Domain-Adaptive Direction of Arrival (DOA) Estimation in Complex Indoor Environments Based on Convolutional Autoencoder and Transfer Learning

Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation ac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 10; p. 2959
Main Authors: Shen, Lingyu, Li, Jianfeng, Pan, Jingjing, Shi, Junpeng, Xu, Rui, Wang, Hao, Deng, Weiming
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 08.05.2025
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data.
AbstractList Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data.
Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data.Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home applications. However, complex indoor conditions, such as multipath effects and noise interference, pose significant challenges to estimation accuracy. This issue is further complicated by domain discrepancies in data collected from different environments. To address these challenges, we propose a deep domain-adaptation-based DOA estimation method. The approach begins with deep feature extraction using a Convolutional Autoencoder (CAE) and employs a Domain-Adversarial Neural Network (DANN) for domain adaptation. By integrating Gradient Reversal Layer (GRL) and Maximum Mean Discrepancy (MMD) loss functions, the model effectively reduces distributional differences between the source and target domains. The CAE-DANN enables transfer learning between data with similar features from different domains. With minimal labeled data from the target domain incorporated into the source domain, the model leverages labeled source data to adapt to unlabeled target data. GRL counters domain shifts, while MMD refines feature alignment. Experimental results show that, in complex indoor environments, the proposed method outperforms other methods in terms of overall DOA prediction performance in both the source and target domains. This highlights a robust and practical solution for high-precision DOA estimation in new environments, requiring minimal labeled data.
Audience Academic
Author Xu, Rui
Deng, Weiming
Li, Jianfeng
Shi, Junpeng
Pan, Jingjing
Shen, Lingyu
Wang, Hao
AuthorAffiliation College of Electronic and Information Engineering, Nanjing University of Aeronautics and Asteonautics, Nanjing 211106, China; shenlingyu@nuaa.edu.cn (L.S.); jingjingpan@nuaa.edu.cn (J.P.); shijunpeng20@nudt.edu.cn (J.S.); rey.xu@nuaa.edu.cn (R.X.); wanghao319@nuaa.edu.cn (H.W.); dengweiming@nuaa.edu.cn (W.D.)
AuthorAffiliation_xml – name: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Asteonautics, Nanjing 211106, China; shenlingyu@nuaa.edu.cn (L.S.); jingjingpan@nuaa.edu.cn (J.P.); shijunpeng20@nudt.edu.cn (J.S.); rey.xu@nuaa.edu.cn (R.X.); wanghao319@nuaa.edu.cn (H.W.); dengweiming@nuaa.edu.cn (W.D.)
Author_xml – sequence: 1
  givenname: Lingyu
  surname: Shen
  fullname: Shen, Lingyu
– sequence: 2
  givenname: Jianfeng
  surname: Li
  fullname: Li, Jianfeng
– sequence: 3
  givenname: Jingjing
  surname: Pan
  fullname: Pan, Jingjing
– sequence: 4
  givenname: Junpeng
  surname: Shi
  fullname: Shi, Junpeng
– sequence: 5
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
– sequence: 6
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 7
  givenname: Weiming
  orcidid: 0000-0003-4315-2904
  surname: Deng
  fullname: Deng, Weiming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40431754$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuEzEUhkeoiF5gwQsgS2zaRYpvkxmv0JAEiBSpm7Ie-XIcHM3YwZ6JykPwzjidErXIC9vnfOe3z9F_WZz54KEo3hN8y5jAnxItCaaiFK-KC8Ipn9WU4rNn5_PiMqUdxpQxVr8pzjnmjFQlvyj-LEMvnZ81Ru4HdwC0dBH04IJHwaImRneQHbpe3jU3aJUG18vHnPNoEfp9Bw9o7U0IEa38wcXge_BDQl9kAoPCEfKH0I3HmizTjEMAr4OBiKQ36D5Kn2y-bEBG7_z2bfHayi7Bu6f9qvjxdXW_-D7b3H1bL5rNTPOKDDNQVlhTVVZVpZVKccIFtZwJgWtcS0tBCc2YZEYqqJQh8zkISua0tKYESdlVsZ50TZC7dh9zW_F3G6RrHwMhblsZB6c7aIkWxIDCQJjinKoazxXRWADHFMCSrPV50tqPqgej8wCi7F6Ivsx497PdhkNLKCG8LllWuH5SiOHXCGloe5c0dJ30EMbUMkpoVZOalRn9-B-6C2PMs50oggWr6kzdTtRW5g6ctyE_rPMy0DudvWNdjjc1pxUtKZvngg_Pezh9_p9PMnAzATqGlCLYE0Jwe_Rge_Ig-wswh87p
Cites_doi 10.1109/TII.2016.2569416
10.1109/APCCAS50809.2020.9301691
10.1109/TVT.2018.2851783
10.1109/FGCT.2012.6476563
10.1109/APS.2009.5171460
10.1109/LCOMM.2018.2884464
10.1109/TWC.2023.3339803
10.1109/ICC51166.2024.10622826
10.1109/TVT.2020.2977894
10.1109/ACSSC.2010.5757632
10.1002/dac.4882
10.1109/COMCAS52219.2021.9629116
10.1109/TIM.2022.3191705
10.1109/TWC.2014.2386869
10.1109/ICCSP.2016.7754133
10.1109/LGRS.2021.3126594
10.1109/WPNC.2018.8555814
10.1109/TIE.2021.3128895
10.1109/MLSP.2016.7738899
10.1109/ACSSC.2017.8335537
10.1109/TVT.2021.3054757
10.1109/IWSSIP.2019.8787321
10.1109/ICIAFS.2018.8913363
10.1109/IWCMC61514.2024.10592555
10.1109/SAM.2008.4606857
10.1109/ICASSP43922.2022.9746637
10.1109/ACCESS.2020.3012582
10.1109/ICSPCC.2017.8242461
10.1109/ACCESS.2016.2628869
10.1109/SIU53274.2021.9477868
10.1109/TWC.2024.3439703
10.1109/ICECCO.2014.6997566
10.1109/RTEICT.2016.7807839
10.1109/LSENS.2020.2980384
10.1109/ICSIP49896.2020.9339345
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25102959
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1c91deb0e13b442b806b1c09e402eef1
PMC12114853
A842725236
40431754
10_3390_s25102959
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the China University Innovation Fund for Production, Education and Research
  grantid: 2021ZYA0301
– fundername: the China Postdoctoral Science Foundation
  grantid: 2023T160312
– fundername: the Key R&D Plan of Jiangsu Province
  grantid: BE2023027
– fundername: the National Science Foundation of China
  grantid: 62371227
– fundername: China University Innovation Fund for Production, Education and Research
  grantid: 2021ZYA0301
– fundername: Science and Technology Plan Program of Huzhou City
  grantid: 2022GZ03
– fundername: National Science Foundation of China
  grantid: 62371227
– fundername: China Postdoctoral Science Foundation
  grantid: 2023T160312
– fundername: Key R&D Plan of Jiangsu Province
  grantid: BE2023027
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-ebf9fd77fb75fabb41492f43990808af2eb9c33a3dabe7bd166e921625fd5ea23
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496762800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:30:11 EST 2025
Tue Nov 04 02:02:44 EST 2025
Fri Sep 05 15:59:29 EDT 2025
Tue Oct 07 07:28:19 EDT 2025
Tue Nov 04 18:14:16 EST 2025
Sun Jun 01 01:35:20 EDT 2025
Sat Nov 29 07:13:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords domain adaptation
Deep Learning
indoor scenes
DOA
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-ebf9fd77fb75fabb41492f43990808af2eb9c33a3dabe7bd166e921625fd5ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4315-2904
OpenAccessLink https://www.proquest.com/publiccontent/docview/3212109378?pq-origsite=%requestingapplication%
PMID 40431754
PQID 3212109378
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1c91deb0e13b442b806b1c09e402eef1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12114853
proquest_miscellaneous_3212781835
proquest_journals_3212109378
gale_infotracacademiconefile_A842725236
pubmed_primary_40431754
crossref_primary_10_3390_s25102959
PublicationCentury 2000
PublicationDate 2025-05-08
PublicationDateYYYYMMDD 2025-05-08
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Miao (ref_37) 2022; 69
Harkouss (ref_30) 2021; 34
Gretton (ref_40) 2012; 13
Wan (ref_3) 2016; 12
ref_14
Veerendra (ref_17) 2023; 7
Elbir (ref_34) 2020; 4
ref_12
ref_11
ref_10
ref_31
Chen (ref_33) 2020; 8
Guo (ref_2) 2024; 23
ref_19
ref_18
ref_16
ref_15
Pan (ref_21) 2022; 71
Xiang (ref_35) 2020; 69
Huang (ref_32) 2018; 67
Ge (ref_28) 2021; 2021
Ganin (ref_39) 2015; 37
ref_23
Shen (ref_13) 2016; 4
ref_22
Yu (ref_38) 2022; 19
ref_20
ref_41
ref_1
ref_29
ref_27
Gaber (ref_4) 2015; 14
ref_26
ref_9
ref_8
ref_5
Yang (ref_25) 2021; 70
ref_7
Khan (ref_24) 2019; 23
ref_6
Yu (ref_36) 2024; 23
References_xml – volume: 12
  start-page: 2353
  year: 2016
  ident: ref_3
  article-title: The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2569416
– volume: 2021
  start-page: 6392875
  year: 2021
  ident: ref_28
  article-title: Deep Learning Approach in DOA Estimation: A Systematic Literature Review
  publication-title: Mob. Inf. Syst.
– volume: 7
  start-page: 7006804
  year: 2023
  ident: ref_17
  article-title: Optimizing Sensor Array DOA Estimation With the Manifold Reconstruction Unitary ESPRIT Algorithm
  publication-title: IEEE Sens. Lett.
– ident: ref_22
  doi: 10.1109/APCCAS50809.2020.9301691
– volume: 67
  start-page: 8549
  year: 2018
  ident: ref_32
  article-title: Deep Learning for Super-resolution Channel Estimation and DOA Estimation Based on Massive MIMO System
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2851783
– ident: ref_10
  doi: 10.1109/FGCT.2012.6476563
– ident: ref_11
  doi: 10.1109/APS.2009.5171460
– volume: 23
  start-page: 294
  year: 2019
  ident: ref_24
  article-title: Angle-of-Arrival Estimation Using an Adaptive Machine Learning Framework
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2884464
– ident: ref_5
– volume: 23
  start-page: 7349
  year: 2024
  ident: ref_36
  article-title: Model Order Estimation in the Presence of Multipath Interference Using Residual Convolutional Neural Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2023.3339803
– ident: ref_20
  doi: 10.1109/ICC51166.2024.10622826
– volume: 69
  start-page: 5068
  year: 2020
  ident: ref_35
  article-title: Improved De-Multipath Neural Network Models With Self-Paced Feature-to-Feature Learning for DOA Estimation in Multipath Environment
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2977894
– ident: ref_15
  doi: 10.1109/ACSSC.2010.5757632
– volume: 34
  start-page: e4882
  year: 2021
  ident: ref_30
  article-title: Direction of Arrival Estimation in Multipath Environments Using Deep Learning
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4882
– ident: ref_18
  doi: 10.1109/COMCAS52219.2021.9629116
– volume: 71
  start-page: 8005219
  year: 2022
  ident: ref_21
  article-title: Efficient Joint DOA and TOA Estimation for Indoor Positioning With 5G Picocell Base Stations
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3191705
– volume: 14
  start-page: 2440
  year: 2015
  ident: ref_4
  article-title: A Study of Wireless Indoor Positioning Based on Joint TDOA and DOA Estimation Using 2-D Matrix Pencil Algorithms and IEEE 802.11ac
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2386869
– ident: ref_9
  doi: 10.1109/ICCSP.2016.7754133
– volume: 19
  start-page: 5511705
  year: 2022
  ident: ref_38
  article-title: Unsupervised Domain Adaptation With Content-Wise Alignment for Hyperspectral Imagery Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2021.3126594
– ident: ref_31
  doi: 10.1109/WPNC.2018.8555814
– volume: 37
  start-page: 1180
  year: 2015
  ident: ref_39
  article-title: Unsupervised Domain Adaptation by Backpropagation
  publication-title: Int. Conf. Mach. Learn.
– volume: 69
  start-page: 13565
  year: 2022
  ident: ref_37
  article-title: Sparse Representation Convolutional Autoencoder for Feature Learning of Vibration Signals and its Applications in Machinery Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3128895
– ident: ref_27
  doi: 10.1109/MLSP.2016.7738899
– ident: ref_19
  doi: 10.1109/ACSSC.2017.8335537
– volume: 70
  start-page: 1592
  year: 2021
  ident: ref_25
  article-title: Machine-learning-based Fast Angle-of-Arrival Recognition for Vehicular Communications
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3054757
– ident: ref_26
  doi: 10.1109/IWSSIP.2019.8787321
– ident: ref_1
  doi: 10.1109/ICIAFS.2018.8913363
– ident: ref_8
  doi: 10.1109/IWCMC61514.2024.10592555
– ident: ref_16
  doi: 10.1109/SAM.2008.4606857
– ident: ref_29
  doi: 10.1109/ICASSP43922.2022.9746637
– volume: 8
  start-page: 140688
  year: 2020
  ident: ref_33
  article-title: Deep Neural Network for Estimation of Direction of Arrival with Antenna Array
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012582
– ident: ref_12
  doi: 10.1109/ICSPCC.2017.8242461
– volume: 4
  start-page: 8865
  year: 2016
  ident: ref_13
  article-title: Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2628869
– ident: ref_7
  doi: 10.1109/SIU53274.2021.9477868
– volume: 23
  start-page: 16290
  year: 2024
  ident: ref_2
  article-title: Resonant Beam Enabled DoA Estimation in Passive Positioning System
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2024.3439703
– volume: 13
  start-page: 723
  year: 2012
  ident: ref_40
  article-title: A Kernel Two-Sample Test
  publication-title: J. Mach. Learn. Res.
– ident: ref_41
– ident: ref_14
  doi: 10.1109/ICECCO.2014.6997566
– ident: ref_6
  doi: 10.1109/RTEICT.2016.7807839
– volume: 4
  start-page: 7001004
  year: 2020
  ident: ref_34
  article-title: DeepMUSIC: Multiple Signal Classification via Deep Learning
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2980384
– ident: ref_23
  doi: 10.1109/ICSIP49896.2020.9339345
SSID ssj0023338
Score 2.4488513
Snippet Direction of arrival (DOA) estimation for signal sources in indoor environments has become increasingly important in wireless communications and smart home...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2959
SubjectTerms Adaptation
Algorithms
Datasets
Deep Learning
Design
DOA
domain adaptation
indoor scenes
Location-based systems
Machine learning
Methods
Mobile communication systems
Neural networks
Signal processing
Support vector machines
Wireless communication systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_I4kEP4rfVVaII6qFsm7RNe5zVWRRk8aCwt5I0LzqwJktnZvGf8H_2vbYzdPDgxWPbFF7zPn9N8nsAr6kk8ORCBEsKXmY0VZfyD4YUvTbScWMcHLqWfNbn5_XFRfNl1uqL94SN9MDjxJ3kXZM7tBnmyhaFtHVW2bzLGiTgg-gH4JPpZgemJqilCHmNPEKKQP3JmrJ4JhsmJJ1ln4Gk_-9QPMtFh_skZ4nn7C7cmSpGsRglvQc3MNyH2zMewQfw-0P8SQg_XThzxeFLTIEsBhE9vdmvyJ7EWxL9nViST4_HFcUqCA4Hl_hLfAouxl4sZ8fexCklOCciDwrXk4WyINtNZPZLh70wwYkh23m6mKhavz-Eb2fLr-8_plOfhbSj1LRJ0frGO6291aU31haEmqRnoELlZG28RNt0ShnljEVtXV5V2MickJN3JRqpHsFRiAGfgMiQ1JUZU2v0RVe4xlFBVZlMOVWSEm0Cr3bz316NdBotwRBWUrtXUgKnrJn9AGbAHm6QXbSTXbT_sosE3rBeW_ZTUl5npuMGJCczXrWLupBaEgyvEjjeqb6dHHjdKsnMalS71Qm83D8m1-P1FBMwbscxmgoeVSbweLSUvcwDaZEuiwTqAxs6-KjDJ2H1Y6D3ZtK9gqqop_9jGp7BLckdi3mLZn0MR5t-i8_hZne9Wa37F4PT_AH5tB-U
  priority: 102
  providerName: Directory of Open Access Journals
Title Domain-Adaptive Direction of Arrival (DOA) Estimation in Complex Indoor Environments Based on Convolutional Autoencoder and Transfer Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/40431754
https://www.proquest.com/docview/3212109378
https://www.proquest.com/docview/3212781835
https://pubmed.ncbi.nlm.nih.gov/PMC12114853
https://doaj.org/article/1c91deb0e13b442b806b1c09e402eef1
Volume 25
WOSCitedRecordID wos001496762800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48H4ElsogJOAQNXHSODmhFrpiJbaqEEjLKbJje6kETknbFSf-Af-ZmcQtrZA4cYnUxm0czfib-fz4BuA5pgQWhxDSkpSWGWVWhTTBEBorJNdUGMe0VUvei9ksPz8v5v549Mpvq9xiYgvUndoz7dtGEB7quqIZ82HCSfgKQ2v-evk9pBpStNbqC2ocQZ-Et6Ie9OenZ_PPOwKWIB_r1IUSpPrDFcb2iBckU7oXk1rp_r8Bei9CHe6e3AtHJzf_74vcghs-LWXjzo9uwxXj7sD1PbHCu_Drbf1NLlw41nJJGMk8WtaO1RZ_2SzQadlLJJuv2BSBozsTyRaOEeZ8NT_YqdN13bDp3tk6NsEoqllNjdylHwbUkc26JolNbRomnWZtSLX4wevBXtyDTyfTj2_ehb6YQ1hh_FuHRtnCaiGsEiMrlUqRmnFLbAhz1lxablRRJYlMtFRGKB1nmSl4jPTM6pGRPLkPPVc78xBYZCpMcqTMhbFplepCY9aWySjRycioSAXwbGvOctlpdpTIdcjm5c7mAUzI0LsGJLPdflE3F6UftWWMD9L4lyZOVJpylUeZiquoMMi6jbFxAC_ITUoCA_SFSvozDdhPktUqx3nKBUeunwVwvPWG0qPEqvxj_ACe7m7j-KZFG-lMvenaCMyqklEADzrH2_W5VUYSozSA_MAlD17q8I5bfGk1xEnZL8VU7dG_-_UYrnEqeEw7PPNj6K2bjXkCV6vL9WLVDOBInIv2mg-gP5nO5h8G7aQGXs9-Tgd-_P0Gq14_xw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qUiRgwfthKDAgELCwas_4uUAopakaNY2yKFJZmRnPTLEEdnCSAh_Br_CN3Gs7IRESuy5Yxp44Y-fcM-d6Zs4FeI6SwGIIYVoS0DSjjHKXXjC4xsaSayqMY5qqJaN4PE5OT9PJFvxa7oWhZZVLTmyIWlc5vSPfFZysrnAwTd5Ov7pUNYpmV5clNFpYHJkf3zBlm70Z7uP_-4Lzg8HJu0O3qyrg5kjEc9com1odx1bFoZVKBZgjcEuyHMVTIi03Ks2FkEJLZWKl_SgyKfcxT7A6NJKMDpDytwMEu9eD7cnwePJhleIJzPha_yIhUm93hurB4ykZoa6Nek1xgL-HgLUxcHN95tqAd3D9f3tUN-BaJ61Zv42Fm7Blyltwdc1w8Tb83K--yKJ0-1pOiedZx_hVySqL36wLDDz2ChPm12yA5Nfu62RFyYg3P5vvbFjqqqrZYG1_INtDJaBZRY3K8y6UqSOLeUU2odrUTJaaNbLA4ofO0_bsDry_kOdxF3plVZr7wDyTo1CTMomNDfJApxqVZyQ9oUVolKcceLYETDZtfUcyzNcIVdkKVQ7sEZRWDcgqvDlQ1WdZxzyZjz-k8ZLGFwpBqxIvUn7upSbwuDHWd-AlATEjQkO05bLbl4H9JGuwrJ8EPOYhF5EDO0u8ZR3TzbI_YHPg6eo0chRNPMnSVIu2TYzKUIQO3Guhvepz4-4Uh4EDyQboN25q80xZfGp80MmdMEC5-eDf_XoClw9PjkfZaDg-eghXOBVwphWryQ705vXCPIJL-fm8mNWPu2hm8PGio-I3R7aOVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB2tugjBge-PwAIGgYBD1MTO5wGhlrai2lVVIZD2FuzY3q20JCVtF_gR_CF-HTNJWlohcdsDxzZu66Rv3rxJ7DcAz1ESWAwhLEsCeswoo9ylGwyusbHkmhrjmLpryVE8mSTHx-l0D36t98LQsso1J9ZErcuc7pF3BSerK0ymSde2yyKmg9Hb-VeXOkjRk9Z1O40GIofmxzcs3xZvxgP8r19wPhp-fPfebTsMuDmS8tI1yqZWx7FVcWilUgHWC9ySREchlUjLjUpzIaTQUplYaT-KTMp9rBmsDo0k0wOk__1YYNHTgf3-cDL9sCn3BFZ_jZeREKnXXaCS8HhKpqhbGbBuFPB3OtjKh7trNbeS3-j6_3zZbsC1VnKzXhMjN2HPFLfg6pYR4234OSi_yFnh9rScE_-zNhOUBSstfrKaYUCyV1hIv2ZDJMVmvyebFYz49Mx8Z-NCl2XFhlv7BlkfFYJmJQ0qztsQp4msliXZh2pTMVloVssFiy9ar9uTO_DpQq7HXegUZWHuA_NMjgJOyiQ2NsgDnWpUpJH0hBahUZ5y4NkaPNm88SPJsI4jhGUbhDnQJ1htBpCFeP1GWZ1kLSNlPv6Qxq80vlBBwFXiRcrPvdQEHjfG-g68JFBmRHSIvFy2-zVwnmQZlvWSgMc85CJy4GCNvaxlwEX2B3gOPN0cRu6iB1KyMOWqGROjYhShA_camG_mXLs-xWHgQLITADsntXukmJ3W_ujkWhigDH3w73k9gcsYCtnReHL4EK5w6utMC1mTA-gsq5V5BJfy8-VsUT1uA5vB54sOit9nw5bx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-Adaptive+Direction+of+Arrival+%28DOA%29+Estimation+in+Complex+Indoor+Environments+Based+on+Convolutional+Autoencoder+and+Transfer+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Lingyu&rft.au=Li%2C+Jianfeng&rft.au=Pan%2C+Jingjing&rft.au=Shi%2C+Junpeng&rft.date=2025-05-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft.spage=2959&rft_id=info:doi/10.3390%2Fs25102959&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25102959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon