 2013; 4 1981; 91 2010; 105 2013; 7 2008; 101 2013; 8 2013; 5 2012; 12 2014; 136 2013; 9 2010; 20 2012; 134 2010; 1 2015; 137 2009; 94 2000; 404 2013; 52 2014; 14 2007; 6 2012; 29 2007; 2 2008; 20 2012; 24 2010; 5 2012; 22 2010; 4 2014; 12 2010; 6 2014; 10 2015; 482 1973; 245 2011; 2 2015; 51 1986; 11 2015; 54 2016; 10 2015; 526 2011; 3 2016; 16 2011; 6 2016; 15 2011; 133 2011; 7 2016; 12 2012; 109 2016; 7 2007; 317 2015; 115 2013; 339 2015; 112 2016; 21 2009; 107 2016; 28 2005; 17 2016; 26 2016; 8 2008; 130 2013; 29 2013; 25 2004; 126 2011; 11 2008; 8 2008; 3 2007; 36 2009; 48 2012; 51 2013; 19 2014; 5 2013; 15 2014; 4 2014; 2 2013; 13 2016; 113 2005; 309 2014; 9 2014; 8 2014; 6 2014; 53 2015; 12 2015; 1 2015; 15 2015; 6 2011; 40 2015; 11 2005; 436 2005; 437 2006; 5 2006; 3 2009; 131 2015; 9 2014; 111 2014; 196 2015; 7 2014; 114 2005; 44 2014; 86 2014; 105 2015; 25 2015; 27 2003; 424 2004; 93 2013; 34 2011; 50 2015; 21 2016; 531 2010; 132 2009; 9 2009; 300 2013; 135 2016; 138 2013 2011; 47 2009; 3 2012; 6 2012; 7 2014; 104 2012; 8 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_198_1 e_1_2_6_212_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_148_1 e_1_2_6_41_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_102_1 e_1_2_6_186_1 e_1_2_6_200_1 e_1_2_6_5_1 e_1_2_6_208_1 e_1_2_6_49_1 e_1_2_6_26_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_92_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_113_1 e_1_2_6_197_1 e_1_2_6_211_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_185_1 e_1_2_6_6_1 e_1_2_6_207_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_158_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_196_1 e_1_2_6_210_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_169_1 e_1_2_6_108_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_206_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_90_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_195_1 e_1_2_6_134_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_183_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_205_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_194_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_57_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_193_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_22_1 e_1_2_6_204_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_189_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_192_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_203_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_142_1 e_1_2_6_188_1 e_1_2_6_165_1 e_1_2_6_191_1 e_1_2_6_7_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_202_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_153_1 e_1_2_6_199_1 e_1_2_6_130_1 e_1_2_6_176_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_21_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_190_1 e_1_2_6_8_1 e_1_2_6_201_1 e_1_2_6_209_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
| References_xml | – volume: 9 start-page: 4717 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 415 year: 2014 publication-title: Nat. Chem. – volume: 131 start-page: 9926 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 13144 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 117 year: 2015 publication-title: ACS Nano – volume: 4 start-page: 1420 year: 2013 publication-title: Chem. Sci. – volume: 7 start-page: 8169 year: 2011 publication-title: Soft Matter – volume: 15 start-page: 647 year: 2016 publication-title: Nat. Mater. – volume: 4 start-page: 6228 year: 2010 publication-title: ACS Nano – volume: 245 start-page: 380 year: 1973 publication-title: Nature – volume: 6 start-page: 6122 year: 2012 publication-title: ACS Nano – volume: 8 start-page: 336 year: 2013 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 4997 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 3632 year: 2014 publication-title: Nat. Commun. – volume: 25 start-page: 1666 year: 2015 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 36 year: 2010 publication-title: Nat. Commun. – volume: 105 start-page: 114102 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 4445 year: 2012 publication-title: ACS Nano – volume: 10 start-page: 3597 year: 2016 publication-title: ACS Nano – volume: 26 start-page: 3859 year: 2016 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 16113 year: 2013 publication-title: Langmuir – volume: 15 start-page: 4412 year: 2015 publication-title: Nano Lett. – volume: 112 start-page: 43 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1923 year: 2012 publication-title: Nano Lett. – volume: 12 start-page: 1 year: 2015 publication-title: Int. J. Adv. Rob. Syst. – volume: 24 start-page: 811 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 6756 year: 2015 publication-title: ACS Nano – volume: 482 start-page: 92 year: 2015 publication-title: Colloids Surf., A – volume: 8 start-page: 1486 year: 2008 publication-title: Nano Lett. – volume: 424 start-page: 810 year: 2003 publication-title: Nature – volume: 8 start-page: 10471 year: 2016 publication-title: Nanoscale – volume: 12 start-page: 5008 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 5119 year: 2014 publication-title: Nat. Commun. – volume: 113 start-page: 1522 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 2163 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1751 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 11177 year: 2014 publication-title: Nanoscale – volume: 196 start-page: 676 year: 2014 publication-title: Sens. Actuators, B – volume: 8 start-page: 1074 year: 2012 publication-title: Nanomedicine – volume: 6 start-page: 10486 year: 2014 publication-title: Nanoscale – volume: 7 start-page: 818 year: 2013 publication-title: ACS Nano – volume: 25 start-page: 3715 year: 2013 publication-title: Adv. Mater. – volume: 11 start-page: 288 year: 1986 publication-title: Opt. Lett. – volume: 134 start-page: 15217 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 5457 year: 2012 publication-title: Adv. Mater. – volume: 15 start-page: 997 year: 2013 publication-title: Biomed. Microdevices – volume: 16 start-page: 555 year: 2016 publication-title: Nano Lett. – volume: 52 start-page: 7208 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 94 start-page: 064107 year: 2009 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 5512 year: 2015 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 4829 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 933 year: 2013 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 7043 year: 2015 publication-title: Nano Lett. – volume: 10 start-page: 1953 year: 2014 publication-title: Small – volume: 8 start-page: 8300 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 369 year: 2006 publication-title: Nat. Methods – volume: 51 start-page: 511 year: 2015 publication-title: Chem. Comm. – volume: 7 start-page: 13680 year: 2015 publication-title: Nanoscale – volume: 12 start-page: 156 year: 2012 publication-title: Nano Lett. – volume: 112 start-page: 4970 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 7519 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 6098 year: 2016 publication-title: Small – volume: 8 start-page: 8794 year: 2014 publication-title: ACS Nano – volume: 12 start-page: 396 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 8686 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 577 year: 2016 publication-title: Small – volume: 3 start-page: 557 year: 2011 publication-title: Nanoscale – volume: 5 start-page: 1310 year: 2013 publication-title: Nanoscale – volume: 9 start-page: 3663 year: 2009 publication-title: Nano Lett. – year: 2013 – volume: 111 start-page: 12992 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 9415 year: 2014 publication-title: Nanoscale – volume: 135 start-page: 998 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1498 year: 2012 publication-title: Small – volume: 48 start-page: 3308 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 2836 year: 2015 publication-title: Small – volume: 7 start-page: 2047 year: 2011 publication-title: Small – volume: 6 start-page: 14583 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1968 year: 2014 publication-title: Nano Lett. – volume: 136 start-page: 8552 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 3199 year: 2016 publication-title: Adv. Funct. Mater. – volume: 105 start-page: 268302 year: 2010 publication-title: Phys. Rev. Lett. – volume: 526 start-page: 118 year: 2015 publication-title: Nature – volume: 6 start-page: 12142 year: 2014 publication-title: Nanoscale – volume: 317 start-page: 333 year: 2007 publication-title: Science – volume: 22 start-page: 6519 year: 2012 publication-title: J. Mater. Chem. – volume: 10 start-page: 1284 year: 2014 publication-title: Small – volume: 52 start-page: 7000 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 4154 year: 2014 publication-title: Small – volume: 21 start-page: 14 year: 2016 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 131 start-page: 12082 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 13424 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1421 year: 2015 publication-title: Analyst – volume: 51 start-page: 5467 year: 2015 publication-title: Chem. Commun. – volume: 36 start-page: 492 year: 2007 publication-title: Chem. Soc. Rev. – volume: 114 start-page: 6285 year: 2014 publication-title: Chem. Rev. – volume: 21 start-page: 58 year: 2015 publication-title: Chem.–Eur. J. – volume: 6 start-page: 235 year: 2007 publication-title: Nat. Mater. – volume: 133 start-page: 701 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5305 year: 2015 publication-title: Small – volume: 8 start-page: 12041 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 1294 year: 2013 publication-title: Nanoscale – volume: 19 start-page: 28 year: 2013 publication-title: Chem.–Eur. J. – volume: 14 start-page: 2914 year: 2014 publication-title: Lab Chip – volume: 25 start-page: 5863 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 11053 year: 2014 publication-title: ACS Nano – volume: 138 start-page: 6492 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 11118 year: 2014 publication-title: ACS Nano – volume: 115 start-page: 8704 year: 2015 publication-title: Chem. Rev. – volume: 104 start-page: 054102 year: 2014 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 12542 year: 2015 publication-title: ACS Nano – volume: 10 start-page: 4763 year: 2016 publication-title: ACS Nano – volume: 6 start-page: 7175 year: 2014 publication-title: Nanoscale – volume: 20 start-page: 1568 year: 2010 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 305 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 3306 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 293 year: 2016 publication-title: Nat. Photonics – volume: 5 start-page: 1325 year: 2013 publication-title: Nanoscale – volume: 8 start-page: 221 year: 2008 publication-title: Lab Chip – volume: 12 start-page: 3080 year: 2016 publication-title: Small – volume: 4 start-page: 26771 year: 2014 publication-title: RSC Adv. – volume: 53 start-page: 3201 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 309 start-page: 1539 year: 2005 publication-title: Science – volume: 50 start-page: 4161 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 357 year: 2014 publication-title: J. Mater. Chem. B – volume: 8 start-page: 460 year: 2012 publication-title: Small – volume: 86 start-page: 4501 year: 2014 publication-title: Anal. Chem. – volume: 9 start-page: 448 year: 2014 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 295 year: 2014 publication-title: Nat. Nanotechnol. – volume: 107 start-page: 535 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 9232 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 5745 year: 2012 publication-title: ACS Nano – volume: 7 start-page: 11363 year: 2015 publication-title: Nanoscale – volume: 8 start-page: 1271 year: 2008 publication-title: Nano Lett. – volume: 13 start-page: 4263 year: 2013 publication-title: Nano Lett. – volume: 9 start-page: 2890 year: 2009 publication-title: Lab Chip – volume: 6 start-page: 7310 year: 2015 publication-title: Nat. Commun. – volume: 436 start-page: 370 year: 2005 publication-title: Nature – volume: 27 start-page: 2981 year: 2015 publication-title: Adv. Mater. – volume: 91 start-page: 107s year: 1981 publication-title: J. Cell Biol. – volume: 7 start-page: 1360 year: 2013 publication-title: ACS Nano – volume: 437 start-page: 862 year: 2005 publication-title: Nature – volume: 3 start-page: 4 year: 2009 publication-title: ACS Nano – volume: 40 start-page: 2109 year: 2011 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 41 year: 2014 publication-title: Nat. Methods – volume: 135 start-page: 10557 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3676 year: 2014 publication-title: Nat. Commun. – volume: 29 start-page: 7411 year: 2012 publication-title: Langmuir – volume: 104 start-page: 223701 year: 2014 publication-title: Appl. Phys. Lett. – volume: 300 start-page: 72 year: 2009 publication-title: Sci. Am. – volume: 14 start-page: 2407 year: 2014 publication-title: Nano Lett. – volume: 339 start-page: 936 year: 2013 publication-title: Science – volume: 17 start-page: 3011 year: 2005 publication-title: Adv. Mater. – volume: 26 start-page: 1063 year: 2016 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 413 year: 2008 publication-title: Nat. Nanotechnol. – volume: 93 start-page: 146101 year: 2004 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 55 year: 2010 publication-title: Annu. Rev. Biomed. Eng. – volume: 5 start-page: 2909 year: 2013 publication-title: Nanoscale – volume: 25 start-page: 5333 year: 2015 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 5552 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2203 year: 2010 publication-title: Lab Chip – volume: 20 start-page: 4085 year: 2008 publication-title: Adv. Mater. – volume: 135 start-page: 5336 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 8537 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 191 year: 2012 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 97 year: 2006 publication-title: Nat. Mater. – volume: 11 start-page: 4037 year: 2015 publication-title: Small – volume: 7 start-page: 9611 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 2741 year: 2010 publication-title: Small – volume: 16 start-page: 1797 year: 2016 publication-title: Lab Chip – volume: 5 start-page: 545 year: 2010 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 4814 year: 2015 publication-title: Nano Lett. – volume: 25 start-page: 3881 year: 2015 publication-title: Adv. Funct. Mater. – volume: 133 start-page: 11862 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 839 year: 2016 publication-title: ACS Nano – volume: 9 start-page: 2243 year: 2009 publication-title: Nano Lett. – volume: 14 start-page: 6430 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 531 year: 2013 publication-title: Nano Today – volume: 54 start-page: 1414 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 897 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 807 year: 2013 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 1273 year: 2013 publication-title: Nanoscale – volume: 404 start-page: 56 year: 2000 publication-title: Nature – volume: 47 start-page: 698 year: 2011 publication-title: Chem. Commun. – volume: 12 start-page: 2322 year: 2012 publication-title: Lab Chip – volume: 7 start-page: 10974 year: 2016 publication-title: Nat. Commun. – volume: 2 start-page: 565 year: 2007 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 624 year: 2014 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 7746 year: 2014 publication-title: ACS Nano – volume: 51 start-page: 1020 year: 2015 publication-title: Chem. Commun. – volume: 5 start-page: 5026 year: 2014 publication-title: Nat. Commun. – volume: 531 start-page: 312 year: 2016 publication-title: Nature – volume: 8 start-page: 3170 year: 2014 publication-title: ACS Nano – volume: 424 start-page: 408 year: 2003 publication-title: Nature – volume: 28 start-page: 1060 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 9252 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 339 year: 2011 publication-title: Nano Today – volume: 44 start-page: 744 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 101 start-page: 218304 year: 2008 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 21 year: 2015 publication-title: Engineering – volume: 132 start-page: 14403 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2375 year: 2011 publication-title: Nano Lett. – volume: 15 start-page: 5841 year: 2015 publication-title: Nano Lett. – volume: 130 start-page: 8164 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 8918 year: 2013 publication-title: Biomaterials – volume: 2 start-page: 535 year: 2011 publication-title: Nat. Commun. – volume: 8 start-page: 6097 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 8432 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 7855 year: 2015 publication-title: Nat. Commun. – volume: 109 start-page: 11105 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 467 year: 2013 publication-title: Small – volume: 54 start-page: 2525 year: 2015 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_2_1 doi: 10.1038/531312a – ident: e_1_2_6_57_1 doi: 10.1002/adma.200801589 – ident: e_1_2_6_94_1 doi: 10.1021/nn501407r – ident: e_1_2_6_6_1 doi: 10.1039/c0cs00078g – ident: e_1_2_6_166_1 doi: 10.1007/s10544-013-9791-7 – ident: e_1_2_6_9_1 doi: 10.1002/9783527651450 – ident: e_1_2_6_129_1 doi: 10.1039/C4LC00439F – ident: e_1_2_6_156_1 doi: 10.1039/C4RA02260B – ident: e_1_2_6_210_1 doi: 10.1038/nnano.2013.254 – ident: e_1_2_6_52_1 doi: 10.1021/ja311455k – ident: e_1_2_6_11_1 doi: 10.1002/anie.201406096 – ident: e_1_2_6_164_1 doi: 10.1063/1.3079655 – ident: e_1_2_6_70_1 doi: 10.1002/smll.201201864 – ident: e_1_2_6_134_1 doi: 10.1039/C4CC08285K – ident: e_1_2_6_91_1 doi: 10.1038/nnano.2014.79 – ident: e_1_2_6_81_1 doi: 10.1038/nature01823 – ident: e_1_2_6_99_1 doi: 10.1021/nl302775e – ident: e_1_2_6_112_1 doi: 10.1038/nphoton.2016.83 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.1422068112 – ident: e_1_2_6_1_1 doi: 10.1002/adma.200501767 – ident: e_1_2_6_80_1 doi: 10.1038/nmat1843 – ident: e_1_2_6_73_1 doi: 10.1039/c1sm05503h – ident: e_1_2_6_85_1 doi: 10.1103/PhysRevLett.93.146101 – ident: e_1_2_6_146_1 doi: 10.15302/J-ENG-2015005 – ident: e_1_2_6_175_1 doi: 10.1021/acs.nanolett.5b01945 – ident: e_1_2_6_23_1 doi: 10.1002/smll.201303538 – ident: e_1_2_6_159_1 doi: 10.1002/adma.201103818 – ident: e_1_2_6_188_1 doi: 10.1021/nn5039614 – ident: e_1_2_6_15_1 doi: 10.1021/nn204762w – ident: e_1_2_6_178_1 doi: 10.1073/pnas.1524813113 – ident: e_1_2_6_163_1 doi: 10.1002/adfm.201502248 – ident: e_1_2_6_187_1 doi: 10.1021/nn4000034 – ident: e_1_2_6_192_1 doi: 10.1021/acsnano.5b02807 – ident: e_1_2_6_148_1 doi: 10.1021/nl901869j – ident: e_1_2_6_95_1 doi: 10.1039/C4CC07182D – ident: e_1_2_6_135_1 doi: 10.1002/adfm.201504699 – ident: e_1_2_6_78_1 doi: 10.1038/ncomms4632 – ident: e_1_2_6_116_1 doi: 10.1002/adfm.201600034 – ident: e_1_2_6_43_1 doi: 10.1002/chem.201405011 – ident: e_1_2_6_181_1 doi: 10.1021/nn403851v – ident: e_1_2_6_54_1 doi: 10.1063/1.4863952 – ident: e_1_2_6_120_1 doi: 10.1038/nature04090 – ident: e_1_2_6_93_1 doi: 10.1038/ncomms4676 – ident: e_1_2_6_140_1 doi: 10.1038/nnano.2007.250 – ident: e_1_2_6_119_1 doi: 10.1002/smll.201601846 – ident: e_1_2_6_198_1 doi: 10.1021/ja511012v – ident: e_1_2_6_28_1 doi: 10.1039/B601326K – ident: e_1_2_6_41_1 doi: 10.1039/C4NR01321B – ident: e_1_2_6_67_1 doi: 10.1021/nn505029k – ident: e_1_2_6_167_1 doi: 10.1039/C4NR02953D – ident: e_1_2_6_170_1 doi: 10.1021/nn305726m – ident: e_1_2_6_37_1 doi: 10.1021/ac500912c – ident: e_1_2_6_145_1 doi: 10.1038/245380a0 – ident: e_1_2_6_77_1 doi: 10.1002/adma.201201820 – ident: e_1_2_6_131_1 doi: 10.1021/ja4018545 – ident: e_1_2_6_74_1 doi: 10.1039/C6LC00032K – ident: e_1_2_6_39_1 doi: 10.1021/nn500077a – ident: e_1_2_6_130_1 doi: 10.1039/C2NR32400H – ident: e_1_2_6_147_1 doi: 10.1039/c2lc40151g – ident: e_1_2_6_180_1 doi: 10.1021/nn301312z – ident: e_1_2_6_14_1 doi: 10.1002/smll.201503969 – ident: e_1_2_6_103_1 doi: 10.1364/OL.11.000288 – ident: e_1_2_6_126_1 doi: 10.1039/c2jm16813h – ident: e_1_2_6_13_1 doi: 10.1002/adma.201502583 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201301484 – ident: e_1_2_6_179_1 doi: 10.1039/B716321E – ident: e_1_2_6_171_1 doi: 10.1063/1.4880035 – ident: e_1_2_6_40_1 doi: 10.1021/nn301175b – ident: e_1_2_6_158_1 doi: 10.1021/nl402031t – ident: e_1_2_6_48_1 doi: 10.1021/ja905142q – ident: e_1_2_6_96_1 doi: 10.1016/j.colsurfa.2015.04.032 – ident: e_1_2_6_155_1 doi: 10.1063/1.4895937 – ident: e_1_2_6_195_1 doi: 10.1039/C4CC09149C – ident: e_1_2_6_160_1 doi: 10.1002/adfm.201403891 – ident: e_1_2_6_63_1 doi: 10.1021/acs.nanolett.5b03100 – ident: e_1_2_6_137_1 doi: 10.1073/pnas.0906489107 – ident: e_1_2_6_177_1 doi: 10.1073/pnas.1504484112 – ident: e_1_2_6_50_1 doi: 10.1021/ja405135f – ident: e_1_2_6_105_1 doi: 10.1021/nl204378r – ident: e_1_2_6_87_1 doi: 10.1038/nature01935 – ident: e_1_2_6_165_1 doi: 10.1002/smll.201101821 – ident: e_1_2_6_17_1 doi: 10.1146/annurev-bioeng-010510-103409 – ident: e_1_2_6_45_1 doi: 10.1021/nn3028997 – ident: e_1_2_6_98_1 doi: 10.1038/nnano.2013.208 – ident: e_1_2_6_24_1 doi: 10.1039/C2NR32600K – ident: e_1_2_6_109_1 doi: 10.1038/ncomms10974 – ident: e_1_2_6_19_1 doi: 10.1002/smll.201001257 – ident: e_1_2_6_132_1 doi: 10.1039/C4AN02169J – ident: e_1_2_6_86_1 doi: 10.1126/science.1115067 – ident: e_1_2_6_60_1 doi: 10.1021/ja203773g – ident: e_1_2_6_149_1 doi: 10.1021/nn502360t – ident: e_1_2_6_90_1 doi: 10.1038/nnano.2014.24 – ident: e_1_2_6_191_1 doi: 10.1002/anie.201309629 – ident: e_1_2_6_33_1 doi: 10.1038/nmeth.3218 – ident: e_1_2_6_16_1 doi: 10.1002/anie.201201902 – ident: e_1_2_6_208_1 doi: 10.1016/j.nano.2012.03.002 – ident: e_1_2_6_101_1 doi: 10.1038/nnano.2011.226 – ident: e_1_2_6_27_1 doi: 10.1021/nl2032487 – ident: e_1_2_6_31_1 doi: 10.1021/ja306080t – ident: e_1_2_6_38_1 doi: 10.1039/c3nr34213a – ident: e_1_2_6_115_1 doi: 10.1021/jacs.6b00902 – ident: e_1_2_6_202_1 doi: 10.1038/35003530 – ident: e_1_2_6_3_1 doi: 10.1126/science.1139570 – ident: e_1_2_6_55_1 doi: 10.1039/C4NR02393E – ident: e_1_2_6_10_1 doi: 10.1016/j.nantod.2013.08.009 – ident: e_1_2_6_51_1 doi: 10.1002/anie.201301460 – ident: e_1_2_6_53_1 doi: 10.1021/nl500068n – ident: e_1_2_6_30_1 doi: 10.1073/pnas.1209288109 – ident: e_1_2_6_207_1 doi: 10.1039/C2NR33040G – ident: e_1_2_6_44_1 doi: 10.1016/j.cocis.2015.10.003 – ident: e_1_2_6_205_1 doi: 10.1038/ncomms6026 – ident: e_1_2_6_142_1 doi: 10.1002/chem.201203364 – ident: e_1_2_6_209_1 doi: 10.1038/nnano.2013.54 – ident: e_1_2_6_7_1 doi: 10.1021/nn800829k – ident: e_1_2_6_18_1 doi: 10.1039/C2NR32798H – ident: e_1_2_6_162_1 doi: 10.1002/adfm.201504463 – ident: e_1_2_6_111_1 doi: 10.1038/ncomms8855 – ident: e_1_2_6_59_1 doi: 10.1021/nn305372n – ident: e_1_2_6_203_1 doi: 10.1126/science.1230020 – ident: e_1_2_6_211_1 doi: 10.1038/nature15373 – ident: e_1_2_6_46_1 doi: 10.1021/ja047697z – ident: e_1_2_6_100_1 doi: 10.1038/nnano.2014.140 – ident: e_1_2_6_172_1 doi: 10.1016/j.snb.2014.01.099 – ident: e_1_2_6_206_1 doi: 10.1038/nnano.2008.150 – ident: e_1_2_6_107_1 doi: 10.1021/nl502975k – ident: e_1_2_6_75_1 doi: 10.1038/nnano.2010.104 – ident: e_1_2_6_136_1 doi: 10.1103/PhysRevLett.101.218304 – ident: e_1_2_6_118_1 doi: 10.1039/C0NR00566E – ident: e_1_2_6_29_1 doi: 10.1039/b910595f – ident: e_1_2_6_141_1 doi: 10.1021/ja1072349 – ident: e_1_2_6_88_1 doi: 10.1002/anie.200804704 – ident: e_1_2_6_102_1 doi: 10.1038/nmat1563 – ident: e_1_2_6_122_1 doi: 10.1002/anie.200461890 – ident: e_1_2_6_58_1 doi: 10.1021/ja104362r – ident: e_1_2_6_71_1 doi: 10.1039/C5NR08768F – ident: e_1_2_6_139_1 doi: 10.1083/jcb.91.3.107s – ident: e_1_2_6_143_1 doi: 10.1039/C3NR04760A – ident: e_1_2_6_138_1 doi: 10.1021/nn101861n – ident: e_1_2_6_22_1 doi: 10.1039/C4NR03124E – ident: e_1_2_6_199_1 doi: 10.1021/acsnano.6b01415 – ident: e_1_2_6_97_1 doi: 10.1021/acsnano.5b05940 – ident: e_1_2_6_169_1 doi: 10.1002/smll.201100213 – ident: e_1_2_6_184_1 doi: 10.1021/acsnano.6b01344 – ident: e_1_2_6_61_1 doi: 10.1021/ja210874s – ident: e_1_2_6_76_1 doi: 10.1016/j.nantod.2011.05.003 – ident: e_1_2_6_92_1 doi: 10.1038/ncomms8310 – ident: e_1_2_6_117_1 doi: 10.1039/c004450b – ident: e_1_2_6_20_1 doi: 10.1002/smll.201101909 – ident: e_1_2_6_193_1 doi: 10.1021/acsnano.5b04142 – ident: e_1_2_6_128_1 doi: 10.1021/ja109627w – ident: e_1_2_6_150_1 doi: 10.1021/acsnano.5b01518 – ident: e_1_2_6_185_1 doi: 10.1002/smll.201401013 – ident: e_1_2_6_176_1 doi: 10.1038/ncomms9686 – ident: e_1_2_6_151_1 doi: 10.1021/nl404815q – ident: e_1_2_6_144_1 doi: 10.1021/nl404044d – ident: e_1_2_6_154_1 doi: 10.1021/acs.nanolett.5b01925 – ident: e_1_2_6_196_1 doi: 10.1039/C5NR03730A – ident: e_1_2_6_197_1 doi: 10.1002/adfm.201501050 – ident: e_1_2_6_21_1 doi: 10.1002/anie.201301643 – ident: e_1_2_6_64_1 doi: 10.1021/acsnano.5b08067 – ident: e_1_2_6_5_1 doi: 10.1021/cr400273r – ident: e_1_2_6_79_1 doi: 10.1002/anie.201410754 – ident: e_1_2_6_186_1 doi: 10.1021/la403946j – ident: e_1_2_6_8_1 doi: 10.1038/scientificamerican0509-72 – ident: e_1_2_6_183_1 doi: 10.1021/ja504150e – ident: e_1_2_6_66_1 doi: 10.1021/nn503170c – ident: e_1_2_6_36_1 doi: 10.1038/ncomms1035 – ident: e_1_2_6_201_1 doi: 10.1021/acs.nanolett.5b01929 – ident: e_1_2_6_127_1 doi: 10.1002/adma.201301208 – ident: e_1_2_6_161_1 doi: 10.1002/adma.201404444 – ident: e_1_2_6_173_1 doi: 10.1038/ncomms6119 – ident: e_1_2_6_152_1 doi: 10.1021/nn5029955 – ident: e_1_2_6_194_1 doi: 10.1002/smll.201501322 – ident: e_1_2_6_113_1 doi: 10.1039/c2sc21263c – ident: e_1_2_6_174_1 doi: 10.1002/smll.201302856 – ident: e_1_2_6_84_1 doi: 10.1039/C5NR02347E – ident: e_1_2_6_189_1 doi: 10.1021/nn502753x – ident: e_1_2_6_25_1 doi: 10.1039/C0CC04126B – ident: e_1_2_6_200_1 doi: 10.1038/nmeth873 – ident: e_1_2_6_83_1 doi: 10.1002/adfm.201502129 – ident: e_1_2_6_89_1 doi: 10.1002/adfm.201000063 – ident: e_1_2_6_56_1 doi: 10.1021/nn303309z – ident: e_1_2_6_125_1 doi: 10.1021/ja803529u – ident: e_1_2_6_68_1 doi: 10.1002/anie.201300913 – ident: e_1_2_6_42_1 doi: 10.1021/nn405075d – ident: e_1_2_6_12_1 doi: 10.1002/smll.201500407 – ident: e_1_2_6_108_1 doi: 10.1021/nl200720m – ident: e_1_2_6_110_1 doi: 10.1103/PhysRevLett.105.268302 – ident: e_1_2_6_114_1 doi: 10.1002/smll.201502605 – ident: e_1_2_6_106_1 doi: 10.1021/acsnano.5b06311 – ident: e_1_2_6_133_1 doi: 10.5772/59888 – ident: e_1_2_6_168_1 doi: 10.1021/acs.chemrev.5b00047 – ident: e_1_2_6_204_1 doi: 10.1038/nature03831 – ident: e_1_2_6_104_1 doi: 10.1021/nl080490 – ident: e_1_2_6_26_1 doi: 10.1002/anie.201100115 – ident: e_1_2_6_72_1 doi: 10.1002/smll.201403621 – ident: e_1_2_6_124_1 doi: 10.1021/am5038998 – ident: e_1_2_6_49_1 doi: 10.1021/ja904827j – ident: e_1_2_6_35_1 doi: 10.1016/j.biomaterials.2013.06.055 – ident: e_1_2_6_82_1 doi: 10.1038/ncomms1550 – ident: e_1_2_6_121_1 doi: 10.1021/acs.nanolett.5b01981 – ident: e_1_2_6_157_1 doi: 10.1021/acs.nanolett.5b04221 – ident: e_1_2_6_65_1 doi: 10.1038/nchem.1895 – ident: e_1_2_6_69_1 doi: 10.1021/nn507097k – ident: e_1_2_6_153_1 doi: 10.1021/nl900186w – ident: e_1_2_6_62_1 doi: 10.1021/nl203717q – ident: e_1_2_6_190_1 doi: 10.1073/pnas.1413325111 – ident: e_1_2_6_212_1 doi: 10.1039/C3TB20840K – ident: e_1_2_6_123_1 doi: 10.1021/la303762a – ident: e_1_2_6_4_1 doi: 10.1038/nmat4569 – ident: e_1_2_6_47_1 doi: 10.1021/nl072275j – ident: e_1_2_6_182_1 doi: 10.1021/nn506200x |
| SSID | ssj0009606 |
| Score | 2.6536818 |
| SecondaryResourceType | review_article |
| Snippet | Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these... Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | np |
| SubjectTerms | autonomous propulsion Biocompatibility Biological effects Biomedical materials Chemical fuels Drug delivery systems energy conversion Fuels Innovations Materials science micromachines Micromotors Microorganisms nanomachines Nanostructure Propulsion Stimuli Sustainability Swimming Tasks |
| Title | Fuel‐Free Synthetic Micro‐/Nanomachines |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201603250 https://www.ncbi.nlm.nih.gov/pubmed/28026067 https://www.proquest.com/docview/1920428615 https://www.proquest.com/docview/1853352973 https://www.proquest.com/docview/1884126943 |
| Volume | 29 |
| WOSCitedRecordID | wos000396149800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2V0AMcoC20DaUolSpxQFbizX75GJVaPQCq2oJys_ZjVkKiTpUQpN74CfxGfgmztmOIUIvUHm0_W6vZmd233tk3AB9TosWWGZFwLQYJNw6TjA9cknpEdJpcpEqQPTtSJyd6PM6-PjjFX-tDtD_cYmRU43UMcGNn_XvRUOMr3aBYJpnFRfsqI-cVHVg9_JafHt0L78qqvmbc70syyfVCuHHA-stfWJ6YHrHNZfJazT755v-3-wVsNMyzN6pd5SU8w_IVrD_QI9yCg3yOF7fXN_kUsff9d0nkkMC945i0R7f7NBRPflbZlzjbhtP8849PX5KmmkLiuKI1IpdB2SHXmBkjrJEBJbE3j8IHG0LqnB4GEbT0MlPeSm0YgSyxl-CdSVEMX0OnnJT4FnomWEYDpVWWIx9YbYVnPAjiLl6J4NMuJAtTFq6RGo8VLy6KWiSZFdEIRWuELuy3-F-1yMYfkbuLnimaYJsVRFLjyo-4WRc-tI8pTOLehylxMicM0RLimpka_g2jeRpP9hLmTd3rbXOYjuJrUnWBVZ37RDuL0eHxqL3a-ZeX3sEaixSiynfbhc7ldI7v4bm7ujyfTfdgRY31XuPsd7X8_eo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFL2ICtUH7YfVbW27hUIfyrA72SSTeVzUwdLdRawW34Z83EBBZ2XXFXzzJ_gb-0t6MzM7dim2ID7OzMkQknuTk-TmXIBPMdFiw7SIuBLdiGuLUcq7NoodIlpFJlIGyP4YJKOROjtLj-pownAXptKHaDbcgmeU43Vw8LAh3blXDdWuFA4KeZJZWLWvcLIlMvKV_ePsdHCvvCvLBJvhwC9KJVdz5cYu6yz-YXFm-otuLrLXcvrJNp-g4s9ho-ae7X5lLC9gCYuXsP6HIuEr-JLN8PzX7V02QWx_vymIHhK4PQxhe_S6Q4Px-KKMv8TpFpxmByd7h1GdTyGyPKFVIpc-MT2uMNVaGC09SuJvDoXzxvvYWtXzwivpZJo4I5VmBDLEX7yzOkbRew3LxbjAHWhrbxgNlSYxHHnXKCMc414Qe3GJ8C5uQTRvy9zWYuMh58V5Xskkszw0Qt40Qgs-N_jLSmbjQeTuvGvy2t2mOdHUsPYjdtaCj81ncpRw-qELHM8IQ8SE2Gaa9P6FUTwOd3sJs111e1MdpoL8mkxawMre_U898_7-sN88vXlMoQ_w7PBkOMgHX0ff3sIaC4SijH7bheWryQzfwaq9vvo5nbyvbf439qsBAQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL2MdJTtYd3WtcvadRkU-lBMYkWS5cewzKwsDWX9oG9GH1dQaJ2SNIO97SfsN-6X7Mp23IayFsYebR8bId17dWRdnQuwGxMtNkyLiCvRi7i2GKW8Z6PYIaJVZCJlguzZKBmP1fl5elRnE4azMJU-RPPDLXhGGa-Dg-O1891b1VDtSuGgUCeZhVX7Cg-VZFqwMvyWnY5ulXdlWWAzbPhFqeRqodzYY93lLyzPTPfo5jJ7LaefbO0_NPwlvKi5Z2dQGcsreILFa3h-R5FwHfazOV7-_vkrmyJ2jn8URA8J3DkMaXt0u0vBeHJV5l_i7A2cZp9PPn2J6noKkeUJrRK59Inpc4Wp1sJo6VESf3MonDfex9aqvhdeSSfTxBmpNCOQIf7indUxiv4GtIpJgW-ho71hFCpNYjjynlFGOMa9IPbiEuFd3IZo0Ze5rcXGQ82Ly7ySSWZ56IS86YQ27DX460pm46_I7cXQ5LW7zXKiqWHtR-ysDR-bx-QoYfdDFziZE4aICbHNNOk_hFE8Dmd7CbNZDXvTHKaC_JpM2sDK0X2knflgeDhort79y0sfYPVomOWjg_HXLXjGAp8ok9-2oXUzneN7eGq_31zMpju1yf8BfyQAfA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuel-Free+Synthetic+Micro-%2FNanomachines&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Tailin&rft.au=Gao%2C+Wei&rft.au=Xu%2C+Li-Ping&rft.au=Zhang%2C+Xueji&rft.date=2017-03-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fadma.201603250&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |