A Fault Diagnosis Method for Oil Well Electrical Power Diagrams Based on Multidimensional Clustering Performance Evaluation

In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance cos...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 6; s. 1688
Hlavní autori: Liu, Xingyu, Meng, Xin, Hu, Ze, Duan, Hancong, Wang, Min, Chen, Yaping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 08.03.2025
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.
AbstractList In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.
In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.
Audience Academic
Author Meng, Xin
Duan, Hancong
Liu, Xingyu
Chen, Yaping
Wang, Min
Hu, Ze
AuthorAffiliation 1 School of Electrical Information, Southwest Petroleum University, Chengdu 610500, China; 202222000120@stu.swpu.edu.cn (X.L.)
2 School of Computer, University of Electronic Science and Technology of China, Chengdu 611731, China
AuthorAffiliation_xml – name: 2 School of Computer, University of Electronic Science and Technology of China, Chengdu 611731, China
– name: 1 School of Electrical Information, Southwest Petroleum University, Chengdu 610500, China; 202222000120@stu.swpu.edu.cn (X.L.)
Author_xml – sequence: 1
  givenname: Xingyu
  orcidid: 0009-0003-5341-5269
  surname: Liu
  fullname: Liu, Xingyu
– sequence: 2
  givenname: Xin
  surname: Meng
  fullname: Meng, Xin
– sequence: 3
  givenname: Ze
  surname: Hu
  fullname: Hu, Ze
– sequence: 4
  givenname: Hancong
  surname: Duan
  fullname: Duan, Hancong
– sequence: 5
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 6
  givenname: Yaping
  surname: Chen
  fullname: Chen, Yaping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40292812$$D View this record in MEDLINE/PubMed
BookMark eNpdks9vFCEUgImpse3qwX_AkHjRw1Z-zAxwMuu61SZt2oPGI3nLwJaGgQozNcZ_XrZbN63hAHl8fLwH7xgdxBQtQq8pOeFckQ-FtaSjnZTP0BFtWDOXjJGDR-tDdFzKDSGMcy5foMOGMMUkZUfozwKfwhRG_NnDJqbiC76w43XqsUsZX_qAf9gQ8CpYM2ZvIOCr9MvmezzDUPAnKLbHKeKLavG9H2wsPsUKLsNURpt93OArm6tugGgsXt1BmGCszEv03EEo9tXDPEPfT1ffll_n55dfzpaL87lpBB3njoNrG-I4tZQBkUZRocD0qnMN9NIZR9ZroUzXMmElNbZv1qBMK3pp6rbgM3S28_YJbvRt9gPk3zqB1_eBlDca8uhNsFo2VFEq6JoZ3hAO1eO63jIuoDOc0ur6uHPdTuvB9sbGMUN4In26E_213qQ7Talquo6ranj3YMjp52TLqAdfTH1kiDZNRXOqWqFUQ7aJv_0PvUlTrm-7pSQVLd1-6Ayd7KgN1Ap8dKlebOro7eBN7RTna3whuWSiFaKtB948rmGf_L-uqMD7HWByKiVbt0co0duO0_uO438BHBnIWg
Cites_doi 10.1109/FSKD.2013.6816207
10.1016/j.egyr.2020.09.018
10.3390/s20195659
10.1016/j.petrol.2020.108329
10.1016/j.petrol.2022.110295
10.1016/j.isatra.2021.03.022
10.1016/j.patcog.2024.110681
10.1109/TIE.2019.2944081
10.1007/s12182-013-0283-4
10.3390/s24061794
10.1016/j.jprocont.2019.02.008
10.1177/1094342017731612
10.1016/j.egyr.2022.02.013
10.1080/01969727408546059
10.3390/pr11041166
10.1016/j.neucom.2024.127937
10.1016/j.jobe.2024.109408
10.1137/0140029
10.1109/TSG.2016.2532885
10.1016/j.petsci.2021.09.012
10.1016/j.eswa.2024.123696
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25061688
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_84191171b2c3403aa9cf6de237a6c311
PMC11946639
A838275775
40292812
10_3390_s25061688
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62006200
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-f3af540f31e12a08c9179acd96f4ad8fcf0bb79c6527e81ced4ba9c57d8cd8f73
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453882100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:37:13 EDT 2025
Tue Nov 04 02:03:10 EST 2025
Fri Sep 05 17:24:12 EDT 2025
Tue Oct 07 07:24:04 EDT 2025
Tue Nov 04 18:15:38 EST 2025
Mon Jul 21 05:26:15 EDT 2025
Sat Nov 29 07:19:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords beam-pumping system
cluster validity function
electrical parameters
FCM clustering algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-f3af540f31e12a08c9179acd96f4ad8fcf0bb79c6527e81ced4ba9c57d8cd8f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-5341-5269
OpenAccessLink https://www.proquest.com/docview/3181751233?pq-origsite=%requestingapplication%
PMID 40292812
PQID 3181751233
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_84191171b2c3403aa9cf6de237a6c311
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11946639
proquest_miscellaneous_3195799407
proquest_journals_3181751233
gale_infotracacademiconefile_A838275775
pubmed_primary_40292812
crossref_primary_10_3390_s25061688
PublicationCentury 2000
PublicationDate 2025-03-08
PublicationDateYYYYMMDD 2025-03-08
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dunn (ref_25) 1974; 4
Lawson (ref_24) 2020; 34
Krishnakumar (ref_29) 2024; 599
Zheng (ref_16) 2019; 77
Han (ref_6) 2022; 120
ref_14
ref_12
Chen (ref_15) 2021; 199
Hujunamp (ref_10) 1991; 10
ref_18
ref_17
Zhang (ref_9) 2018; 21
Yin (ref_11) 2022; 8
Lin (ref_27) 2024; 249
Zhang (ref_3) 2022; 212
Wang (ref_20) 2023; 9
Li (ref_4) 2013; 10
Sun (ref_28) 2024; 155
Sun (ref_30) 2024; 90
Aiswarya (ref_23) 2018; 16
Lv (ref_7) 2022; 19
ref_21
Bezdek (ref_26) 1981; 40
Song (ref_22) 2013; 34
ref_1
Zheng (ref_2) 2019; 67
Tan (ref_8) 2020; 6
Rui (ref_19) 2016; 45
Gillis (ref_13) 2016; 8
ref_5
References_xml – ident: ref_18
  doi: 10.1109/FSKD.2013.6816207
– volume: 6
  start-page: 2676
  year: 2020
  ident: ref_8
  article-title: Review of Variable Speed Drive Technology in Beam Pumping Units for Energy-Saving
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.09.018
– volume: 21
  start-page: 615
  year: 2018
  ident: ref_9
  article-title: Integrated diagnostics method and application of ground and downhole working condition in rod pumping well
  publication-title: J. Appl. Sci. Eng.
– ident: ref_5
  doi: 10.3390/s20195659
– volume: 199
  start-page: 108329
  year: 2021
  ident: ref_15
  article-title: Using the Motor Power and XGBoost to Diagnose Working States of a Sucker Rod Pump
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108329
– volume: 45
  start-page: 80
  year: 2016
  ident: ref_19
  article-title: Research on Dynamometer Diagram Diagnosis Method Based on Wavelet Moment and Fuzzy Kernel Clustering
  publication-title: Mech. Des. Manuf. Eng.
– volume: 212
  start-page: 110295
  year: 2022
  ident: ref_3
  article-title: Fault Diagnosis Method for Sucker Rod Well with Few Shots Based on Meta-Transfer Learning
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110295
– volume: 120
  start-page: 222
  year: 2022
  ident: ref_6
  article-title: Online fault diagnosis for sucker rod pumping well by optimized density peak clustering
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.03.022
– volume: 155
  start-page: 110681
  year: 2024
  ident: ref_28
  article-title: A Lie Group Semi-Supervised FCM Clustering Method for Image Segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.110681
– volume: 34
  start-page: 51
  year: 2013
  ident: ref_22
  article-title: Research on Control System of Underground Coal Mine Detection Robot Based on Model Reference Adaptation
  publication-title: Coal Min. Mach.
– volume: 10
  start-page: 63
  year: 1991
  ident: ref_10
  article-title: Predicting Dynamometer Cards by Actual Motor Power Curves
  publication-title: Pet. Geol. Oilfield Dev. Daqing
– ident: ref_1
– ident: ref_21
– volume: 67
  start-page: 7919
  year: 2019
  ident: ref_2
  article-title: Sucker rod pump working state diagnosis using motor data and hidden conditional random fields
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2944081
– volume: 10
  start-page: 347
  year: 2013
  ident: ref_4
  article-title: Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-013-0283-4
– ident: ref_12
  doi: 10.3390/s24061794
– volume: 16
  start-page: 163
  year: 2018
  ident: ref_23
  article-title: An Efficient Approach for the Diagnosis of Faults in Turbo Pump of Liquid Rocket Engine by Employing FFT and Time-Domain Features
  publication-title: Aust. J. Mech. Eng.
– volume: 9
  start-page: 10
  year: 2023
  ident: ref_20
  article-title: Research on Fast Marking Method for Indicator Diagram of Pumping Well Based on K-Means Clustering
  publication-title: Heliyon
– volume: 77
  start-page: 76
  year: 2019
  ident: ref_16
  article-title: Diagnosis of Sucker Rod Pump Based on Generating Dynamometer Cards
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2019.02.008
– volume: 34
  start-page: 187
  year: 2020
  ident: ref_24
  article-title: Applying EMD/HHT Analysis to Power Traces of Applications Executed on Systems with Intel Xeon Phi
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/1094342017731612
– volume: 8
  start-page: 734
  year: 2022
  ident: ref_11
  article-title: Analysis and Experimental Study of Oil Well Indicator Diagram Based on Electric Parameter Method
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.013
– volume: 4
  start-page: 95
  year: 1974
  ident: ref_25
  article-title: Well-Separated Clusters and Optimal Fuzzy Partitions
  publication-title: J. Cybern.
  doi: 10.1080/01969727408546059
– ident: ref_14
  doi: 10.3390/pr11041166
– volume: 599
  start-page: 127937
  year: 2024
  ident: ref_29
  article-title: FCM-DCS: Fuzzy C-Means Distorted Contour-Based Segmentation Model for Breast Cancer Detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127937
– volume: 90
  start-page: 109408
  year: 2024
  ident: ref_30
  article-title: Short-Term PV Power Data Prediction Based on Improved FCM with WTEEMD and Adaptive Weather Weights
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.109408
– ident: ref_17
– volume: 40
  start-page: 339
  year: 1981
  ident: ref_26
  article-title: Detection and Characterization of Cluster Substructure I. Linear Structure: Fuzzy c-Lines
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0140029
– volume: 8
  start-page: 2648
  year: 2016
  ident: ref_13
  article-title: Non-Intrusive Load Monitoring Using Semi-Supervised Machine Learning and Wavelet Design
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2532885
– volume: 19
  start-page: 743
  year: 2022
  ident: ref_7
  article-title: Adaptive Fault Diagnosis of Sucker Rod Pump Systems Based on Optimal Perceptron and Simulation Data
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2021.09.012
– volume: 249
  start-page: 123696
  year: 2024
  ident: ref_27
  article-title: A New FCM-XGBoost System for Predicting Pavement Condition Index
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123696
SSID ssj0023338
Score 2.4439049
Snippet In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1688
SubjectTerms Accuracy
Algorithms
Analysis
beam-pumping system
Classification
cluster validity function
Clustering
Data processing
Dimensional analysis
Electric power
Electric properties
electrical parameters
Fault diagnosis
FCM clustering algorithm
Machine learning
Mathematical models
Mathematics
Methods
Oil fields
Oil sands
Oil wells
Performance evaluation
Simulation methods
Wavelet transforms
Working conditions
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFQc4IN4EFmQQEqdoYzvx49hdWnGApQcee7McxxaVsilqWi78ecZxmm3FgQvX2FKc-WY88yn2NwBvqaibivoiLzH35qVFzqoby_NQoftwHaQcZBe_fZSXl-rqSi8PWn3FM2FJHjgZ7kyVyCiopDVzvCy4tdoF0XjGpRWOp1u9hdR7MjVSLY7MK-kIcST1Zz0mekFTe5Wb7DOI9P-9FR_kouNzkgeJZ3Ef7o0VI5mllT6AW757CHcPdAQfwe8ZWdhduyXv08G5VU8-DZ2hCZak5POqJd9925L50PImokKWsTnaMH1jr3tyjrmsIeuODPdxm6j4n9Q6yEW7i1IK-BqyvLljQOaTSPhj-LqYf7n4kI9dFXKHiWibB24DlmmBU0-ZLZRDwqata7QIpW1UcKGoa6mdqJj0ijrflDUavZKxz5EKkj-Bk27d-WdAgkREXFMxJ3yJ45ZJUQZRWY1gOeUyeLO3tvmZxDMMko4IiZkgyeA84jBNiHrXwwP0AjN6gfmXF2TwLqJoYlQiVM6OlwtwnVHfyswUV0xWUlYZnO6BNmO49gY3NiyjMInzDF5Pwxho8e-J7fx6F-fEP5oaCXAGT5NfTGtGEq4ZlkoZqCOPOfqo45Fu9WMQ86Y0Kvxz_fx_mOEF3GGxP3E8I6dO4WS72fmXcNv92q76zashRP4A1t8Xsw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Fault Diagnosis Method for Oil Well Electrical Power Diagrams Based on Multidimensional Clustering Performance Evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/40292812
https://www.proquest.com/docview/3181751233
https://www.proquest.com/docview/3195799407
https://pubmed.ncbi.nlm.nih.gov/PMC11946639
https://doaj.org/article/84191171b2c3403aa9cf6de237a6c311
Volume 25
WOSCitedRecordID wos001453882100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMcludCYKkMQuIUbR0nsX1C7dIKJFoixKOcIsexoVJJd5uWCxK_nRknTVshceESKbYVTzTjGY8f30fIC5YWZcJsP4wh9oaxhpxVlZqHLgHz4coJ4WEXP78T06mczVTWLrjV7bHKrU_0jrpcGlwjPwfbg0gHfpa_urwKkTUKd1dbCo3r5Bhps9HOxWyXcHHIvxo0IQ6p_XkN4T5lDcnKLgZ5qP6_HfJeRDo8LbkXfsa3_1fwO-SknXjSQWMpd8k1W90jt_bgCOFt0mG41vfJrwEd681iTV83p_HmNZ14umkK81z6fr6gX-xiQUeeRwdVTTNkXPPNV_pHTYcQIEu6rKi_5FsijUADAUIvFhvEZ4BOaba7uEBHHfL4A_JpPPp48SZsqRpCA9FtHTquHcz9HGeWRbovDWSBSptSpS7WpXTG9YtCKJMmkbCSGVvGhVYmEUieJJ3gp-SoWlb2EaFOxH1uyiQyqY2hXkcijV2aaBUZbqQJyPOt8vLLBpEjh0wGNZx3Gg7IENXaNUAQbV-wXH3L2zGZyxiSVSZYAR-GPjUI5NLSRlzo1HDGAvISjSLHoQ6aN7q9sQByImhWPpBcRiIRIgnI2Vb3eesD6nyn-IA866ph9OKWjK7scoNtcJtUQVYdkIeNmXUyQ2avIph_BUQeGODBTx3WVPPvHiGcMaQN4Orxv-V6Qm5GSGeMR-rkGTlarzb2Kblhfq7n9arnx5J_yh45Ho6m2YeeX7KA5-T3CMqyt5Ps6x9IEzFO
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tCxJw4PsjsIBBIE7RxnYS2weEurutdrVt6WGB3oLr2FCppEvTghD_id_IOGnTVkjc9sCxtZW46fObmdh-D-AlTUd5Qm0Uxhh7w1hjzapyzUOXIHy4ckJUsosfuqLfl8OhGuzA79VZGL-tcsWJFVHnU-Pfke8j9jDSIc_yt-ffQu8a5VdXVxYaNSxO7c8fWLKVb06O8P99xVinfXZ4HC5dBUKDRDwPHdcO0xTHqaVMR9JgwaK0yVXqYp1LZ1w0Ggll0oQJK6mxeTzSyiTC-_xIJzhe9xJcRh4XvtgTw3WBx7Heq9WLOFfRfonpRUprU5d1zKusAf4OABsRcHt35ka469z83x7ULbixTKxJq54Jt2HHFnfg-obcIn7qNRq15V341SIdvZjMyVG923Bckl5lp00wjyfvxhPy0U4mpF35BHkok4F3lKu6z_TXkhxgApCTaUGqQ8y5t0moJU7I4WTh9SfwpmSwPphB2o2y-j14fyHP4j7sFtPCPgTiRBxxkyfMpDbGds1EGrs00YoZbqQJ4MUKLNl5rTiSYaXmEZU1iArgwMOo6eBFwqsvprPP2ZJzMhljMU4FHeGF8Z4aB-TS3DIudGo4pQG89iDMPJUh0oxensjAcXpRsKwluWQiESIJYG-FtWzJcWW2BloAz5tmZCe_5KQLO134Pn4ZWMWRCOBBDetmzHHEFMP8MgC5BfitH7XdUoy_VArolHpbBK4e_Xtcz-Dq8Vmvm3VP-qeP4Rrz1s1--6Dcg935bGGfwBXzfT4uZ0-reUzg00XPhz8nkYs1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgvcjMIBBIFZRYzuJ4wVCnWkrqpmWLHgMq-A6NlQq7dC0IMSf8XVcJ2naCondLFgmthInOb6P-PocgGc0HucRNYEfou_1Q4U5q8wV922E8OHSClHSLr4_EaNRcnoq0z34vd4L48oq1zaxNNT5XLt_5G3EHno6tLO8beuyiLTbf3X2zXcKUm6ldS2nUUHk2Pz8gelb8XLQxW_9nLF-7-3Ra79WGPA1GuWlb7myGLJYTg1lKkg0Ji9S6VzGNlR5YrUNxmMhdRwxYRKqTR6OldSRcJo_iRUcr3sB9jEkD1kL9tPBMP3YpHscs7-Ky4hzGbQLDDZiWkm8bDxgKRTwtzvY8oe7tZpbzq9_7X9-bdfhah1yk041R27AnpndhCtbRIx4NGzYa4tb8KtD-mo1XZJuVYc4KciwFNomGOGTN5Mp-WCmU9IrFYQcyEnqtObK7gv1tSCHGBrkZD4j5fbm3AkoVOQn5Gi6cswUeFOSbrZskF7DuX4b3p3Lu7gDrdl8Zu4BsSIMuM4jpmMTYrtiIg5tHCnJNNeJ9uDpGjjZWcVFkmEO59CVNejy4NBBqung6MPLE_PF56y2RlkSYppOBR3jhfGeCgdk49wwLlSsOaUevHCAzJyRQ9RpVe_VwHE6urCsk_CEiUiIyIODNe6y2voV2QZ0HjxpmtFuucUoNTPzlevjFohlGAgP7lYQb8YcBkwyjDw9SHbAv_NQuy2zyZeSG51SJ5jA5f1_j-sxXMJpkJ0MRscP4DJzms6urjA5gNZysTIP4aL-vpwUi0f1pCbw6bwnxB9ca5WE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fault+Diagnosis+Method+for+Oil+Well+Electrical+Power+Diagrams+Based+on+Multidimensional+Clustering+Performance+Evaluation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xingyu&rft.au=Meng%2C+Xin&rft.au=Hu%2C+Ze&rft.au=Duan%2C+Hancong&rft.date=2025-03-08&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=6&rft_id=info:doi/10.3390%2Fs25061688&rft.externalDocID=A838275775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon