Research on a Particle Filtering Multi-Target Tracking Algorithm for Distributed Systems

The growth of unmanned aerial vehicle applications in the low-altitude economy demand advanced multi-target tracking systems. Unlike traditional approaches that assume independent measurements, distributed systems generate coupled measurements containing additional target relationship information. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 11; s. 3495
Hlavní autoři: Han, Bing, Ge, Zilong, Su, Zhigang, Hao, Jingtang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 31.05.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The growth of unmanned aerial vehicle applications in the low-altitude economy demand advanced multi-target tracking systems. Unlike traditional approaches that assume independent measurements, distributed systems generate coupled measurements containing additional target relationship information. This paper proposes a novel distributed particle filtering algorithm through introducing the coupled measurement into the conventional particle filtering method. In the proposed method, we fuse direct and coupled measurements via optimization and then build a cost function to optimize the particle weights. Comparative evaluations across motion models, noise levels, and the number of targets demonstrate the outperforming performance of the proposed method compared to conventional particle filtering and the unscented Kalman filtering algorithm, with more than 7% accuracy improvement over baselines. The results prove particular robustness to measurement noise and the increasing number of targets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25113495