Fuel‐Free Synthetic Micro‐/Nanomachines

Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 29; H. 9; S. np - n/a
Hauptverfasser: Xu, Tailin, Gao, Wei, Xu, Li‐Ping, Zhang, Xueji, Wang, Shutao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.03.2017
Schlagworte:
ISSN:0935-9648, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Fuel‐free synthetic micro‐/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel‐free micro‐/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications.
AbstractList Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.
Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H sub(2)O sub(2)), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Fuel-free synthetic micro-/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel-free micro-/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications.
Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2 O2 ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.
Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H O ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.
Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. Fuel‐free synthetic micro‐/nanomachines powered by external stimuli are able to swim efficiently in biologically relevant environments. Tremendous progress made in the past decade to develop different synthesis strategies for designing and fabricating fuel‐free micro‐/nanomotors with different functionalities is reviewed. These artificial nanomachines can achieve predetermined tasks in biomedical applications.
Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H 2 O 2 ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.
Author Xu, Li‐Ping
Zhang, Xueji
Wang, Shutao
Xu, Tailin
Gao, Wei
Author_xml – sequence: 1
  givenname: Tailin
  surname: Xu
  fullname: Xu, Tailin
  organization: University of Science & Technology Beijing
– sequence: 2
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: University of California
– sequence: 3
  givenname: Li‐Ping
  surname: Xu
  fullname: Xu, Li‐Ping
  email: xuliping@ustb.edu.cn
  organization: University of Science & Technology Beijing
– sequence: 4
  givenname: Xueji
  surname: Zhang
  fullname: Zhang, Xueji
  email: zhangxueji@ustb.edu.cn
  organization: University of Science & Technology Beijing
– sequence: 5
  givenname: Shutao
  surname: Wang
  fullname: Wang, Shutao
  email: stwang@mail.ipc.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28026067$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LAzEQhoMoWqtXjyJ4EWRrvjc5FrUqVD2o55DNTjCyH7rZRXrzJ_gb_SVuaVUoiJ4yhOeZYebdRutVXQFCewSPCMb0xOalHVFMJGZU4DU0IIKShGMt1tEAayYSLbnaQtsxPmGMtcRyE21RhWlfpQN0POmg-Hh7nzQAB3ezqn2ENriD6-Cauv8-ubFVXVr3GCqIO2jD2yLC7vIdoofJ-f3pZTK9vbg6HU8Tx1OKEy59mjGuQFsrMis9SEF0DiL3mffEOcW88ErmUqd5JpWlPZRplvrcWQKCDdHRou9zU790EFtThuigKGwFdRcNUYoTKjVn_0AFY4LqdI4erqBPdddU_SKGaIo5VZLMZ-8vqS4rITfPTShtMzNfF-sBvgD6A8XYgDcutLYNddU2NhSGYDMPxsyDMd_B9NpoRfvq_KugF8JrKGD2B23GZ9fjH_cTEJqf9g
CitedBy_id crossref_primary_10_1109_TMAG_2021_3079252
crossref_primary_10_1002_adfm_201705421
crossref_primary_10_1002_smll_202308580
crossref_primary_10_3390_mi13122144
crossref_primary_10_1002_adfm_202009475
crossref_primary_10_3389_fchem_2024_1423696
crossref_primary_10_3390_ijms26167684
crossref_primary_10_1039_C7SC02434G
crossref_primary_10_1002_adma_201804540
crossref_primary_10_1002_adfm_201910108
crossref_primary_10_1002_anie_201705667
crossref_primary_10_1093_nsr_nwz185
crossref_primary_10_1002_smll_202003834
crossref_primary_10_1088_1361_648X_ab5e0e
crossref_primary_10_1002_adfm_202110625
crossref_primary_10_1007_s12274_020_3092_2
crossref_primary_10_1039_D2NR03963J
crossref_primary_10_1088_1361_6439_aaf408
crossref_primary_10_1016_j_jmmm_2018_08_001
crossref_primary_10_1016_j_bios_2022_114297
crossref_primary_10_1039_D3NR02443A
crossref_primary_10_3390_app10238563
crossref_primary_10_1038_nature23657
crossref_primary_10_1002_smtd_202300390
crossref_primary_10_1021_acsnano_5c03911
crossref_primary_10_3762_bjnano_10_131
crossref_primary_10_1002_VIW_20200005
crossref_primary_10_1007_s12274_022_5356_2
crossref_primary_10_1021_jacs_3c07060
crossref_primary_10_1103_PhysRevResearch_2_033241
crossref_primary_10_1002_adfm_201908283
crossref_primary_10_3390_nano9121672
crossref_primary_10_1002_adfm_202112935
crossref_primary_10_1002_advs_202402888
crossref_primary_10_1038_s41467_019_13255_6
crossref_primary_10_1038_s41565_019_0487_x
crossref_primary_10_1002_adma_201704047
crossref_primary_10_1016_j_cocis_2018_01_006
crossref_primary_10_1002_smll_201905446
crossref_primary_10_1002_admt_201800575
crossref_primary_10_1002_adbi_202200308
crossref_primary_10_1109_JIOT_2023_3255412
crossref_primary_10_1177_09544062211014547
crossref_primary_10_3390_prosthesis4030034
crossref_primary_10_1002_adhm_202001212
crossref_primary_10_3390_mi9020075
crossref_primary_10_3390_mi9020078
crossref_primary_10_1002_anie_201801910
crossref_primary_10_1002_agt2_128
crossref_primary_10_1002_adma_202412227
crossref_primary_10_1021_acsabm_5c00433
crossref_primary_10_1088_1361_6439_ab087d
crossref_primary_10_1002_adfm_201706066
crossref_primary_10_3390_mi16020181
crossref_primary_10_1140_epje_s10189_024_00466_z
crossref_primary_10_1002_ange_201808294
crossref_primary_10_1016_j_eurpolymj_2023_112557
crossref_primary_10_1109_TASE_2019_2937232
crossref_primary_10_1039_C8NR05655B
crossref_primary_10_1021_jacs_1c04836
crossref_primary_10_1007_s10853_022_07915_0
crossref_primary_10_1002_adfm_202311136
crossref_primary_10_1002_aisy_202100002
crossref_primary_10_1016_j_mattod_2025_05_004
crossref_primary_10_1002_adfm_202303519
crossref_primary_10_3389_fbioe_2024_1353660
crossref_primary_10_1002_adma_202002047
crossref_primary_10_3390_mi12020222
crossref_primary_10_1063_5_0195528
crossref_primary_10_1016_j_nanoms_2024_05_013
crossref_primary_10_1002_adtp_201800056
crossref_primary_10_1016_j_chempr_2020_09_023
crossref_primary_10_3390_mi9010010
crossref_primary_10_1080_10717544_2018_1497106
crossref_primary_10_1002_admt_201800636
crossref_primary_10_1002_adma_202204996
crossref_primary_10_1002_adfm_202106204
crossref_primary_10_1002_adfm_202212452
crossref_primary_10_1007_s00604_022_05229_1
crossref_primary_10_1002_cnma_202000352
crossref_primary_10_1002_smll_201805419
crossref_primary_10_1039_D3NR01548C
crossref_primary_10_1002_adhm_202001236
crossref_primary_10_1016_j_pnsc_2020_05_001
crossref_primary_10_1002_anbr_202000009
crossref_primary_10_1002_ange_202013689
crossref_primary_10_1002_anie_202007911
crossref_primary_10_1002_ange_202200240
crossref_primary_10_1002_adma_201703660
crossref_primary_10_34133_bmr_0155
crossref_primary_10_1007_s00216_022_04287_x
crossref_primary_10_1002_adhm_202401833
crossref_primary_10_1016_j_matlet_2023_134538
crossref_primary_10_3390_mi9020041
crossref_primary_10_1002_anie_201808294
crossref_primary_10_1063_5_0026728
crossref_primary_10_1039_D3NR03770C
crossref_primary_10_1088_1742_5468_ad4024
crossref_primary_10_1002_adfm_201705867
crossref_primary_10_1002_anie_202214754
crossref_primary_10_3390_technologies13050174
crossref_primary_10_1002_adfm_201806340
crossref_primary_10_1039_D1NR01465J
crossref_primary_10_1002_smll_202102887
crossref_primary_10_1080_1061186X_2020_1797052
crossref_primary_10_1016_j_apmt_2017_07_011
crossref_primary_10_1038_s41578_021_00404_x
crossref_primary_10_3390_mi13020337
crossref_primary_10_1002_adfm_201903041
crossref_primary_10_1002_smll_202006449
crossref_primary_10_1021_acs_analchem_5c00619
crossref_primary_10_3390_mi12030280
crossref_primary_10_1002_ange_202214754
crossref_primary_10_1002_adfm_201705953
crossref_primary_10_1109_TIE_2022_3222626
crossref_primary_10_3390_mi14122169
crossref_primary_10_1002_smll_201906184
crossref_primary_10_1002_adma_201705061
crossref_primary_10_1039_D0NR01169J
crossref_primary_10_1021_jacs_2c02682
crossref_primary_10_1039_D4EN00863D
crossref_primary_10_1002_smsc_202400110
crossref_primary_10_1002_adma_202000512
crossref_primary_10_3390_mi13112028
crossref_primary_10_3389_fchem_2025_1553461
crossref_primary_10_1021_jacs_8b13882
crossref_primary_10_1002_adfm_202307632
crossref_primary_10_1002_ange_202007911
crossref_primary_10_1039_D5SM00462D
crossref_primary_10_1002_admi_202200522
crossref_primary_10_1103_PhysRevApplied_11_044064
crossref_primary_10_34133_research_0624
crossref_primary_10_1002_adhm_202400414
crossref_primary_10_1002_anie_201806759
crossref_primary_10_1021_acs_langmuir_9b03036
crossref_primary_10_1002_anie_202013689
crossref_primary_10_1016_j_colsurfa_2025_137181
crossref_primary_10_1109_TRO_2019_2946724
crossref_primary_10_1002_wnan_1703
crossref_primary_10_1016_j_apmt_2021_101034
crossref_primary_10_1016_j_tifs_2025_105268
crossref_primary_10_1002_advs_202002203
crossref_primary_10_1002_admi_202001331
crossref_primary_10_1002_smtd_202300426
crossref_primary_10_1002_adtp_201900096
crossref_primary_10_1039_D4NR04626A
crossref_primary_10_1039_D2NR02441A
crossref_primary_10_1021_jacs_2c00084
crossref_primary_10_1038_s41467_018_03086_2
crossref_primary_10_1002_adma_202419155
crossref_primary_10_1002_ange_201801910
crossref_primary_10_1002_chem_201900840
crossref_primary_10_3390_mi14030661
crossref_primary_10_1109_TBME_2020_2990380
crossref_primary_10_1002_anie_202200240
crossref_primary_10_1016_j_cej_2025_165816
crossref_primary_10_1002_adma_201701970
crossref_primary_10_1002_anie_202003748
crossref_primary_10_1002_adfm_202413261
crossref_primary_10_1002_smll_202000146
crossref_primary_10_1002_anie_202016260
crossref_primary_10_1039_D5NA00313J
crossref_primary_10_1016_j_carbon_2019_08_039
crossref_primary_10_1002_adma_201903329
crossref_primary_10_1002_advs_202300540
crossref_primary_10_1016_j_carbon_2017_05_044
crossref_primary_10_1016_j_nanoen_2019_104120
crossref_primary_10_1002_adfm_201706100
crossref_primary_10_1002_adtp_202100228
crossref_primary_10_1002_smll_202403800
crossref_primary_10_1016_j_cej_2022_135490
crossref_primary_10_1038_s41467_018_04115_w
crossref_primary_10_1002_smll_201906701
crossref_primary_10_1016_j_jenvman_2020_111750
crossref_primary_10_1002_adfm_202003195
crossref_primary_10_1002_ange_202016260
crossref_primary_10_1016_j_cocis_2022_101586
crossref_primary_10_1002_ange_202105746
crossref_primary_10_1016_j_bios_2020_112185
crossref_primary_10_1021_acsmaterialslett_5c00396
crossref_primary_10_1039_D1RA05021D
crossref_primary_10_2147_IJN_S465959
crossref_primary_10_1039_D3NR05666J
crossref_primary_10_1039_D0NR06281B
crossref_primary_10_1073_pnas_2104481118
crossref_primary_10_3390_mi15040468
crossref_primary_10_1002_smtd_202401558
crossref_primary_10_1002_adma_202508865
crossref_primary_10_1002_cnma_202300016
crossref_primary_10_1002_ange_202003748
crossref_primary_10_1016_j_cej_2021_129091
crossref_primary_10_1039_D0BM01931C
crossref_primary_10_1109_LRA_2023_3322094
crossref_primary_10_1002_anie_202105746
crossref_primary_10_1002_chem_202203913
crossref_primary_10_3389_fchem_2024_1416314
crossref_primary_10_1002_adfm_201900879
crossref_primary_10_1002_anie_202006421
crossref_primary_10_3762_bjnano_12_58
crossref_primary_10_1002_adfm_201806290
crossref_primary_10_1002_rpm_20250021
crossref_primary_10_1016_j_nantod_2024_102212
crossref_primary_10_1039_D3NR03808D
crossref_primary_10_1039_D5TC00342C
crossref_primary_10_1088_1402_4896_ad1912
crossref_primary_10_1016_j_talanta_2021_122517
crossref_primary_10_1002_aisy_201900100
crossref_primary_10_1002_smll_202006877
crossref_primary_10_1002_smll_202000413
crossref_primary_10_1002_smll_202410901
crossref_primary_10_1021_acs_bioconjchem_4c00480
crossref_primary_10_1002_cbic_202100347
crossref_primary_10_1002_smll_202205252
crossref_primary_10_1016_j_cej_2020_127187
crossref_primary_10_1002_adfm_202101178
crossref_primary_10_1002_adfm_202102265
crossref_primary_10_1016_j_cej_2021_130427
crossref_primary_10_1016_j_cocis_2018_10_002
crossref_primary_10_3390_mi13101780
crossref_primary_10_1002_ange_201705667
crossref_primary_10_1007_s12010_022_03878_9
crossref_primary_10_1063_1_5124007
crossref_primary_10_1007_s00604_022_05298_2
crossref_primary_10_1038_s41598_023_39231_1
crossref_primary_10_1002_sstr_202200356
crossref_primary_10_1016_j_jconrel_2022_06_020
crossref_primary_10_1002_adfm_201905745
crossref_primary_10_1146_annurev_control_032720_104318
crossref_primary_10_1038_s41377_020_00378_5
crossref_primary_10_1002_smll_202104516
crossref_primary_10_1002_advs_201800122
crossref_primary_10_1002_ange_201806759
crossref_primary_10_4155_tde_2017_0113
crossref_primary_10_1002_smll_202502844
crossref_primary_10_1039_D2NR00610C
crossref_primary_10_11616_asbi_1392917
crossref_primary_10_1016_j_bios_2023_115746
crossref_primary_10_1016_j_cej_2021_130671
crossref_primary_10_1039_D3NR02299D
crossref_primary_10_1016_j_nantod_2023_101853
crossref_primary_10_1039_C7CP02561K
crossref_primary_10_1002_ange_202006421
crossref_primary_10_1016_j_actbio_2018_11_016
crossref_primary_10_1021_acsami_5c08683
crossref_primary_10_1002_smll_202305800
crossref_primary_10_1002_admt_201900583
Cites_doi 10.1038/531312a
10.1002/adma.200801589
10.1021/nn501407r
10.1039/c0cs00078g
10.1007/s10544-013-9791-7
10.1002/9783527651450
10.1039/C4LC00439F
10.1039/C4RA02260B
10.1038/nnano.2013.254
10.1021/ja311455k
10.1002/anie.201406096
10.1063/1.3079655
10.1002/smll.201201864
10.1039/C4CC08285K
10.1038/nnano.2014.79
10.1038/nature01823
10.1021/nl302775e
10.1038/nphoton.2016.83
10.1073/pnas.1422068112
10.1002/adma.200501767
10.1038/nmat1843
10.1039/c1sm05503h
10.1103/PhysRevLett.93.146101
10.15302/J-ENG-2015005
10.1021/acs.nanolett.5b01945
10.1002/smll.201303538
10.1002/adma.201103818
10.1021/nn5039614
10.1021/nn204762w
10.1073/pnas.1524813113
10.1002/adfm.201502248
10.1021/nn4000034
10.1021/acsnano.5b02807
10.1021/nl901869j
10.1039/C4CC07182D
10.1002/adfm.201504699
10.1038/ncomms4632
10.1002/adfm.201600034
10.1002/chem.201405011
10.1021/nn403851v
10.1063/1.4863952
10.1038/nature04090
10.1038/ncomms4676
10.1038/nnano.2007.250
10.1002/smll.201601846
10.1021/ja511012v
10.1039/B601326K
10.1039/C4NR01321B
10.1021/nn505029k
10.1039/C4NR02953D
10.1021/nn305726m
10.1021/ac500912c
10.1038/245380a0
10.1002/adma.201201820
10.1021/ja4018545
10.1039/C6LC00032K
10.1021/nn500077a
10.1039/C2NR32400H
10.1039/c2lc40151g
10.1021/nn301312z
10.1002/smll.201503969
10.1364/OL.11.000288
10.1039/c2jm16813h
10.1002/adma.201502583
10.1002/adma.201301484
10.1039/B716321E
10.1063/1.4880035
10.1021/nn301175b
10.1021/nl402031t
10.1021/ja905142q
10.1016/j.colsurfa.2015.04.032
10.1063/1.4895937
10.1039/C4CC09149C
10.1002/adfm.201403891
10.1021/acs.nanolett.5b03100
10.1073/pnas.0906489107
10.1073/pnas.1504484112
10.1021/ja405135f
10.1021/nl204378r
10.1038/nature01935
10.1002/smll.201101821
10.1146/annurev-bioeng-010510-103409
10.1021/nn3028997
10.1038/nnano.2013.208
10.1039/C2NR32600K
10.1038/ncomms10974
10.1002/smll.201001257
10.1039/C4AN02169J
10.1126/science.1115067
10.1021/ja203773g
10.1021/nn502360t
10.1038/nnano.2014.24
10.1002/anie.201309629
10.1038/nmeth.3218
10.1002/anie.201201902
10.1016/j.nano.2012.03.002
10.1038/nnano.2011.226
10.1021/nl2032487
10.1021/ja306080t
10.1039/c3nr34213a
10.1021/jacs.6b00902
10.1038/35003530
10.1126/science.1139570
10.1039/C4NR02393E
10.1016/j.nantod.2013.08.009
10.1002/anie.201301460
10.1021/nl500068n
10.1073/pnas.1209288109
10.1039/C2NR33040G
10.1016/j.cocis.2015.10.003
10.1038/ncomms6026
10.1002/chem.201203364
10.1038/nnano.2013.54
10.1021/nn800829k
10.1039/C2NR32798H
10.1002/adfm.201504463
10.1038/ncomms8855
10.1021/nn305372n
10.1126/science.1230020
10.1038/nature15373
10.1021/ja047697z
10.1038/nnano.2014.140
10.1016/j.snb.2014.01.099
10.1038/nnano.2008.150
10.1021/nl502975k
10.1038/nnano.2010.104
10.1103/PhysRevLett.101.218304
10.1039/C0NR00566E
10.1039/b910595f
10.1021/ja1072349
10.1002/anie.200804704
10.1038/nmat1563
10.1002/anie.200461890
10.1021/ja104362r
10.1039/C5NR08768F
10.1083/jcb.91.3.107s
10.1039/C3NR04760A
10.1021/nn101861n
10.1039/C4NR03124E
10.1021/acsnano.6b01415
10.1021/acsnano.5b05940
10.1002/smll.201100213
10.1021/acsnano.6b01344
10.1021/ja210874s
10.1016/j.nantod.2011.05.003
10.1038/ncomms8310
10.1039/c004450b
10.1002/smll.201101909
10.1021/acsnano.5b04142
10.1021/ja109627w
10.1021/acsnano.5b01518
10.1002/smll.201401013
10.1038/ncomms9686
10.1021/nl404815q
10.1021/nl404044d
10.1021/acs.nanolett.5b01925
10.1039/C5NR03730A
10.1002/adfm.201501050
10.1002/anie.201301643
10.1021/acsnano.5b08067
10.1021/cr400273r
10.1002/anie.201410754
10.1021/la403946j
10.1038/scientificamerican0509-72
10.1021/ja504150e
10.1021/nn503170c
10.1038/ncomms1035
10.1021/acs.nanolett.5b01929
10.1002/adma.201301208
10.1002/adma.201404444
10.1038/ncomms6119
10.1021/nn5029955
10.1002/smll.201501322
10.1039/c2sc21263c
10.1002/smll.201302856
10.1039/C5NR02347E
10.1021/nn502753x
10.1039/C0CC04126B
10.1038/nmeth873
10.1002/adfm.201502129
10.1002/adfm.201000063
10.1021/nn303309z
10.1021/ja803529u
10.1002/anie.201300913
10.1021/nn405075d
10.1002/smll.201500407
10.1021/nl200720m
10.1103/PhysRevLett.105.268302
10.1002/smll.201502605
10.1021/acsnano.5b06311
10.5772/59888
10.1021/acs.chemrev.5b00047
10.1038/nature03831
10.1021/nl080490
10.1002/anie.201100115
10.1002/smll.201403621
10.1021/am5038998
10.1021/ja904827j
10.1016/j.biomaterials.2013.06.055
10.1038/ncomms1550
10.1021/acs.nanolett.5b01981
10.1021/acs.nanolett.5b04221
10.1038/nchem.1895
10.1021/nn507097k
10.1021/nl900186w
10.1021/nl203717q
10.1073/pnas.1413325111
10.1039/C3TB20840K
10.1021/la303762a
10.1038/nmat4569
10.1021/nl072275j
10.1021/nn506200x
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201603250
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28026067
10_1002_adma_201603250
ADMA201603250
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Beijing Municipal Science & Technology Commission
  funderid: Z161100000116037
– fundername: National Research Fund for Fundamental Key Projects
  funderid: 2012CB933800
– fundername: Key Research Program of the Chinese Academy of Sciences
  funderid: KJZD‐EW‐M01
– fundername: MOST
  funderid: 2013YQ190467
– fundername: National Natural Science Foundation of China
  funderid: 21425314; 21501184; 21434009; 21421061; 21504098; 21475009; 21475008
– fundername: National High Technology Research and Development Program of China
  funderid: 2013AA032203
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4720-46f7b348e9aa5ba6fe6519de5dfbff1cc83f5f86d697db68a2ba6b937fdca1e53
IEDL.DBID DRFUL
ISICitedReferencesCount 382
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396149800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
IngestDate Sun Nov 09 11:22:24 EST 2025
Thu Oct 02 12:11:08 EDT 2025
Sun Jul 13 03:42:16 EDT 2025
Mon Jul 21 05:41:52 EDT 2025
Sat Nov 29 07:19:46 EST 2025
Tue Nov 18 20:55:32 EST 2025
Wed Jan 22 16:53:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords energy conversion
nanomachines
autonomous propulsion
micromachines
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4720-46f7b348e9aa5ba6fe6519de5dfbff1cc83f5f86d697db68a2ba6b937fdca1e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 28026067
PQID 1920428615
PQPubID 2045203
PageCount 27
ParticipantIDs proquest_miscellaneous_1884126943
proquest_miscellaneous_1853352973
proquest_journals_1920428615
pubmed_primary_28026067
crossref_citationtrail_10_1002_adma_201603250
crossref_primary_10_1002_adma_201603250
wiley_primary_10_1002_adma_201603250_ADMA201603250
PublicationCentury 2000
PublicationDate 2017-Mar
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-Mar
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2015; 140
2010; 10
2013; 4
1981; 91
2010; 105
2013; 7
2008; 101
2013; 8
2013; 5
2012; 12
2014; 136
2013; 9
2010; 20
2012; 134
2010; 1
2015; 137
2009; 94
2000; 404
2013; 52
2014; 14
2007; 6
2012; 29
2007; 2
2008; 20
2012; 24
2010; 5
2012; 22
2010; 4
2014; 12
2010; 6
2014; 10
2015; 482
1973; 245
2011; 2
2015; 51
1986; 11
2015; 54
2016; 10
2015; 526
2011; 3
2016; 16
2011; 6
2016; 15
2011; 133
2011; 7
2016; 12
2012; 109
2016; 7
2007; 317
2015; 115
2013; 339
2015; 112
2016; 21
2009; 107
2016; 28
2005; 17
2016; 26
2016; 8
2008; 130
2013; 29
2013; 25
2004; 126
2011; 11
2008; 8
2008; 3
2007; 36
2009; 48
2012; 51
2013; 19
2014; 5
2013; 15
2014; 4
2014; 2
2013; 13
2016; 113
2005; 309
2014; 9
2014; 8
2014; 6
2014; 53
2015; 12
2015; 1
2015; 15
2015; 6
2011; 40
2015; 11
2005; 436
2005; 437
2006; 5
2006; 3
2009; 131
2015; 9
2014; 111
2014; 196
2015; 7
2014; 114
2005; 44
2014; 86
2014; 105
2015; 25
2015; 27
2003; 424
2004; 93
2013; 34
2011; 50
2015; 21
2016; 531
2010; 132
2009; 9
2009; 300
2013; 135
2016; 138
2013
2011; 47
2009; 3
2012; 6
2012; 7
2014; 104
2012; 8
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_198_1
e_1_2_6_212_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_148_1
e_1_2_6_41_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_186_1
e_1_2_6_200_1
e_1_2_6_5_1
e_1_2_6_208_1
e_1_2_6_49_1
e_1_2_6_26_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_92_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_113_1
e_1_2_6_197_1
e_1_2_6_211_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_185_1
e_1_2_6_6_1
e_1_2_6_207_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_158_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_196_1
e_1_2_6_210_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_169_1
e_1_2_6_108_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_206_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_90_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_195_1
e_1_2_6_134_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_183_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_205_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_194_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_57_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_193_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_1
e_1_2_6_204_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_189_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_192_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_203_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_142_1
e_1_2_6_188_1
e_1_2_6_165_1
e_1_2_6_191_1
e_1_2_6_7_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_202_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_153_1
e_1_2_6_199_1
e_1_2_6_130_1
e_1_2_6_176_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_21_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_190_1
e_1_2_6_8_1
e_1_2_6_201_1
e_1_2_6_209_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 9
  start-page: 4717
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 415
  year: 2014
  publication-title: Nat. Chem.
– volume: 131
  start-page: 9926
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 13144
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 117
  year: 2015
  publication-title: ACS Nano
– volume: 4
  start-page: 1420
  year: 2013
  publication-title: Chem. Sci.
– volume: 7
  start-page: 8169
  year: 2011
  publication-title: Soft Matter
– volume: 15
  start-page: 647
  year: 2016
  publication-title: Nat. Mater.
– volume: 4
  start-page: 6228
  year: 2010
  publication-title: ACS Nano
– volume: 245
  start-page: 380
  year: 1973
  publication-title: Nature
– volume: 6
  start-page: 6122
  year: 2012
  publication-title: ACS Nano
– volume: 8
  start-page: 336
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 4997
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 3632
  year: 2014
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1666
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 36
  year: 2010
  publication-title: Nat. Commun.
– volume: 105
  start-page: 114102
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 4445
  year: 2012
  publication-title: ACS Nano
– volume: 10
  start-page: 3597
  year: 2016
  publication-title: ACS Nano
– volume: 26
  start-page: 3859
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 16113
  year: 2013
  publication-title: Langmuir
– volume: 15
  start-page: 4412
  year: 2015
  publication-title: Nano Lett.
– volume: 112
  start-page: 43
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1923
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 1
  year: 2015
  publication-title: Int. J. Adv. Rob. Syst.
– volume: 24
  start-page: 811
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 6756
  year: 2015
  publication-title: ACS Nano
– volume: 482
  start-page: 92
  year: 2015
  publication-title: Colloids Surf., A
– volume: 8
  start-page: 1486
  year: 2008
  publication-title: Nano Lett.
– volume: 424
  start-page: 810
  year: 2003
  publication-title: Nature
– volume: 8
  start-page: 10471
  year: 2016
  publication-title: Nanoscale
– volume: 12
  start-page: 5008
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 5119
  year: 2014
  publication-title: Nat. Commun.
– volume: 113
  start-page: 1522
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 2163
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1751
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 11177
  year: 2014
  publication-title: Nanoscale
– volume: 196
  start-page: 676
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 8
  start-page: 1074
  year: 2012
  publication-title: Nanomedicine
– volume: 6
  start-page: 10486
  year: 2014
  publication-title: Nanoscale
– volume: 7
  start-page: 818
  year: 2013
  publication-title: ACS Nano
– volume: 25
  start-page: 3715
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  start-page: 288
  year: 1986
  publication-title: Opt. Lett.
– volume: 134
  start-page: 15217
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 5457
  year: 2012
  publication-title: Adv. Mater.
– volume: 15
  start-page: 997
  year: 2013
  publication-title: Biomed. Microdevices
– volume: 16
  start-page: 555
  year: 2016
  publication-title: Nano Lett.
– volume: 52
  start-page: 7208
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 94
  start-page: 064107
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 5512
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 4829
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 933
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 7043
  year: 2015
  publication-title: Nano Lett.
– volume: 10
  start-page: 1953
  year: 2014
  publication-title: Small
– volume: 8
  start-page: 8300
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 369
  year: 2006
  publication-title: Nat. Methods
– volume: 51
  start-page: 511
  year: 2015
  publication-title: Chem. Comm.
– volume: 7
  start-page: 13680
  year: 2015
  publication-title: Nanoscale
– volume: 12
  start-page: 156
  year: 2012
  publication-title: Nano Lett.
– volume: 112
  start-page: 4970
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 7519
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 6098
  year: 2016
  publication-title: Small
– volume: 8
  start-page: 8794
  year: 2014
  publication-title: ACS Nano
– volume: 12
  start-page: 396
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 8686
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 577
  year: 2016
  publication-title: Small
– volume: 3
  start-page: 557
  year: 2011
  publication-title: Nanoscale
– volume: 5
  start-page: 1310
  year: 2013
  publication-title: Nanoscale
– volume: 9
  start-page: 3663
  year: 2009
  publication-title: Nano Lett.
– year: 2013
– volume: 111
  start-page: 12992
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 9415
  year: 2014
  publication-title: Nanoscale
– volume: 135
  start-page: 998
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1498
  year: 2012
  publication-title: Small
– volume: 48
  start-page: 3308
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 2836
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 2047
  year: 2011
  publication-title: Small
– volume: 6
  start-page: 14583
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1968
  year: 2014
  publication-title: Nano Lett.
– volume: 136
  start-page: 8552
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 3199
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 105
  start-page: 268302
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 526
  start-page: 118
  year: 2015
  publication-title: Nature
– volume: 6
  start-page: 12142
  year: 2014
  publication-title: Nanoscale
– volume: 317
  start-page: 333
  year: 2007
  publication-title: Science
– volume: 22
  start-page: 6519
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 1284
  year: 2014
  publication-title: Small
– volume: 52
  start-page: 7000
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 4154
  year: 2014
  publication-title: Small
– volume: 21
  start-page: 14
  year: 2016
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 131
  start-page: 12082
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 13424
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1421
  year: 2015
  publication-title: Analyst
– volume: 51
  start-page: 5467
  year: 2015
  publication-title: Chem. Commun.
– volume: 36
  start-page: 492
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 114
  start-page: 6285
  year: 2014
  publication-title: Chem. Rev.
– volume: 21
  start-page: 58
  year: 2015
  publication-title: Chem.–Eur. J.
– volume: 6
  start-page: 235
  year: 2007
  publication-title: Nat. Mater.
– volume: 133
  start-page: 701
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5305
  year: 2015
  publication-title: Small
– volume: 8
  start-page: 12041
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 1294
  year: 2013
  publication-title: Nanoscale
– volume: 19
  start-page: 28
  year: 2013
  publication-title: Chem.–Eur. J.
– volume: 14
  start-page: 2914
  year: 2014
  publication-title: Lab Chip
– volume: 25
  start-page: 5863
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 11053
  year: 2014
  publication-title: ACS Nano
– volume: 138
  start-page: 6492
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 11118
  year: 2014
  publication-title: ACS Nano
– volume: 115
  start-page: 8704
  year: 2015
  publication-title: Chem. Rev.
– volume: 104
  start-page: 054102
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 12542
  year: 2015
  publication-title: ACS Nano
– volume: 10
  start-page: 4763
  year: 2016
  publication-title: ACS Nano
– volume: 6
  start-page: 7175
  year: 2014
  publication-title: Nanoscale
– volume: 20
  start-page: 1568
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 305
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 3306
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 293
  year: 2016
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1325
  year: 2013
  publication-title: Nanoscale
– volume: 8
  start-page: 221
  year: 2008
  publication-title: Lab Chip
– volume: 12
  start-page: 3080
  year: 2016
  publication-title: Small
– volume: 4
  start-page: 26771
  year: 2014
  publication-title: RSC Adv.
– volume: 53
  start-page: 3201
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 309
  start-page: 1539
  year: 2005
  publication-title: Science
– volume: 50
  start-page: 4161
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 357
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 460
  year: 2012
  publication-title: Small
– volume: 86
  start-page: 4501
  year: 2014
  publication-title: Anal. Chem.
– volume: 9
  start-page: 448
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 295
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 107
  start-page: 535
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 9232
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 5745
  year: 2012
  publication-title: ACS Nano
– volume: 7
  start-page: 11363
  year: 2015
  publication-title: Nanoscale
– volume: 8
  start-page: 1271
  year: 2008
  publication-title: Nano Lett.
– volume: 13
  start-page: 4263
  year: 2013
  publication-title: Nano Lett.
– volume: 9
  start-page: 2890
  year: 2009
  publication-title: Lab Chip
– volume: 6
  start-page: 7310
  year: 2015
  publication-title: Nat. Commun.
– volume: 436
  start-page: 370
  year: 2005
  publication-title: Nature
– volume: 27
  start-page: 2981
  year: 2015
  publication-title: Adv. Mater.
– volume: 91
  start-page: 107s
  year: 1981
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 1360
  year: 2013
  publication-title: ACS Nano
– volume: 437
  start-page: 862
  year: 2005
  publication-title: Nature
– volume: 3
  start-page: 4
  year: 2009
  publication-title: ACS Nano
– volume: 40
  start-page: 2109
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 41
  year: 2014
  publication-title: Nat. Methods
– volume: 135
  start-page: 10557
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3676
  year: 2014
  publication-title: Nat. Commun.
– volume: 29
  start-page: 7411
  year: 2012
  publication-title: Langmuir
– volume: 104
  start-page: 223701
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 300
  start-page: 72
  year: 2009
  publication-title: Sci. Am.
– volume: 14
  start-page: 2407
  year: 2014
  publication-title: Nano Lett.
– volume: 339
  start-page: 936
  year: 2013
  publication-title: Science
– volume: 17
  start-page: 3011
  year: 2005
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1063
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 413
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 93
  start-page: 146101
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 55
  year: 2010
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 5
  start-page: 2909
  year: 2013
  publication-title: Nanoscale
– volume: 25
  start-page: 5333
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 5552
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2203
  year: 2010
  publication-title: Lab Chip
– volume: 20
  start-page: 4085
  year: 2008
  publication-title: Adv. Mater.
– volume: 135
  start-page: 5336
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 8537
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 191
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 97
  year: 2006
  publication-title: Nat. Mater.
– volume: 11
  start-page: 4037
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 9611
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 2741
  year: 2010
  publication-title: Small
– volume: 16
  start-page: 1797
  year: 2016
  publication-title: Lab Chip
– volume: 5
  start-page: 545
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 4814
  year: 2015
  publication-title: Nano Lett.
– volume: 25
  start-page: 3881
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 133
  start-page: 11862
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 839
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 2243
  year: 2009
  publication-title: Nano Lett.
– volume: 14
  start-page: 6430
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 531
  year: 2013
  publication-title: Nano Today
– volume: 54
  start-page: 1414
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 897
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 807
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 1273
  year: 2013
  publication-title: Nanoscale
– volume: 404
  start-page: 56
  year: 2000
  publication-title: Nature
– volume: 47
  start-page: 698
  year: 2011
  publication-title: Chem. Commun.
– volume: 12
  start-page: 2322
  year: 2012
  publication-title: Lab Chip
– volume: 7
  start-page: 10974
  year: 2016
  publication-title: Nat. Commun.
– volume: 2
  start-page: 565
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 624
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 7746
  year: 2014
  publication-title: ACS Nano
– volume: 51
  start-page: 1020
  year: 2015
  publication-title: Chem. Commun.
– volume: 5
  start-page: 5026
  year: 2014
  publication-title: Nat. Commun.
– volume: 531
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 8
  start-page: 3170
  year: 2014
  publication-title: ACS Nano
– volume: 424
  start-page: 408
  year: 2003
  publication-title: Nature
– volume: 28
  start-page: 1060
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 9252
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 339
  year: 2011
  publication-title: Nano Today
– volume: 44
  start-page: 744
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 101
  start-page: 218304
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 21
  year: 2015
  publication-title: Engineering
– volume: 132
  start-page: 14403
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2375
  year: 2011
  publication-title: Nano Lett.
– volume: 15
  start-page: 5841
  year: 2015
  publication-title: Nano Lett.
– volume: 130
  start-page: 8164
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 8918
  year: 2013
  publication-title: Biomaterials
– volume: 2
  start-page: 535
  year: 2011
  publication-title: Nat. Commun.
– volume: 8
  start-page: 6097
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 8432
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 7855
  year: 2015
  publication-title: Nat. Commun.
– volume: 109
  start-page: 11105
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 467
  year: 2013
  publication-title: Small
– volume: 54
  start-page: 2525
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_2_1
  doi: 10.1038/531312a
– ident: e_1_2_6_57_1
  doi: 10.1002/adma.200801589
– ident: e_1_2_6_94_1
  doi: 10.1021/nn501407r
– ident: e_1_2_6_6_1
  doi: 10.1039/c0cs00078g
– ident: e_1_2_6_166_1
  doi: 10.1007/s10544-013-9791-7
– ident: e_1_2_6_9_1
  doi: 10.1002/9783527651450
– ident: e_1_2_6_129_1
  doi: 10.1039/C4LC00439F
– ident: e_1_2_6_156_1
  doi: 10.1039/C4RA02260B
– ident: e_1_2_6_210_1
  doi: 10.1038/nnano.2013.254
– ident: e_1_2_6_52_1
  doi: 10.1021/ja311455k
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201406096
– ident: e_1_2_6_164_1
  doi: 10.1063/1.3079655
– ident: e_1_2_6_70_1
  doi: 10.1002/smll.201201864
– ident: e_1_2_6_134_1
  doi: 10.1039/C4CC08285K
– ident: e_1_2_6_91_1
  doi: 10.1038/nnano.2014.79
– ident: e_1_2_6_81_1
  doi: 10.1038/nature01823
– ident: e_1_2_6_99_1
  doi: 10.1021/nl302775e
– ident: e_1_2_6_112_1
  doi: 10.1038/nphoton.2016.83
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.1422068112
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.200501767
– ident: e_1_2_6_80_1
  doi: 10.1038/nmat1843
– ident: e_1_2_6_73_1
  doi: 10.1039/c1sm05503h
– ident: e_1_2_6_85_1
  doi: 10.1103/PhysRevLett.93.146101
– ident: e_1_2_6_146_1
  doi: 10.15302/J-ENG-2015005
– ident: e_1_2_6_175_1
  doi: 10.1021/acs.nanolett.5b01945
– ident: e_1_2_6_23_1
  doi: 10.1002/smll.201303538
– ident: e_1_2_6_159_1
  doi: 10.1002/adma.201103818
– ident: e_1_2_6_188_1
  doi: 10.1021/nn5039614
– ident: e_1_2_6_15_1
  doi: 10.1021/nn204762w
– ident: e_1_2_6_178_1
  doi: 10.1073/pnas.1524813113
– ident: e_1_2_6_163_1
  doi: 10.1002/adfm.201502248
– ident: e_1_2_6_187_1
  doi: 10.1021/nn4000034
– ident: e_1_2_6_192_1
  doi: 10.1021/acsnano.5b02807
– ident: e_1_2_6_148_1
  doi: 10.1021/nl901869j
– ident: e_1_2_6_95_1
  doi: 10.1039/C4CC07182D
– ident: e_1_2_6_135_1
  doi: 10.1002/adfm.201504699
– ident: e_1_2_6_78_1
  doi: 10.1038/ncomms4632
– ident: e_1_2_6_116_1
  doi: 10.1002/adfm.201600034
– ident: e_1_2_6_43_1
  doi: 10.1002/chem.201405011
– ident: e_1_2_6_181_1
  doi: 10.1021/nn403851v
– ident: e_1_2_6_54_1
  doi: 10.1063/1.4863952
– ident: e_1_2_6_120_1
  doi: 10.1038/nature04090
– ident: e_1_2_6_93_1
  doi: 10.1038/ncomms4676
– ident: e_1_2_6_140_1
  doi: 10.1038/nnano.2007.250
– ident: e_1_2_6_119_1
  doi: 10.1002/smll.201601846
– ident: e_1_2_6_198_1
  doi: 10.1021/ja511012v
– ident: e_1_2_6_28_1
  doi: 10.1039/B601326K
– ident: e_1_2_6_41_1
  doi: 10.1039/C4NR01321B
– ident: e_1_2_6_67_1
  doi: 10.1021/nn505029k
– ident: e_1_2_6_167_1
  doi: 10.1039/C4NR02953D
– ident: e_1_2_6_170_1
  doi: 10.1021/nn305726m
– ident: e_1_2_6_37_1
  doi: 10.1021/ac500912c
– ident: e_1_2_6_145_1
  doi: 10.1038/245380a0
– ident: e_1_2_6_77_1
  doi: 10.1002/adma.201201820
– ident: e_1_2_6_131_1
  doi: 10.1021/ja4018545
– ident: e_1_2_6_74_1
  doi: 10.1039/C6LC00032K
– ident: e_1_2_6_39_1
  doi: 10.1021/nn500077a
– ident: e_1_2_6_130_1
  doi: 10.1039/C2NR32400H
– ident: e_1_2_6_147_1
  doi: 10.1039/c2lc40151g
– ident: e_1_2_6_180_1
  doi: 10.1021/nn301312z
– ident: e_1_2_6_14_1
  doi: 10.1002/smll.201503969
– ident: e_1_2_6_103_1
  doi: 10.1364/OL.11.000288
– ident: e_1_2_6_126_1
  doi: 10.1039/c2jm16813h
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201502583
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201301484
– ident: e_1_2_6_179_1
  doi: 10.1039/B716321E
– ident: e_1_2_6_171_1
  doi: 10.1063/1.4880035
– ident: e_1_2_6_40_1
  doi: 10.1021/nn301175b
– ident: e_1_2_6_158_1
  doi: 10.1021/nl402031t
– ident: e_1_2_6_48_1
  doi: 10.1021/ja905142q
– ident: e_1_2_6_96_1
  doi: 10.1016/j.colsurfa.2015.04.032
– ident: e_1_2_6_155_1
  doi: 10.1063/1.4895937
– ident: e_1_2_6_195_1
  doi: 10.1039/C4CC09149C
– ident: e_1_2_6_160_1
  doi: 10.1002/adfm.201403891
– ident: e_1_2_6_63_1
  doi: 10.1021/acs.nanolett.5b03100
– ident: e_1_2_6_137_1
  doi: 10.1073/pnas.0906489107
– ident: e_1_2_6_177_1
  doi: 10.1073/pnas.1504484112
– ident: e_1_2_6_50_1
  doi: 10.1021/ja405135f
– ident: e_1_2_6_105_1
  doi: 10.1021/nl204378r
– ident: e_1_2_6_87_1
  doi: 10.1038/nature01935
– ident: e_1_2_6_165_1
  doi: 10.1002/smll.201101821
– ident: e_1_2_6_17_1
  doi: 10.1146/annurev-bioeng-010510-103409
– ident: e_1_2_6_45_1
  doi: 10.1021/nn3028997
– ident: e_1_2_6_98_1
  doi: 10.1038/nnano.2013.208
– ident: e_1_2_6_24_1
  doi: 10.1039/C2NR32600K
– ident: e_1_2_6_109_1
  doi: 10.1038/ncomms10974
– ident: e_1_2_6_19_1
  doi: 10.1002/smll.201001257
– ident: e_1_2_6_132_1
  doi: 10.1039/C4AN02169J
– ident: e_1_2_6_86_1
  doi: 10.1126/science.1115067
– ident: e_1_2_6_60_1
  doi: 10.1021/ja203773g
– ident: e_1_2_6_149_1
  doi: 10.1021/nn502360t
– ident: e_1_2_6_90_1
  doi: 10.1038/nnano.2014.24
– ident: e_1_2_6_191_1
  doi: 10.1002/anie.201309629
– ident: e_1_2_6_33_1
  doi: 10.1038/nmeth.3218
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201201902
– ident: e_1_2_6_208_1
  doi: 10.1016/j.nano.2012.03.002
– ident: e_1_2_6_101_1
  doi: 10.1038/nnano.2011.226
– ident: e_1_2_6_27_1
  doi: 10.1021/nl2032487
– ident: e_1_2_6_31_1
  doi: 10.1021/ja306080t
– ident: e_1_2_6_38_1
  doi: 10.1039/c3nr34213a
– ident: e_1_2_6_115_1
  doi: 10.1021/jacs.6b00902
– ident: e_1_2_6_202_1
  doi: 10.1038/35003530
– ident: e_1_2_6_3_1
  doi: 10.1126/science.1139570
– ident: e_1_2_6_55_1
  doi: 10.1039/C4NR02393E
– ident: e_1_2_6_10_1
  doi: 10.1016/j.nantod.2013.08.009
– ident: e_1_2_6_51_1
  doi: 10.1002/anie.201301460
– ident: e_1_2_6_53_1
  doi: 10.1021/nl500068n
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.1209288109
– ident: e_1_2_6_207_1
  doi: 10.1039/C2NR33040G
– ident: e_1_2_6_44_1
  doi: 10.1016/j.cocis.2015.10.003
– ident: e_1_2_6_205_1
  doi: 10.1038/ncomms6026
– ident: e_1_2_6_142_1
  doi: 10.1002/chem.201203364
– ident: e_1_2_6_209_1
  doi: 10.1038/nnano.2013.54
– ident: e_1_2_6_7_1
  doi: 10.1021/nn800829k
– ident: e_1_2_6_18_1
  doi: 10.1039/C2NR32798H
– ident: e_1_2_6_162_1
  doi: 10.1002/adfm.201504463
– ident: e_1_2_6_111_1
  doi: 10.1038/ncomms8855
– ident: e_1_2_6_59_1
  doi: 10.1021/nn305372n
– ident: e_1_2_6_203_1
  doi: 10.1126/science.1230020
– ident: e_1_2_6_211_1
  doi: 10.1038/nature15373
– ident: e_1_2_6_46_1
  doi: 10.1021/ja047697z
– ident: e_1_2_6_100_1
  doi: 10.1038/nnano.2014.140
– ident: e_1_2_6_172_1
  doi: 10.1016/j.snb.2014.01.099
– ident: e_1_2_6_206_1
  doi: 10.1038/nnano.2008.150
– ident: e_1_2_6_107_1
  doi: 10.1021/nl502975k
– ident: e_1_2_6_75_1
  doi: 10.1038/nnano.2010.104
– ident: e_1_2_6_136_1
  doi: 10.1103/PhysRevLett.101.218304
– ident: e_1_2_6_118_1
  doi: 10.1039/C0NR00566E
– ident: e_1_2_6_29_1
  doi: 10.1039/b910595f
– ident: e_1_2_6_141_1
  doi: 10.1021/ja1072349
– ident: e_1_2_6_88_1
  doi: 10.1002/anie.200804704
– ident: e_1_2_6_102_1
  doi: 10.1038/nmat1563
– ident: e_1_2_6_122_1
  doi: 10.1002/anie.200461890
– ident: e_1_2_6_58_1
  doi: 10.1021/ja104362r
– ident: e_1_2_6_71_1
  doi: 10.1039/C5NR08768F
– ident: e_1_2_6_139_1
  doi: 10.1083/jcb.91.3.107s
– ident: e_1_2_6_143_1
  doi: 10.1039/C3NR04760A
– ident: e_1_2_6_138_1
  doi: 10.1021/nn101861n
– ident: e_1_2_6_22_1
  doi: 10.1039/C4NR03124E
– ident: e_1_2_6_199_1
  doi: 10.1021/acsnano.6b01415
– ident: e_1_2_6_97_1
  doi: 10.1021/acsnano.5b05940
– ident: e_1_2_6_169_1
  doi: 10.1002/smll.201100213
– ident: e_1_2_6_184_1
  doi: 10.1021/acsnano.6b01344
– ident: e_1_2_6_61_1
  doi: 10.1021/ja210874s
– ident: e_1_2_6_76_1
  doi: 10.1016/j.nantod.2011.05.003
– ident: e_1_2_6_92_1
  doi: 10.1038/ncomms8310
– ident: e_1_2_6_117_1
  doi: 10.1039/c004450b
– ident: e_1_2_6_20_1
  doi: 10.1002/smll.201101909
– ident: e_1_2_6_193_1
  doi: 10.1021/acsnano.5b04142
– ident: e_1_2_6_128_1
  doi: 10.1021/ja109627w
– ident: e_1_2_6_150_1
  doi: 10.1021/acsnano.5b01518
– ident: e_1_2_6_185_1
  doi: 10.1002/smll.201401013
– ident: e_1_2_6_176_1
  doi: 10.1038/ncomms9686
– ident: e_1_2_6_151_1
  doi: 10.1021/nl404815q
– ident: e_1_2_6_144_1
  doi: 10.1021/nl404044d
– ident: e_1_2_6_154_1
  doi: 10.1021/acs.nanolett.5b01925
– ident: e_1_2_6_196_1
  doi: 10.1039/C5NR03730A
– ident: e_1_2_6_197_1
  doi: 10.1002/adfm.201501050
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.201301643
– ident: e_1_2_6_64_1
  doi: 10.1021/acsnano.5b08067
– ident: e_1_2_6_5_1
  doi: 10.1021/cr400273r
– ident: e_1_2_6_79_1
  doi: 10.1002/anie.201410754
– ident: e_1_2_6_186_1
  doi: 10.1021/la403946j
– ident: e_1_2_6_8_1
  doi: 10.1038/scientificamerican0509-72
– ident: e_1_2_6_183_1
  doi: 10.1021/ja504150e
– ident: e_1_2_6_66_1
  doi: 10.1021/nn503170c
– ident: e_1_2_6_36_1
  doi: 10.1038/ncomms1035
– ident: e_1_2_6_201_1
  doi: 10.1021/acs.nanolett.5b01929
– ident: e_1_2_6_127_1
  doi: 10.1002/adma.201301208
– ident: e_1_2_6_161_1
  doi: 10.1002/adma.201404444
– ident: e_1_2_6_173_1
  doi: 10.1038/ncomms6119
– ident: e_1_2_6_152_1
  doi: 10.1021/nn5029955
– ident: e_1_2_6_194_1
  doi: 10.1002/smll.201501322
– ident: e_1_2_6_113_1
  doi: 10.1039/c2sc21263c
– ident: e_1_2_6_174_1
  doi: 10.1002/smll.201302856
– ident: e_1_2_6_84_1
  doi: 10.1039/C5NR02347E
– ident: e_1_2_6_189_1
  doi: 10.1021/nn502753x
– ident: e_1_2_6_25_1
  doi: 10.1039/C0CC04126B
– ident: e_1_2_6_200_1
  doi: 10.1038/nmeth873
– ident: e_1_2_6_83_1
  doi: 10.1002/adfm.201502129
– ident: e_1_2_6_89_1
  doi: 10.1002/adfm.201000063
– ident: e_1_2_6_56_1
  doi: 10.1021/nn303309z
– ident: e_1_2_6_125_1
  doi: 10.1021/ja803529u
– ident: e_1_2_6_68_1
  doi: 10.1002/anie.201300913
– ident: e_1_2_6_42_1
  doi: 10.1021/nn405075d
– ident: e_1_2_6_12_1
  doi: 10.1002/smll.201500407
– ident: e_1_2_6_108_1
  doi: 10.1021/nl200720m
– ident: e_1_2_6_110_1
  doi: 10.1103/PhysRevLett.105.268302
– ident: e_1_2_6_114_1
  doi: 10.1002/smll.201502605
– ident: e_1_2_6_106_1
  doi: 10.1021/acsnano.5b06311
– ident: e_1_2_6_133_1
  doi: 10.5772/59888
– ident: e_1_2_6_168_1
  doi: 10.1021/acs.chemrev.5b00047
– ident: e_1_2_6_204_1
  doi: 10.1038/nature03831
– ident: e_1_2_6_104_1
  doi: 10.1021/nl080490
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201100115
– ident: e_1_2_6_72_1
  doi: 10.1002/smll.201403621
– ident: e_1_2_6_124_1
  doi: 10.1021/am5038998
– ident: e_1_2_6_49_1
  doi: 10.1021/ja904827j
– ident: e_1_2_6_35_1
  doi: 10.1016/j.biomaterials.2013.06.055
– ident: e_1_2_6_82_1
  doi: 10.1038/ncomms1550
– ident: e_1_2_6_121_1
  doi: 10.1021/acs.nanolett.5b01981
– ident: e_1_2_6_157_1
  doi: 10.1021/acs.nanolett.5b04221
– ident: e_1_2_6_65_1
  doi: 10.1038/nchem.1895
– ident: e_1_2_6_69_1
  doi: 10.1021/nn507097k
– ident: e_1_2_6_153_1
  doi: 10.1021/nl900186w
– ident: e_1_2_6_62_1
  doi: 10.1021/nl203717q
– ident: e_1_2_6_190_1
  doi: 10.1073/pnas.1413325111
– ident: e_1_2_6_212_1
  doi: 10.1039/C3TB20840K
– ident: e_1_2_6_123_1
  doi: 10.1021/la303762a
– ident: e_1_2_6_4_1
  doi: 10.1038/nmat4569
– ident: e_1_2_6_47_1
  doi: 10.1021/nl072275j
– ident: e_1_2_6_182_1
  doi: 10.1021/nn506200x
SSID ssj0009606
Score 2.6536818
SecondaryResourceType review_article
Snippet Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these...
Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms autonomous propulsion
Biocompatibility
Biological effects
Biomedical materials
Chemical fuels
Drug delivery systems
energy conversion
Fuels
Innovations
Materials science
micromachines
Micromotors
Microorganisms
nanomachines
Nanostructure
Propulsion
Stimuli
Sustainability
Swimming
Tasks
Title Fuel‐Free Synthetic Micro‐/Nanomachines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201603250
https://www.ncbi.nlm.nih.gov/pubmed/28026067
https://www.proquest.com/docview/1920428615
https://www.proquest.com/docview/1853352973
https://www.proquest.com/docview/1884126943
Volume 29
WOSCitedRecordID wos000396149800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RpYf2AP1mgaKtVKmHKtqNYzv2cQVEPQCq2lLtLXLssYS0zVYbthI3fgK_kV_COMkGVqhUKsckL5Ez9thv_PEG4KMTTDgd84hxQQGK0D4qcISRlc4ZE6do6xXdn0fpyYmaTPTXO6f4G32IbsIteEbdXwcHN0U1vBUNNa7WDQppklkI2tcZNV7Rg_WDb9np0a3wrqzza4b1vkhLrpbCjSM2XP3C6sB0j22uktd69Mk2H1_uF7DRMs_BuGkqL2ENy1fw_I4e4Wv4nC1wen15lc0RB98vSiKHBB4ch017dHtIXfHsV737Eqs3cJod_tj_ErXZFCLLU4oRufRpkXCF2hhRGOlREntzKJwvvI-tVYkXXkkndeoKqQwjUEHsxTtrYhTJW-iVsxK3YBCjk05gElvnueeolDFGotaOCAjKtA_R0pS5baXGQ8aLad6IJLM8GCHvjNCHTx3-dyOy8Vfk7rJm8tbZqpxIaoj8iJv14UP3mNwkrH2YEmcLwhAtIa6p0-QhjOJxONlLmHdNrXfFYSqIr4VfY3Xl_qOc-fjgeNxdbf_PSzvwjAUKUe9324Xe-XyB7-Gp_XN-Vs334Ek6UXttY78Baaf-qw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swELcmmAQ8wMbfQseKNIkHFJU4tmM_VpSIibaaNph4ixz7LCFBilqKxBsfgc-4T7JzkgaqCSYhHpNcIud8Z__OPv-OkG-WU25VyALKOAYoXLkgg0MIjLBW6zAGU-zo_u7Fg4G8uFA_qmxCfxam5IeoF9y8ZxTjtXdwvyDdfmIN1bYgDvJ1kqmP2ucZ2hIa-Xz3Z3Lee2LeFUWBTb_hFyjB5JS58ZC2Z78wOzP9Azdn0Wsx_SQr79DwT2S5wp6tTmksn8kHyFfJ0jNGwjVykEzg6s_DYzICaP26zxEeonCr79P28HYbB-PhdZF_CeN1cp4cnx2dBFU9hcCwGKNEJlycRUyC0ppnWjgQiN8scOsy50JjZOS4k8IKFdtMSE1RKEP84qzRIfBog8zlwxy2SCsEKyyHKDTWMcdASq21AKUsQhAQcYMEU12mpiIb9zUvrtKSJpmmXglprYQG2a_lb0qajRclm9OuSSt3G6cIU33sh-isQfbqx-gofvdD5zCcoAwCE0SbKo5ek5Es9Gd7UWaz7Pa6OVR6-jX_a7To3f-0M-10-536avstL30lCydn_V7a-z443SGL1AOKIvutSeZuRxP4Qj6au9vL8Wi3svm_r3oBwg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL2MdJT1ofvotqZr1wwGexgmtSzJ0mNYZjaahrK2o29Glq5g0DklaQp960_Yb9wv6ZXtuA2jHYw92j42sqQrnStdnQvw3gkmnI55xLggB0VoHxW4h5GVzhkTp2irHd3vo3Q8Vqen-rCJJgxnYWp9iHbBLVhGNV4HA8dz5_u3qqHGVcJBIU8yC177Cg-ZZDqwMvyWnYxulXdllWAzbPhFWnK1UG7cY_3lLyzPTH_QzWX2Wk0_2dP_UPBnsN5wz96g7izP4RGWL2DtjiLhBnzM5nj2-_pXNkXsHV2VRA8J3DsIYXt0u0-D8eRnFX-Js5dwkn0-_vQlavIpRJan5CVy6dMi4Qq1MaIw0qMk_uZQOF94H1urEi-8kk7q1BVSGUaggviLd9bEKJJX0CknJW5CL0YnncAkts5zz1EpY4xErR1REJRpF6JFXea2ERsPOS_O8lommeWhEvK2ErrwocWf1zIb9yK3F02TN-Y2y4mmBt-P2FkX3rWPyVDC7ocpcTInDBETYps6TR7CKB6Hs72EeV03e1scpoL8Wvg1VrXuX8qZD4YHg_Zq619e2oXVw2GWj76O99_AExb4RBX8tg2di-kcd-Cxvbz4MZu-bbr8DTcyAT0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuel-Free+Synthetic+Micro-%2FNanomachines&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Tailin&rft.au=Gao%2C+Wei&rft.au=Xu%2C+Li-Ping&rft.au=Zhang%2C+Xueji&rft.date=2017-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=9&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Fadma.201603250&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon