Domain-Adaptive Direction of Arrival (DOA) Estimation in Complex Indoor Environments Based on Convolutional Autoencoder and Transfer Learning
Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation ac...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 25; no. 10; p. 2959 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
08.05.2025
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data. |
|---|---|
| AbstractList | Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data. Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data.Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data. |
| Audience | Academic |
| Author | Xu, Rui Deng, Weiming Li, Jianfeng Shi, Junpeng Pan, Jingjing Shen, Lingyu Wang, Hao |
| AuthorAffiliation | College of Electronic and Information Engineering, Nanjing University of Aeronautics and Asteonautics, Nanjing 211106, China; shenlingyu@nuaa.edu.cn (L.S.); jingjingpan@nuaa.edu.cn (J.P.); shijunpeng20@nudt.edu.cn (J.S.); rey.xu@nuaa.edu.cn (R.X.); wanghao319@nuaa.edu.cn (H.W.); dengweiming@nuaa.edu.cn (W.D.) |
| AuthorAffiliation_xml | – name: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Asteonautics, Nanjing 211106, China; shenlingyu@nuaa.edu.cn (L.S.); jingjingpan@nuaa.edu.cn (J.P.); shijunpeng20@nudt.edu.cn (J.S.); rey.xu@nuaa.edu.cn (R.X.); wanghao319@nuaa.edu.cn (H.W.); dengweiming@nuaa.edu.cn (W.D.) |
| Author_xml | – sequence: 1 givenname: Lingyu surname: Shen fullname: Shen, Lingyu – sequence: 2 givenname: Jianfeng surname: Li fullname: Li, Jianfeng – sequence: 3 givenname: Jingjing surname: Pan fullname: Pan, Jingjing – sequence: 4 givenname: Junpeng surname: Shi fullname: Shi, Junpeng – sequence: 5 givenname: Rui surname: Xu fullname: Xu, Rui – sequence: 6 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 7 givenname: Weiming orcidid: 0000-0003-4315-2904 surname: Deng fullname: Deng, Weiming |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40431754$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkstuEzEUhkeoiF5gwQsgS2zaRYpvkxmv0JAEiBSpm7Ie-XIcHM3YwZ6JykPwzjidErXIC9vnfOe3z9F_WZz54KEo3hN8y5jAnxItCaaiFK-KC8Ipn9WU4rNn5_PiMqUdxpQxVr8pzjnmjFQlvyj-LEMvnZ81Ru4HdwC0dBH04IJHwaImRneQHbpe3jU3aJUG18vHnPNoEfp9Bw9o7U0IEa38wcXge_BDQl9kAoPCEfKH0I3HmizTjEMAr4OBiKQ36D5Kn2y-bEBG7_z2bfHayi7Bu6f9qvjxdXW_-D7b3H1bL5rNTPOKDDNQVlhTVVZVpZVKccIFtZwJgWtcS0tBCc2YZEYqqJQh8zkISua0tKYESdlVsZ50TZC7dh9zW_F3G6RrHwMhblsZB6c7aIkWxIDCQJjinKoazxXRWADHFMCSrPV50tqPqgej8wCi7F6Ivsx497PdhkNLKCG8LllWuH5SiOHXCGloe5c0dJ30EMbUMkpoVZOalRn9-B-6C2PMs50oggWr6kzdTtRW5g6ctyE_rPMy0DudvWNdjjc1pxUtKZvngg_Pezh9_p9PMnAzATqGlCLYE0Jwe_Rge_Ig-wswh87p |
| Cites_doi | 10.1109/TII.2016.2569416 10.1109/APCCAS50809.2020.9301691 10.1109/TVT.2018.2851783 10.1109/FGCT.2012.6476563 10.1109/APS.2009.5171460 10.1109/LCOMM.2018.2884464 10.1109/TWC.2023.3339803 10.1109/ICC51166.2024.10622826 10.1109/TVT.2020.2977894 10.1109/ACSSC.2010.5757632 10.1002/dac.4882 10.1109/COMCAS52219.2021.9629116 10.1109/TIM.2022.3191705 10.1109/TWC.2014.2386869 10.1109/ICCSP.2016.7754133 10.1109/LGRS.2021.3126594 10.1109/WPNC.2018.8555814 10.1109/TIE.2021.3128895 10.1109/MLSP.2016.7738899 10.1109/ACSSC.2017.8335537 10.1109/TVT.2021.3054757 10.1109/IWSSIP.2019.8787321 10.1109/ICIAFS.2018.8913363 10.1109/IWCMC61514.2024.10592555 10.1109/SAM.2008.4606857 10.1109/ICASSP43922.2022.9746637 10.1109/ACCESS.2020.3012582 10.1109/ICSPCC.2017.8242461 10.1109/ACCESS.2016.2628869 10.1109/SIU53274.2021.9477868 10.1109/TWC.2024.3439703 10.1109/ICECCO.2014.6997566 10.1109/RTEICT.2016.7807839 10.1109/LSENS.2020.2980384 10.1109/ICSIP49896.2020.9339345 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25102959 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_1c91deb0e13b442b806b1c09e402eef1 PMC12114853 A842725236 40431754 10_3390_s25102959 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: the China University Innovation Fund for Production, Education and Research grantid: 2021ZYA0301 – fundername: the China Postdoctoral Science Foundation grantid: 2023T160312 – fundername: the Key R&D Plan of Jiangsu Province grantid: BE2023027 – fundername: the National Science Foundation of China grantid: 62371227 – fundername: China University Innovation Fund for Production, Education and Research grantid: 2021ZYA0301 – fundername: Science and Technology Plan Program of Huzhou City grantid: 2022GZ03 – fundername: National Science Foundation of China grantid: 62371227 – fundername: China Postdoctoral Science Foundation grantid: 2023T160312 – fundername: Key R&D Plan of Jiangsu Province grantid: BE2023027 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c471t-ebf9fd77fb75fabb41492f43990808af2eb9c33a3dabe7bd166e921625fd5ea23 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496762800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:30:11 EST 2025 Tue Nov 04 02:02:44 EST 2025 Fri Sep 05 15:59:29 EDT 2025 Tue Oct 07 07:28:19 EDT 2025 Tue Nov 04 18:14:16 EST 2025 Sun Jun 01 01:35:20 EDT 2025 Sat Nov 29 07:13:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | domain adaptation Deep Learning indoor scenes DOA |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-ebf9fd77fb75fabb41492f43990808af2eb9c33a3dabe7bd166e921625fd5ea23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4315-2904 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3212109378?pq-origsite=%requestingapplication% |
| PMID | 40431754 |
| PQID | 3212109378 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1c91deb0e13b442b806b1c09e402eef1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12114853 proquest_miscellaneous_3212781835 proquest_journals_3212109378 gale_infotracacademiconefile_A842725236 pubmed_primary_40431754 crossref_primary_10_3390_s25102959 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-08 |
| PublicationDateYYYYMMDD | 2025-05-08 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Miao (ref_37) 2022; 69 Harkouss (ref_30) 2021; 34 Gretton (ref_40) 2012; 13 Wan (ref_3) 2016; 12 ref_14 Veerendra (ref_17) 2023; 7 Elbir (ref_34) 2020; 4 ref_12 ref_11 ref_10 ref_31 Chen (ref_33) 2020; 8 Guo (ref_2) 2024; 23 ref_19 ref_18 ref_16 ref_15 Pan (ref_21) 2022; 71 Xiang (ref_35) 2020; 69 Huang (ref_32) 2018; 67 Ge (ref_28) 2021; 2021 Ganin (ref_39) 2015; 37 ref_23 Shen (ref_13) 2016; 4 ref_22 Yu (ref_38) 2022; 19 ref_20 ref_41 ref_1 ref_29 ref_27 Gaber (ref_4) 2015; 14 ref_26 ref_9 ref_8 ref_5 Yang (ref_25) 2021; 70 ref_7 Khan (ref_24) 2019; 23 ref_6 Yu (ref_36) 2024; 23 |
| References_xml | – volume: 12 start-page: 2353 year: 2016 ident: ref_3 article-title: The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2569416 – volume: 2021 start-page: 6392875 year: 2021 ident: ref_28 article-title: Deep Learning Approach in DOA Estimation: A Systematic Literature Review publication-title: Mob. Inf. Syst. – volume: 7 start-page: 7006804 year: 2023 ident: ref_17 article-title: Optimizing Sensor Array DOA Estimation With the Manifold Reconstruction Unitary ESPRIT Algorithm publication-title: IEEE Sens. Lett. – ident: ref_22 doi: 10.1109/APCCAS50809.2020.9301691 – volume: 67 start-page: 8549 year: 2018 ident: ref_32 article-title: Deep Learning for Super-resolution Channel Estimation and DOA Estimation Based on Massive MIMO System publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2851783 – ident: ref_10 doi: 10.1109/FGCT.2012.6476563 – ident: ref_11 doi: 10.1109/APS.2009.5171460 – volume: 23 start-page: 294 year: 2019 ident: ref_24 article-title: Angle-of-Arrival Estimation Using an Adaptive Machine Learning Framework publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2884464 – ident: ref_5 – volume: 23 start-page: 7349 year: 2024 ident: ref_36 article-title: Model Order Estimation in the Presence of Multipath Interference Using Residual Convolutional Neural Networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2023.3339803 – ident: ref_20 doi: 10.1109/ICC51166.2024.10622826 – volume: 69 start-page: 5068 year: 2020 ident: ref_35 article-title: Improved De-Multipath Neural Network Models With Self-Paced Feature-to-Feature Learning for DOA Estimation in Multipath Environment publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2977894 – ident: ref_15 doi: 10.1109/ACSSC.2010.5757632 – volume: 34 start-page: e4882 year: 2021 ident: ref_30 article-title: Direction of Arrival Estimation in Multipath Environments Using Deep Learning publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4882 – ident: ref_18 doi: 10.1109/COMCAS52219.2021.9629116 – volume: 71 start-page: 8005219 year: 2022 ident: ref_21 article-title: Efficient Joint DOA and TOA Estimation for Indoor Positioning With 5G Picocell Base Stations publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3191705 – volume: 14 start-page: 2440 year: 2015 ident: ref_4 article-title: A Study of Wireless Indoor Positioning Based on Joint TDOA and DOA Estimation Using 2-D Matrix Pencil Algorithms and IEEE 802.11ac publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.2386869 – ident: ref_9 doi: 10.1109/ICCSP.2016.7754133 – volume: 19 start-page: 5511705 year: 2022 ident: ref_38 article-title: Unsupervised Domain Adaptation With Content-Wise Alignment for Hyperspectral Imagery Classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2021.3126594 – ident: ref_31 doi: 10.1109/WPNC.2018.8555814 – volume: 37 start-page: 1180 year: 2015 ident: ref_39 article-title: Unsupervised Domain Adaptation by Backpropagation publication-title: Int. Conf. Mach. Learn. – volume: 69 start-page: 13565 year: 2022 ident: ref_37 article-title: Sparse Representation Convolutional Autoencoder for Feature Learning of Vibration Signals and its Applications in Machinery Fault Diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3128895 – ident: ref_27 doi: 10.1109/MLSP.2016.7738899 – ident: ref_19 doi: 10.1109/ACSSC.2017.8335537 – volume: 70 start-page: 1592 year: 2021 ident: ref_25 article-title: Machine-learning-based Fast Angle-of-Arrival Recognition for Vehicular Communications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3054757 – ident: ref_26 doi: 10.1109/IWSSIP.2019.8787321 – ident: ref_1 doi: 10.1109/ICIAFS.2018.8913363 – ident: ref_8 doi: 10.1109/IWCMC61514.2024.10592555 – ident: ref_16 doi: 10.1109/SAM.2008.4606857 – ident: ref_29 doi: 10.1109/ICASSP43922.2022.9746637 – volume: 8 start-page: 140688 year: 2020 ident: ref_33 article-title: Deep Neural Network for Estimation of Direction of Arrival with Antenna Array publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012582 – ident: ref_12 doi: 10.1109/ICSPCC.2017.8242461 – volume: 4 start-page: 8865 year: 2016 ident: ref_13 article-title: Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2628869 – ident: ref_7 doi: 10.1109/SIU53274.2021.9477868 – volume: 23 start-page: 16290 year: 2024 ident: ref_2 article-title: Resonant Beam Enabled DoA Estimation in Passive Positioning System publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2024.3439703 – volume: 13 start-page: 723 year: 2012 ident: ref_40 article-title: A Kernel Two-Sample Test publication-title: J. Mach. Learn. Res. – ident: ref_41 – ident: ref_14 doi: 10.1109/ICECCO.2014.6997566 – ident: ref_6 doi: 10.1109/RTEICT.2016.7807839 – volume: 4 start-page: 7001004 year: 2020 ident: ref_34 article-title: DeepMUSIC: Multiple Signal Classification via Deep Learning publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2980384 – ident: ref_23 doi: 10.1109/ICSIP49896.2020.9339345 |
| SSID | ssj0023338 |
| Score | 2.4488513 |
| Snippet | Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2959 |
| SubjectTerms | Adaptation Algorithms Datasets Deep Learning Design DOA domain adaptation indoor scenes Location-based systems Machine learning Methods Mobile communication systems Neural networks Signal processing Support vector machines Wireless communication systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_I4kEP4rfVVaII6qFsm7RNe5zVWRRk8aCwt5I0LzqwJktnZvGf8H_2vbYzdPDgxWPbFF7zPn9N8nsAr6kk8ORCBEsKXmY0VZfyD4YUvTbScWMcHLqWfNbn5_XFRfNl1uqL94SN9MDjxJ3kXZM7tBnmyhaFtHVW2bzLGiTgg-gH4JPpZgemJqilCHmNPEKKQP3JmrJ4JhsmJJ1ln4Gk_-9QPMtFh_skZ4nn7C7cmSpGsRglvQc3MNyH2zMewQfw-0P8SQg_XThzxeFLTIEsBhE9vdmvyJ7EWxL9nViST4_HFcUqCA4Hl_hLfAouxl4sZ8fexCklOCciDwrXk4WyINtNZPZLh70wwYkh23m6mKhavz-Eb2fLr-8_plOfhbSj1LRJ0frGO6291aU31haEmqRnoELlZG28RNt0ShnljEVtXV5V2MickJN3JRqpHsFRiAGfgMiQ1JUZU2v0RVe4xlFBVZlMOVWSEm0Cr3bz316NdBotwRBWUrtXUgKnrJn9AGbAHm6QXbSTXbT_sosE3rBeW_ZTUl5npuMGJCczXrWLupBaEgyvEjjeqb6dHHjdKsnMalS71Qm83D8m1-P1FBMwbscxmgoeVSbweLSUvcwDaZEuiwTqAxs6-KjDJ2H1Y6D3ZtK9gqqop_9jGp7BLckdi3mLZn0MR5t-i8_hZne9Wa37F4PT_AH5tB-U priority: 102 providerName: Directory of Open Access Journals |
| Title | Domain-Adaptive Direction of Arrival (DOA) Estimation in Complex Indoor Environments Based on Convolutional Autoencoder and Transfer Learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40431754 https://www.proquest.com/docview/3212109378 https://www.proquest.com/docview/3212781835 https://pubmed.ncbi.nlm.nih.gov/PMC12114853 https://doaj.org/article/1c91deb0e13b442b806b1c09e402eef1 |
| Volume | 25 |
| WOSCitedRecordID | wos001496762800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48H4ElsogJOAQNXHSODmhFrpiJbaqEEjLKbJje6kETknbFSf-Af-ZmcQtrZA4cYnUxm0czfib-fz4BuA5pgQWhxDSkpSWGWVWhTTBEBorJNdUGMe0VUvei9ksPz8v5v549Mpvq9xiYgvUndoz7dtGEB7quqIZ82HCSfgKQ2v-evk9pBpStNbqC2ocQZ-Et6Ie9OenZ_PPOwKWIB_r1IUSpPrDFcb2iBckU7oXk1rp_r8Bei9CHe6e3AtHJzf_74vcghs-LWXjzo9uwxXj7sD1PbHCu_Drbf1NLlw41nJJGMk8WtaO1RZ_2SzQadlLJJuv2BSBozsTyRaOEeZ8NT_YqdN13bDp3tk6NsEoqllNjdylHwbUkc26JolNbRomnWZtSLX4wevBXtyDTyfTj2_ehb6YQ1hh_FuHRtnCaiGsEiMrlUqRmnFLbAhz1lxablRRJYlMtFRGKB1nmSl4jPTM6pGRPLkPPVc78xBYZCpMcqTMhbFplepCY9aWySjRycioSAXwbGvOctlpdpTIdcjm5c7mAUzI0LsGJLPdflE3F6UftWWMD9L4lyZOVJpylUeZiquoMMi6jbFxAC_ITUoCA_SFSvozDdhPktUqx3nKBUeunwVwvPWG0qPEqvxj_ACe7m7j-KZFG-lMvenaCMyqklEADzrH2_W5VUYSozSA_MAlD17q8I5bfGk1xEnZL8VU7dG_-_UYrnEqeEw7PPNj6K2bjXkCV6vL9WLVDOBInIv2mg-gP5nO5h8G7aQGXs9-Tgd-_P0Gq14_xw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qUiRgwfthKDAgELCwas_4uUAopakaNY2yKFJZmRnPTLEEdnCSAh_Br_CN3Gs7IRESuy5Yxp44Y-fcM-d6Zs4FeI6SwGIIYVoS0DSjjHKXXjC4xsaSayqMY5qqJaN4PE5OT9PJFvxa7oWhZZVLTmyIWlc5vSPfFZysrnAwTd5Ov7pUNYpmV5clNFpYHJkf3zBlm70Z7uP_-4Lzg8HJu0O3qyrg5kjEc9com1odx1bFoZVKBZgjcEuyHMVTIi03Ks2FkEJLZWKl_SgyKfcxT7A6NJKMDpDytwMEu9eD7cnwePJhleIJzPha_yIhUm93hurB4ykZoa6Nek1xgL-HgLUxcHN95tqAd3D9f3tUN-BaJ61Zv42Fm7Blyltwdc1w8Tb83K--yKJ0-1pOiedZx_hVySqL36wLDDz2ChPm12yA5Nfu62RFyYg3P5vvbFjqqqrZYG1_INtDJaBZRY3K8y6UqSOLeUU2odrUTJaaNbLA4ofO0_bsDry_kOdxF3plVZr7wDyTo1CTMomNDfJApxqVZyQ9oUVolKcceLYETDZtfUcyzNcIVdkKVQ7sEZRWDcgqvDlQ1WdZxzyZjz-k8ZLGFwpBqxIvUn7upSbwuDHWd-AlATEjQkO05bLbl4H9JGuwrJ8EPOYhF5EDO0u8ZR3TzbI_YHPg6eo0chRNPMnSVIu2TYzKUIQO3Guhvepz4-4Uh4EDyQboN25q80xZfGp80MmdMEC5-eDf_XoClw9PjkfZaDg-eghXOBVwphWryQ705vXCPIJL-fm8mNWPu2hm8PGio-I3R7aOVw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB2tugjBge-PwAIGgYBD1MTO5wGhlrai2lVVIZD2FuzY3q20JCVtF_gR_CF-HTNJWlohcdsDxzZu66Rv3rxJ7DcAz1ESWAwhLEsCeswoo9ylGwyusbHkmhrjmLpryVE8mSTHx-l0D36t98LQsso1J9ZErcuc7pF3BSerK0ymSde2yyKmg9Hb-VeXOkjRk9Z1O40GIofmxzcs3xZvxgP8r19wPhp-fPfebTsMuDmS8tI1yqZWx7FVcWilUgHWC9ySREchlUjLjUpzIaTQUplYaT-KTMp9rBmsDo0k0wOk__1YYNHTgf3-cDL9sCn3BFZ_jZeREKnXXaCS8HhKpqhbGbBuFPB3OtjKh7trNbeS3-j6_3zZbsC1VnKzXhMjN2HPFLfg6pYR4234OSi_yFnh9rScE_-zNhOUBSstfrKaYUCyV1hIv2ZDJMVmvyebFYz49Mx8Z-NCl2XFhlv7BlkfFYJmJQ0qztsQp4msliXZh2pTMVloVssFiy9ar9uTO_DpQq7HXegUZWHuA_NMjgJOyiQ2NsgDnWpUpJH0hBahUZ5y4NkaPNm88SPJsI4jhGUbhDnQJ1htBpCFeP1GWZ1kLSNlPv6Qxq80vlBBwFXiRcrPvdQEHjfG-g68JFBmRHSIvFy2-zVwnmQZlvWSgMc85CJy4GCNvaxlwEX2B3gOPN0cRu6iB1KyMOWqGROjYhShA_camG_mXLs-xWHgQLITADsntXukmJ3W_ujkWhigDH3w73k9gcsYCtnReHL4EK5w6utMC1mTA-gsq5V5BJfy8-VsUT1uA5vB54sOit9nw5bx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-Adaptive+Direction+of+Arrival+%28DOA%29+Estimation+in+Complex+Indoor+Environments+Based+on+Convolutional+Autoencoder+and+Transfer+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Lingyu&rft.au=Li%2C+Jianfeng&rft.au=Pan%2C+Jingjing&rft.au=Shi%2C+Junpeng&rft.date=2025-05-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft.spage=2959&rft_id=info:doi/10.3390%2Fs25102959&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25102959 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |