Building the Future of Transportation: A Comprehensive Survey on AV Perception, Localization, and Mapping

Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 7; s. 2004
Hlavní autoři: Patil, Ashok Kumar, Punugupati, Bhargav, Gupta, Himanshi, Mayur, Niranjan S., Ramesh, Srivatsa, Honnavalli, Prasad B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 23.03.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping.
AbstractList Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping.
Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping.Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping.
Audience Academic
Author Gupta, Himanshi
Punugupati, Bhargav
Ramesh, Srivatsa
Mayur, Niranjan S.
Honnavalli, Prasad B.
Patil, Ashok Kumar
AuthorAffiliation Department of Computer Science Engineering, PES University, Bangalore 560085, India; bhargav.punugupati@gmail.com (B.P.); himanshig1403@gmail.com (H.G.); niranjanmayur10@gmail.com (N.S.M.); vatsa2402@gmail.com (S.R.); prasadhb@pes.edu (P.B.H.)
AuthorAffiliation_xml – name: Department of Computer Science Engineering, PES University, Bangalore 560085, India; bhargav.punugupati@gmail.com (B.P.); himanshig1403@gmail.com (H.G.); niranjanmayur10@gmail.com (N.S.M.); vatsa2402@gmail.com (S.R.); prasadhb@pes.edu (P.B.H.)
Author_xml – sequence: 1
  givenname: Ashok Kumar
  orcidid: 0000-0003-0283-8037
  surname: Patil
  fullname: Patil, Ashok Kumar
– sequence: 2
  givenname: Bhargav
  orcidid: 0009-0002-6030-114X
  surname: Punugupati
  fullname: Punugupati, Bhargav
– sequence: 3
  givenname: Himanshi
  orcidid: 0009-0009-7329-244X
  surname: Gupta
  fullname: Gupta, Himanshi
– sequence: 4
  givenname: Niranjan S.
  orcidid: 0009-0000-0665-6420
  surname: Mayur
  fullname: Mayur, Niranjan S.
– sequence: 5
  givenname: Srivatsa
  orcidid: 0009-0000-5520-4236
  surname: Ramesh
  fullname: Ramesh, Srivatsa
– sequence: 6
  givenname: Prasad B.
  orcidid: 0000-0001-7493-6221
  surname: Honnavalli
  fullname: Honnavalli, Prasad B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218517$$D View this record in MEDLINE/PubMed
BookMark eNpdkl2LEzEUhgdZcT_0wj8gAW8U7JqvmSTeSC2uLlQUXL0dMslJmzJNxmSmsP56U7uWXQnk4-Q578kJ73l1EmKAqnpO8CVjCr_NtMaCYswfVWeEUz6TlOKTe_vT6jznDcaUMSafVKccUyJrIs4q_2HyvfVhhcY1oKtpnBKg6NBN0iEPMY169DG8Q3O0iNshwRpC9jtA36e0g1sUA5r_RN8gGRj24Bu0jEb3_rc-nHSw6IsehlLgafXY6T7Ds7v1ovpx9fFm8Xm2_PrpejFfzgwXZJxZLjspKNSm5oJTiZXTjeMWGicYAUebujaiA2ukIlB31nSmcUYoZW0jhWUX1fVB10a9aYfktzrdtlH79m8gplWr0-hND21DoGOsA2NqwjU20mllhTCSNLXVzBSt9wetYeq2pSSEMen-gejDm-DX7SruWkKUIhSrovDqTiHFXxPksd36bKDvdYA45ZYRqXiznwr68j90E6cUyl_tKakwVlgU6vJArXTpwAcXS2FThoWtN8UXzpf4XDLJGoZVUxJe3O_h-Ph_HijA6wNgUsw5gTsiBLd7f7VHf7E_s8rCAw
Cites_doi 10.1007/s10846-017-0742-z
10.3390/s18124172
10.1109/ICITE56321.2022.10101411
10.3390/rs15030597
10.1109/MSP.2020.2984801
10.3390/s23146504
10.1109/ICRA.2015.7139314
10.23919/ACC.2018.8431886
10.1007/978-3-319-10602-1_48
10.1109/CVPR52733.2024.01605
10.3390/s20082166
10.1109/IROS40897.2019.8968122
10.3390/s20030899
10.1109/OJITS.2023.3295502
10.3390/rs14164058
10.3390/ijgi13070232
10.3390/rs10020205
10.30657/pea.2017.16.09
10.3390/rs12203343
10.1109/TMM.2023.3277281
10.5194/isprs-archives-XLIII-B4-2020-415-2020
10.1016/j.jksuci.2022.03.013
10.3390/app12146831
10.1007/978-3-031-20047-2_1
10.1109/CVPR.2017.106
10.1109/TNNLS.2024.3384446
10.1109/MITS.2020.3014152
10.1007/978-3-030-58452-8_13
10.1109/CVPR.2016.350
10.1080/17538947.2023.2220615
10.3390/s21165397
10.3390/jmse11040840
10.1109/5254.736003
10.1108/9781615832538-028
10.3390/s20226536
10.3390/s24103088
10.1109/ICCV.2015.169
10.3390/jimaging10070153
10.1007/s11263-024-02019-5
10.3390/s18093145
10.15607/RSS.2007.III.016
10.1109/CVPR.2018.00352
10.1109/TPAMI.2016.2577031
10.1007/978-3-540-74764-2_32
10.1155/2020/2138643
10.1109/ICIP.2017.8296962
10.1109/MITS.2010.939925
10.1177/0278364913491297
10.1109/ICCV.2017.534
10.1109/ACCESS.2022.3188990
10.1007/s10514-018-9785-7
10.1109/JSEN.2020.2966034
10.1007/s11263-012-0517-8
10.1109/CVPR52729.2023.00721
10.1109/TITS.2012.2193569
10.1109/TRO.2024.3392149
10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
10.1109/ITSC.2017.8317859
10.3390/rs14061468
10.1109/ICRA46639.2022.9811573
10.1109/ICCV.2017.243
10.1145/3343031.3350539
10.1007/s10514-009-9113-3
10.1109/CVPR.2018.00263
10.1109/CVPR.2017.690
10.3390/s22114262
10.3390/s23177424
10.1109/CVPR.2019.00406
10.3390/s20030704
10.3390/s23146545
10.1109/ICRA46639.2022.9812383
10.1109/TITS.2017.2665968
10.1109/ISMAR.2007.4538852
10.1109/IVS.2019.8814289
10.1109/CVPR42600.2020.00271
10.1109/TPAMI.2015.2389824
10.1109/CVPR42600.2020.00252
10.1109/CVPR.2016.352
10.3390/machines12020118
10.1109/ICIP.2016.7533003
10.1016/j.patrec.2008.04.005
10.1109/CVPRW.2017.60
10.1109/TRO.2008.2003276
10.1038/nn.4656
10.1007/s42452-020-2001-3
10.1017/S026357470700375X
10.1109/TITS.2020.3030767
10.5772/46200
10.3389/fpsyg.2019.00995
10.1109/ICRA.2018.8460641
10.1109/TRO.2015.2463671
10.1007/s10514-012-9321-0
10.1609/aaai.v34i08.7033
10.1080/15481603.2019.1581475
10.1016/j.isprsjprs.2013.08.003
10.1109/WACV.2019.00190
10.3390/s140610454
10.1109/MetroAeroSpace.2016.7573217
10.1109/ICRA.2018.8461180
10.1109/ICIAS.2016.7824105
10.1109/IROS.2005.1545152
10.1109/TGRS.2016.2617819
10.1109/TITS.2020.3000797
10.3390/s21072477
10.1109/ACCESS.2022.3147495
10.3390/drones6070183
10.20944/preprints202209.0067.v1
10.1109/CVPR.2014.81
10.1109/CVPRW.2018.00141
10.1109/ACCESS.2021.3072739
10.1080/01441647.2018.1494640
10.3390/app12063153
10.1111/2041-210X.13166
10.1109/TRO.2021.3075644
10.1109/CVPR.2018.00474
10.1007/978-3-319-46454-1
10.3390/jmse10070895
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25072004
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_61eb33becc514a0c8fa9d77c8165da3c
PMC11991209
A838363096
40218517
10_3390_s25072004
Genre Journal Article
Review
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: PES University
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-d48b872e5c54742809fa6f4de6f731ef2655c7bedc891e5bdcbc6fc799dd687d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465785800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:14 EST 2025
Tue Nov 04 02:04:51 EST 2025
Fri Sep 05 17:38:30 EDT 2025
Tue Oct 07 07:38:17 EDT 2025
Tue Nov 04 18:11:31 EST 2025
Tue Apr 15 01:23:26 EDT 2025
Sat Nov 29 07:20:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords localization
autonomous vehicles
mapping
SLAM
perception module
LiDAR
sensor fusion
object detection
HD maps
tracking algorithms
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-d48b872e5c54742809fa6f4de6f731ef2655c7bedc891e5bdcbc6fc799dd687d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0002-6030-114X
0000-0003-0283-8037
0000-0001-7493-6221
0009-0009-7329-244X
0009-0000-0665-6420
0009-0000-5520-4236
OpenAccessLink https://doaj.org/article/61eb33becc514a0c8fa9d77c8165da3c
PMID 40218517
PQID 3188900907
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_61eb33becc514a0c8fa9d77c8165da3c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991209
proquest_miscellaneous_3189461894
proquest_journals_3188900907
gale_infotracacademiconefile_A838363096
pubmed_primary_40218517
crossref_primary_10_3390_s25072004
PublicationCentury 2000
PublicationDate 2025-03-23
PublicationDateYYYYMMDD 2025-03-23
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_109) 2023; 16
ref_136
ref_92
ref_90
ref_14
ref_12
ref_131
ref_99
ref_10
ref_98
ref_133
ref_132
Magnusson (ref_86) 2019; 43
ref_135
Brostow (ref_30) 2009; 30
ref_95
ref_19
ref_18
ref_17
ref_16
ref_15
Scholtes (ref_78) 2021; 9
ref_126
ref_125
Rawlinson (ref_53) 2008; 26
ref_128
Turay (ref_11) 2022; 10
ref_129
ref_25
ref_23
ref_120
ref_22
ref_21
ref_20
ref_121
Cadena (ref_134) 2016; 69
Zhao (ref_94) 2023; 26
Montemerlo (ref_137) 2003; 3
ref_29
ref_28
ref_27
ref_26
ref_72
ref_71
ref_79
ref_77
ref_76
ref_75
ref_74
ref_73
Li (ref_43) 2024; 36
Yin (ref_48) 2024; 132
Ren (ref_3) 2016; 39
Zheng (ref_97) 2023; 44
ref_83
Baten (ref_122) 1998; 13
ref_82
ref_80
Montiel (ref_127) 2015; 31
Chattopadhyay (ref_115) 2020; 22
Campos (ref_130) 2021; 37
ref_89
Zhao (ref_93) 2020; 20
Benamar (ref_84) 2022; 34
ref_85
Liu (ref_9) 2025; 239
Agostinho (ref_46) 2022; 10
Alonso (ref_103) 2012; 13
Li (ref_57) 2014; 14
Epstein (ref_51) 2017; 20
ref_50
Parkinson (ref_114) 2017; 18
Yin (ref_91) 2020; 23
ref_56
ref_55
ref_54
ref_52
Taeihagh (ref_112) 2019; 39
Taketomi (ref_123) 2017; 9
ref_59
Elghazaly (ref_63) 2023; 4
Civera (ref_124) 2008; 24
Xu (ref_87) 2016; 55
ref_61
He (ref_13) 2015; 37
ref_69
ref_68
ref_67
ref_65
Lafarge (ref_60) 2012; 99
ref_64
ref_62
Grisetti (ref_8) 2010; 2
Vijayarajan (ref_6) 2016; 8
Abouelyazid (ref_42) 2023; 8
Hnewa (ref_24) 2020; 38
ref_117
ref_119
ref_118
ref_36
ref_35
Song (ref_138) 2018; 92
ref_34
ref_33
ref_32
Tsushima (ref_107) 2020; 43
ref_110
ref_113
Huang (ref_96) 2009; 26
ref_39
ref_38
ref_37
ref_104
ref_106
ref_105
ref_108
Kumar (ref_88) 2013; 85
Geiger (ref_31) 2013; 32
ref_47
ref_45
ref_44
Sridhar (ref_41) 2019; 10
ref_100
ref_102
ref_40
ref_101
ref_1
Barsi (ref_111) 2017; 16
Lee (ref_116) 2024; 40
ref_2
ref_49
Gargoum (ref_70) 2019; 56
Wong (ref_66) 2020; 13
Hornung (ref_58) 2013; 34
Chang (ref_81) 2023; 48
ref_5
ref_4
ref_7
References_xml – ident: ref_117
– volume: 92
  start-page: 107
  year: 2018
  ident: ref_138
  article-title: Critical Rays Self-adaptive Particle Filtering SLAM
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0742-z
– ident: ref_77
  doi: 10.3390/s18124172
– ident: ref_74
– ident: ref_79
  doi: 10.1109/ICITE56321.2022.10101411
– ident: ref_95
  doi: 10.3390/rs15030597
– volume: 38
  start-page: 53
  year: 2020
  ident: ref_24
  article-title: Object detection under rainy conditions for autonomous vehicles: A review of state-of-the-art and emerging techniques
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2984801
– ident: ref_108
  doi: 10.3390/s23146504
– ident: ref_39
– ident: ref_72
  doi: 10.1109/ICRA.2015.7139314
– ident: ref_56
  doi: 10.23919/ACC.2018.8431886
– ident: ref_17
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_22
  doi: 10.1109/CVPR52733.2024.01605
– ident: ref_104
  doi: 10.3390/s20082166
– ident: ref_110
  doi: 10.1109/IROS40897.2019.8968122
– volume: 239
  start-page: 39
  year: 2025
  ident: ref_9
  article-title: Vision-based environmental perception for autonomous driving
  publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
– volume: 8
  start-page: 42
  year: 2023
  ident: ref_42
  article-title: Comparative Evaluation of SORT, DeepSORT, and ByteTrack for Multiple Object Tracking in Highway Videos
  publication-title: Int. J. Sustain. Infrastruct. Cities Soc.
– ident: ref_83
  doi: 10.3390/s20030899
– volume: 9
  start-page: 1
  year: 2017
  ident: ref_123
  article-title: Visual SLAM algorithms: A survey from 2010 to 2016
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– ident: ref_135
– volume: 4
  start-page: 527
  year: 2023
  ident: ref_63
  article-title: High-definition maps: Comprehensive survey, challenges and future perspectives
  publication-title: IEEE Open J. Intell. Transp. Syst.
  doi: 10.1109/OJITS.2023.3295502
– ident: ref_69
  doi: 10.3390/rs14164058
– ident: ref_64
  doi: 10.3390/ijgi13070232
– ident: ref_67
  doi: 10.3390/rs10020205
– volume: 16
  start-page: 43
  year: 2017
  ident: ref_111
  article-title: Supporting autonomous vehicles by creating HD maps
  publication-title: Prod. Eng. Arch.
  doi: 10.30657/pea.2017.16.09
– ident: ref_68
  doi: 10.3390/rs12203343
– ident: ref_59
– volume: 26
  start-page: 1158
  year: 2023
  ident: ref_94
  article-title: Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2023.3277281
– volume: 43
  start-page: 415
  year: 2020
  ident: ref_107
  article-title: Creation of high definition map for autonomous driving
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B4-2020-415-2020
– volume: 34
  start-page: 7366
  year: 2022
  ident: ref_84
  article-title: A Comprehensive Survey on the Application of Deep and Reinforcement Learning Approaches in Autonomous Driving
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2022.03.013
– ident: ref_121
  doi: 10.3390/app12146831
– ident: ref_5
  doi: 10.1007/978-3-031-20047-2_1
– ident: ref_16
  doi: 10.1109/CVPR.2017.106
– volume: 36
  start-page: 5454
  year: 2024
  ident: ref_43
  article-title: AttMOT: Improving multiple-object tracking by introducing auxiliary pedestrian attributes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2024.3384446
– volume: 13
  start-page: 91
  year: 2020
  ident: ref_66
  article-title: Mapping for autonomous driving: Opportunities and challenges
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2020.3014152
– ident: ref_18
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_32
  doi: 10.1109/CVPR.2016.350
– volume: 16
  start-page: 2089
  year: 2023
  ident: ref_109
  article-title: Open HD map service model: An interoperable high-Definition map data model for autonomous driving
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2023.2220615
– ident: ref_44
– ident: ref_105
  doi: 10.3390/s21165397
– ident: ref_49
  doi: 10.3390/jmse11040840
– volume: 13
  start-page: 57
  year: 1998
  ident: ref_122
  article-title: Techniques tor autonomous, off-road navigation
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.736003
– ident: ref_50
  doi: 10.1108/9781615832538-028
– ident: ref_75
– ident: ref_82
  doi: 10.3390/s20226536
– ident: ref_10
  doi: 10.3390/s24103088
– ident: ref_14
  doi: 10.1109/ICCV.2015.169
– ident: ref_28
  doi: 10.3390/jimaging10070153
– volume: 132
  start-page: 3139
  year: 2024
  ident: ref_48
  article-title: A survey on global lidar localization: Challenges, advances and open problems
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-024-02019-5
– ident: ref_102
  doi: 10.3390/s18093145
– ident: ref_55
  doi: 10.15607/RSS.2007.III.016
– ident: ref_27
  doi: 10.1109/CVPR.2018.00352
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_3
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_73
  doi: 10.1007/978-3-540-74764-2_32
– ident: ref_132
  doi: 10.1155/2020/2138643
– ident: ref_4
  doi: 10.1109/ICIP.2017.8296962
– volume: 2
  start-page: 31
  year: 2010
  ident: ref_8
  article-title: A tutorial on graph-based SLAM
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2010.939925
– volume: 32
  start-page: 1231
  year: 2013
  ident: ref_31
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– ident: ref_34
  doi: 10.1109/ICCV.2017.534
– volume: 10
  start-page: 72182
  year: 2022
  ident: ref_46
  article-title: A practical survey on visual odometry for autonomous driving in challenging scenarios and conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3188990
– volume: 43
  start-page: 1117
  year: 2019
  ident: ref_86
  article-title: 2D map alignment with region decomposition
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-018-9785-7
– volume: 20
  start-page: 4901
  year: 2020
  ident: ref_93
  article-title: Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2966034
– volume: 99
  start-page: 69
  year: 2012
  ident: ref_60
  article-title: Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-012-0517-8
– ident: ref_23
  doi: 10.1109/CVPR52729.2023.00721
– volume: 13
  start-page: 1535
  year: 2012
  ident: ref_103
  article-title: Accurate global localization using visual odometry and digital maps on urban environments
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2193569
– volume: 40
  start-page: 2888
  year: 2024
  ident: ref_116
  article-title: Autonomous Vehicle Localization Without Prior High-Definition Map
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2024.3392149
– volume: 8
  start-page: 18963
  year: 2016
  ident: ref_6
  article-title: Automatidetection of moving objects using Kalman algorithm
  publication-title: Int. J. Pharm. Technol. IJPT
– volume: 48
  start-page: 93
  year: 2023
  ident: ref_81
  article-title: The implementation of semi-automated road surface markings extraction schemes utilizing mobile laser scanned point clouds for HD maps production
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
– ident: ref_54
  doi: 10.1109/ITSC.2017.8317859
– ident: ref_106
  doi: 10.3390/rs14061468
– ident: ref_136
– ident: ref_100
  doi: 10.1109/ICRA46639.2022.9811573
– volume: 69
  start-page: 59
  year: 2016
  ident: ref_134
  article-title: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age
  publication-title: Robot. Auton. Syst.
– ident: ref_36
  doi: 10.1109/ICCV.2017.243
– ident: ref_90
– ident: ref_129
  doi: 10.1145/3343031.3350539
– volume: 26
  start-page: 103
  year: 2009
  ident: ref_96
  article-title: Finding multiple lanes in urban road networks with vision and lidar
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-009-9113-3
– ident: ref_25
  doi: 10.1109/CVPR.2018.00263
– ident: ref_1
  doi: 10.1109/CVPR.2017.690
– ident: ref_80
  doi: 10.3390/s22114262
– ident: ref_47
  doi: 10.3390/s23177424
– ident: ref_26
  doi: 10.1109/CVPR.2019.00406
– ident: ref_89
  doi: 10.3390/s20030704
– ident: ref_92
  doi: 10.3390/s23146545
– ident: ref_98
  doi: 10.1109/ICRA46639.2022.9812383
– volume: 18
  start-page: 2898
  year: 2017
  ident: ref_114
  article-title: Cyber threats facing autonomous and connected vehicles: Future challenges
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2665968
– ident: ref_126
  doi: 10.1109/ISMAR.2007.4538852
– ident: ref_76
  doi: 10.1109/IVS.2019.8814289
– ident: ref_29
  doi: 10.1109/CVPR42600.2020.00271
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_13
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_38
  doi: 10.1109/CVPR42600.2020.00252
– ident: ref_35
  doi: 10.1109/CVPR.2016.352
– ident: ref_65
  doi: 10.3390/machines12020118
– ident: ref_40
  doi: 10.1109/ICIP.2016.7533003
– volume: 30
  start-page: 88
  year: 2009
  ident: ref_30
  article-title: Semantic object classes in video: A high-definition ground truth database
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.04.005
– ident: ref_19
  doi: 10.1109/CVPRW.2017.60
– volume: 24
  start-page: 932
  year: 2008
  ident: ref_124
  article-title: Inverse depth parametrization for monocular SLAM
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2008.2003276
– ident: ref_7
– volume: 20
  start-page: 1504
  year: 2017
  ident: ref_51
  article-title: The cognitive map in humans: Spatial navigation and beyond
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4656
– ident: ref_45
  doi: 10.1007/s42452-020-2001-3
– volume: 26
  start-page: 189
  year: 2008
  ident: ref_53
  article-title: Topologically-directed navigation
  publication-title: Robotica
  doi: 10.1017/S026357470700375X
– volume: 23
  start-page: 1543
  year: 2020
  ident: ref_91
  article-title: Fusionlane: Multi-sensor fusion for lane marking semantic segmentation using deep neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3030767
– ident: ref_118
  doi: 10.5772/46200
– ident: ref_113
  doi: 10.3389/fpsyg.2019.00995
– ident: ref_71
  doi: 10.1109/ICRA.2018.8460641
– volume: 31
  start-page: 1147
  year: 2015
  ident: ref_127
  article-title: ORB-SLAM: A versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2015.2463671
– volume: 34
  start-page: 189
  year: 2013
  ident: ref_58
  article-title: OctoMap: An efficient probabilistic 3D mapping framework based on octrees
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-012-9321-0
– ident: ref_99
  doi: 10.1609/aaai.v34i08.7033
– ident: ref_125
– volume: 56
  start-page: 864
  year: 2019
  ident: ref_70
  article-title: A literature synthesis of LiDAR applications in transportation: Feature extraction and geometric assessments of highways
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2019.1581475
– volume: 85
  start-page: 44
  year: 2013
  ident: ref_88
  article-title: An automated algorithm for extracting road edges from terrestrial mobile LiDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.08.003
– ident: ref_33
  doi: 10.1109/WACV.2019.00190
– volume: 14
  start-page: 10454
  year: 2014
  ident: ref_57
  article-title: Occupancy grid mapping in urban environments from a moving on-board stereo-vision system
  publication-title: Sensors
  doi: 10.3390/s140610454
– ident: ref_131
  doi: 10.1109/MetroAeroSpace.2016.7573217
– ident: ref_21
– ident: ref_128
  doi: 10.1109/ICRA.2018.8461180
– ident: ref_133
  doi: 10.1109/ICIAS.2016.7824105
– ident: ref_61
  doi: 10.1109/IROS.2005.1545152
– volume: 55
  start-page: 996
  year: 2016
  ident: ref_87
  article-title: Road curb extraction from mobile LiDAR point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2617819
– volume: 22
  start-page: 7015
  year: 2020
  ident: ref_115
  article-title: Autonomous vehicle: Security by design
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3000797
– ident: ref_101
  doi: 10.3390/s21072477
– volume: 10
  start-page: 14076
  year: 2022
  ident: ref_11
  article-title: Toward performing image classification and object detection with convolutional neural networks in autonomous driving systems: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147495
– ident: ref_52
  doi: 10.3390/drones6070183
– ident: ref_62
  doi: 10.20944/preprints202209.0067.v1
– ident: ref_12
  doi: 10.1109/CVPR.2014.81
– ident: ref_37
  doi: 10.1109/CVPRW.2018.00141
– ident: ref_85
– ident: ref_15
– volume: 9
  start-page: 59131
  year: 2021
  ident: ref_78
  article-title: 6-Layer Model for a Structured Description and Categorization of Urban Traffic and Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072739
– volume: 39
  start-page: 103
  year: 2019
  ident: ref_112
  article-title: Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and industry risks
  publication-title: Transp. Rev.
  doi: 10.1080/01441647.2018.1494640
– ident: ref_119
  doi: 10.3390/app12063153
– volume: 3
  start-page: 1151
  year: 2003
  ident: ref_137
  article-title: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges
  publication-title: Proc. Int. Jt. Conf. Artif. Intell.
– volume: 10
  start-page: 815
  year: 2019
  ident: ref_41
  article-title: Tracktor: Image-based automated tracking of animal movement and behaviour
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13166
– volume: 44
  start-page: 418
  year: 2023
  ident: ref_97
  article-title: High-definition map automatic annotation system based on active learning
  publication-title: AI Mag.
– volume: 37
  start-page: 1874
  year: 2021
  ident: ref_130
  article-title: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2021.3075644
– ident: ref_20
  doi: 10.1109/CVPR.2018.00474
– ident: ref_2
  doi: 10.1007/978-3-319-46454-1
– ident: ref_120
  doi: 10.3390/jmse10070895
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0023338
Score 2.4452639
SecondaryResourceType review_article
Snippet Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2004
SubjectTerms Accuracy
Algorithms
Autonomous vehicles
Classification
Datasets
Deep learning
Driverless cars
Efficiency
Global positioning systems
GPS
Liu, Timothy
Localization
Mapping
Neural networks
object detection
Optical radar
Proposals
Remote sensing
Review
Sensors
SLAM
Surveys
Telematics
tracking algorithms
Transportation
Transportation industry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagywEOy3MhsCCDkLhstHHsODYX1KKtOEBV8dLeIsd2dntJlrRdiX-_M4kbGiFx4dJDHqrbb15fMv6GkLfSMctMJuJMVkksgGDEGkJCzBOrODMCSlTbDZvIFwt1fq6X4YHbOrRV7mJiF6hdY_EZ-SnYntJQECT5h6tfMU6NwrerYYTGbXKASmViQg5mZ4vl14FycWBgvZ4QB3J_uoaEn6NdjLJQJ9b_d0jey0njfsm9BDS__79Lf0AOQ-lJp72tPCS3fP2I3NsTJHxMVrMwJZtCXUjnnd4IbSo6SKB3OL6nU4pxpPWXffs7_bZtr_1v2tR0-pMuh16ZE_oZU2XY6nlCTe3oF4OKEBdPyI_52fePn-IwjCG2kL82sROqVHnqM5sJoNMq0ZWRlXBeVjlnvkplltm8hD9Jaeaz0tnS4j4irZ2TKnf8iEzqpvbPCE2ZE9ZWQjjFhfJMOWs0N5lnvAT-ZyPyZgdOcdVrbhTAVRDBYkAwIjOEbbgAZbK7A017UQSvKyTzJedoplAXGjC_ymiX51YxmTnD4ZveIegFOjMga03YkwDrRFmsYqqAwEsONC8ixztsi-Dl6-IPsBF5PZwG_8SXLqb2zba7RguJHxF52pvRsGaBBVbG4G41MrDRjxqfqVeXnQY4w5a1NNHP_72uF-RuigOLEx6n_JhMNu3WvyR37PVmtW5fBW-5Ab-CIc4
  priority: 102
  providerName: ProQuest
Title Building the Future of Transportation: A Comprehensive Survey on AV Perception, Localization, and Mapping
URI https://www.ncbi.nlm.nih.gov/pubmed/40218517
https://www.proquest.com/docview/3188900907
https://www.proquest.com/docview/3189461894
https://pubmed.ncbi.nlm.nih.gov/PMC11991209
https://doaj.org/article/61eb33becc514a0c8fa9d77c8165da3c
Volume 25
WOSCitedRecordID wos001465785800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOeSZakMQuKy0caxHdvcWtQKJFpFvFROkWM7bC8p6mOlvfDbGSdp1IgDFy4-2Hk4Mx7PfMr4G4A3maOWGsFjkVVJzBFgxBq3hJglVjFqOIaotik2IRcLtVzq_KjUV8gJa-mBW8FdZhThHgtvQtdu8AmV0U5Kq2gmnGE27L4Y9RzAVAe1GCKvlkeIIai_3KKjl2E9DLxPQ9L_91Z85IuGeZJHjmf2EB50ESMZtzN9BLd8_RjuH_EIPoHVpCtuTTCcI7OGJoSsK9Izlzfif0fGJJj_xl-1Wevky35z7W_Iuibj7yTvU1wuyKfg4boTmhfE1I7MTSBy-PkUvs2mX99_iLsaCrFFt7OLHVelkqkXVnBEwSrRlckq7nxWSUZ9lWZCWFniNypNvSidLW04_qO1c5mSjj2Dk3pd--dAUuq4tRXnTjGuPFXOGs2M8JSVCNtsBK8Psi1-tVQZBUKMoICiV0AEkyD1_oLAbt10oM6LTufFv3QewdugsyLYICrGmu4oAc4zsFkVY4W4O2OIziI4P6i16IxzW-A2pjTGlomM4FU_jGYV_pWY2q_3zTWaZ6GJ4LRdBf2ceYiLBMW71WB9DD5qOFKvrhrqbhoyzdJEn_0PMbyAe2moRpywOGXncLLb7P1LuGuvd6vtZgS35VI2rRrBncl0kX8eNUaC7fz3FPvyj_P8xx8TQhnT
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJw4PePwgCDQFwWLY6dxEZCqAOqVWurSgw0TsGxna2XZKTt0P4p_kaekzQ0QuK2A5ccYiexk8-f34ufvwfwKjJUUxVyL4wy3-PoYHgSKcFjvhaMKo4mqq6STcTTqTg-lrMt-LXeC-PCKtecWBG1KbT7R76H2BMSDQI_fn_2w3NZo9zq6jqFRg2LQ3vxE122xbvRR_y-r4Ng-Onow4HXZBXwNBLx0jNcpCIObKhDjn6h8GWmoowbG2UxozYLojDUcWqNFpLaMDU61W5DjJTGRCI2DO97BbY5gl30YHs2msy-tS4eQ4-v1i9iTPp7CzQwYofDzqxXJQf4ewrYmAO78ZkbE97w1v_2qm7Dzca0JoN6LNyBLZvfhRsbgov3YL7fZAEnaPeSYaWnQoqMtBLvFU7fkgFxPFna0zq8n3xelef2ghQ5GXwlszYWaJeMnSnQbGXdJSo3ZKKc4sXJffhyKX19AL28yO0jIAE1XOuMcyMYF5YKo5VkKrSUpejf6j68XIMhOas1RRL0xRxikhYxfdh3MGkrOBnw6kRRniQNqyQRtSljbhii3atweGVKmjjWgkahUQyf9MaBLHFkhUjSqtlzge10sl_JQDDBIoZubB921lhKGhZbJH-A1IcXbTHyj1tUUrktVlUdySN36MPDGrZtm7kzIEOKV4sOoDud6pbk89NK45y6kLzAl4__3a7ncO3gaDJOxqPp4RO4HrjkzD7zArYDvWW5sk_hqj5fzhfls2akEvh-2Yj_DehygXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKixAseD8CBQwCsWk0cewkNhJCU8qIUdtRJCgqq-DYTjubpMyjqL_G13FvXswIiV0XbLKYZCZO5tzjc5Prcwl5FVtmmI6EH8VF4AtIMHwFlODzwEjOtACJaupmE8lkIo-PVbpBfnVrYbCssuPEmqhtZfAZ-QCwJxUIgiAZFG1ZRLo3en_2w8cOUvimtWun0UBk3138hPRt_m68B__16zAcffzy4ZPfdhjwDZDywrdC5jIJXWQiATmiDFSh40JYFxcJZ64I4ygySe6skYq5KLcmN7g4RilrY5lYDr97hWyBJBcQY1vp-DD91qd7HLK_xsuIcxUM5iA2EsTk2gxYNwr4ezpYmQ_XazVXJr_Rrf_5tt0mN1vJTYdNjNwhG668S26sGDHeI9Pdtjs4BT1MR7XPCq0K2lu_1_h9S4cU-XPmTpuyf_p5OTt3F7Qq6fArTfsaoR16gBKhXeK6Q3Vp6aFGJ4yT--ToUq71Adksq9I9IjRkVhhTCGElF9IxaY1WXEeO8RzyXuORlx0wsrPGaySDHA3Rk_Xo8cguQqY_AO3B6w-q2UnWsk0WM5dzjuEJelhD2BVa2SQxksWR1RzO9AYBlyGJAaqMbtdiwDjRDiwbSi55zCG99ch2h6usZbd59gdUHnnR7wZewpdNunTVsj5GiRg3HnnYQLgfs0BhGTH4tlwD99pFre8pp6e19znDUr0wUI__Pa7n5BrAPDsYT_afkOsh9mwOuB_ybbK5mC3dU3LVnC-m89mzNmgp-X7ZgP8NFaaKMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+the+Future+of+Transportation%3A+A+Comprehensive+Survey+on+AV+Perception%2C+Localization%2C+and+Mapping&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Patil%2C+Ashok+Kumar&rft.au=Punugupati%2C+Bhargav&rft.au=Gupta%2C+Himanshi&rft.au=Mayur%2C+Niranjan+S&rft.date=2025-03-23&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072004&rft.externalDocID=A838363096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon