Building the Future of Transportation: A Comprehensive Survey on AV Perception, Localization, and Mapping
Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapp...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 25; číslo 7; s. 2004 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
23.03.2025
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping. |
|---|---|
| AbstractList | Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping. Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping.Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing methodologies and best practices in these domains, focusing on object detection, object tracking, localization techniques, and environmental mapping strategies. In the perception module, we analyze state-of-the-art object detection frameworks, such as You Only Look Once version 8 (YOLOv8), and object tracking algorithms like ByteTrack and BoT-SORT (Boosted SORT). We assess their real-time performance, robustness to occlusions, and suitability for complex urban environments. We examine different approaches for localization, including Light Detection and Ranging (LiDAR)-based localization, camera-based localization, and sensor fusion techniques. These methods enhance positional accuracy, particularly in scenarios where Global Positioning System (GPS) signals are unreliable or unavailable. The mapping section explores Simultaneous Localization and Mapping (SLAM) techniques and high-definition (HD) maps, discussing their role in creating detailed, real-time environmental representations that enable autonomous navigation. Additionally, we present insights from our testing, evaluating the effectiveness of different perception, localization, and mapping methods in real-world conditions. By summarizing key advancements, challenges, and practical considerations, this paper provides a reference for researchers and developers working on autonomous vehicle perception, localization, and mapping. |
| Audience | Academic |
| Author | Gupta, Himanshi Punugupati, Bhargav Ramesh, Srivatsa Mayur, Niranjan S. Honnavalli, Prasad B. Patil, Ashok Kumar |
| AuthorAffiliation | Department of Computer Science Engineering, PES University, Bangalore 560085, India; bhargav.punugupati@gmail.com (B.P.); himanshig1403@gmail.com (H.G.); niranjanmayur10@gmail.com (N.S.M.); vatsa2402@gmail.com (S.R.); prasadhb@pes.edu (P.B.H.) |
| AuthorAffiliation_xml | – name: Department of Computer Science Engineering, PES University, Bangalore 560085, India; bhargav.punugupati@gmail.com (B.P.); himanshig1403@gmail.com (H.G.); niranjanmayur10@gmail.com (N.S.M.); vatsa2402@gmail.com (S.R.); prasadhb@pes.edu (P.B.H.) |
| Author_xml | – sequence: 1 givenname: Ashok Kumar orcidid: 0000-0003-0283-8037 surname: Patil fullname: Patil, Ashok Kumar – sequence: 2 givenname: Bhargav orcidid: 0009-0002-6030-114X surname: Punugupati fullname: Punugupati, Bhargav – sequence: 3 givenname: Himanshi orcidid: 0009-0009-7329-244X surname: Gupta fullname: Gupta, Himanshi – sequence: 4 givenname: Niranjan S. orcidid: 0009-0000-0665-6420 surname: Mayur fullname: Mayur, Niranjan S. – sequence: 5 givenname: Srivatsa orcidid: 0009-0000-5520-4236 surname: Ramesh fullname: Ramesh, Srivatsa – sequence: 6 givenname: Prasad B. orcidid: 0000-0001-7493-6221 surname: Honnavalli fullname: Honnavalli, Prasad B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40218517$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkl2LEzEUhgdZcT_0wj8gAW8U7JqvmSTeSC2uLlQUXL0dMslJmzJNxmSmsP56U7uWXQnk4-Q578kJ73l1EmKAqnpO8CVjCr_NtMaCYswfVWeEUz6TlOKTe_vT6jznDcaUMSafVKccUyJrIs4q_2HyvfVhhcY1oKtpnBKg6NBN0iEPMY169DG8Q3O0iNshwRpC9jtA36e0g1sUA5r_RN8gGRj24Bu0jEb3_rc-nHSw6IsehlLgafXY6T7Ds7v1ovpx9fFm8Xm2_PrpejFfzgwXZJxZLjspKNSm5oJTiZXTjeMWGicYAUebujaiA2ukIlB31nSmcUYoZW0jhWUX1fVB10a9aYfktzrdtlH79m8gplWr0-hND21DoGOsA2NqwjU20mllhTCSNLXVzBSt9wetYeq2pSSEMen-gejDm-DX7SruWkKUIhSrovDqTiHFXxPksd36bKDvdYA45ZYRqXiznwr68j90E6cUyl_tKakwVlgU6vJArXTpwAcXS2FThoWtN8UXzpf4XDLJGoZVUxJe3O_h-Ph_HijA6wNgUsw5gTsiBLd7f7VHf7E_s8rCAw |
| Cites_doi | 10.1007/s10846-017-0742-z 10.3390/s18124172 10.1109/ICITE56321.2022.10101411 10.3390/rs15030597 10.1109/MSP.2020.2984801 10.3390/s23146504 10.1109/ICRA.2015.7139314 10.23919/ACC.2018.8431886 10.1007/978-3-319-10602-1_48 10.1109/CVPR52733.2024.01605 10.3390/s20082166 10.1109/IROS40897.2019.8968122 10.3390/s20030899 10.1109/OJITS.2023.3295502 10.3390/rs14164058 10.3390/ijgi13070232 10.3390/rs10020205 10.30657/pea.2017.16.09 10.3390/rs12203343 10.1109/TMM.2023.3277281 10.5194/isprs-archives-XLIII-B4-2020-415-2020 10.1016/j.jksuci.2022.03.013 10.3390/app12146831 10.1007/978-3-031-20047-2_1 10.1109/CVPR.2017.106 10.1109/TNNLS.2024.3384446 10.1109/MITS.2020.3014152 10.1007/978-3-030-58452-8_13 10.1109/CVPR.2016.350 10.1080/17538947.2023.2220615 10.3390/s21165397 10.3390/jmse11040840 10.1109/5254.736003 10.1108/9781615832538-028 10.3390/s20226536 10.3390/s24103088 10.1109/ICCV.2015.169 10.3390/jimaging10070153 10.1007/s11263-024-02019-5 10.3390/s18093145 10.15607/RSS.2007.III.016 10.1109/CVPR.2018.00352 10.1109/TPAMI.2016.2577031 10.1007/978-3-540-74764-2_32 10.1155/2020/2138643 10.1109/ICIP.2017.8296962 10.1109/MITS.2010.939925 10.1177/0278364913491297 10.1109/ICCV.2017.534 10.1109/ACCESS.2022.3188990 10.1007/s10514-018-9785-7 10.1109/JSEN.2020.2966034 10.1007/s11263-012-0517-8 10.1109/CVPR52729.2023.00721 10.1109/TITS.2012.2193569 10.1109/TRO.2024.3392149 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023 10.1109/ITSC.2017.8317859 10.3390/rs14061468 10.1109/ICRA46639.2022.9811573 10.1109/ICCV.2017.243 10.1145/3343031.3350539 10.1007/s10514-009-9113-3 10.1109/CVPR.2018.00263 10.1109/CVPR.2017.690 10.3390/s22114262 10.3390/s23177424 10.1109/CVPR.2019.00406 10.3390/s20030704 10.3390/s23146545 10.1109/ICRA46639.2022.9812383 10.1109/TITS.2017.2665968 10.1109/ISMAR.2007.4538852 10.1109/IVS.2019.8814289 10.1109/CVPR42600.2020.00271 10.1109/TPAMI.2015.2389824 10.1109/CVPR42600.2020.00252 10.1109/CVPR.2016.352 10.3390/machines12020118 10.1109/ICIP.2016.7533003 10.1016/j.patrec.2008.04.005 10.1109/CVPRW.2017.60 10.1109/TRO.2008.2003276 10.1038/nn.4656 10.1007/s42452-020-2001-3 10.1017/S026357470700375X 10.1109/TITS.2020.3030767 10.5772/46200 10.3389/fpsyg.2019.00995 10.1109/ICRA.2018.8460641 10.1109/TRO.2015.2463671 10.1007/s10514-012-9321-0 10.1609/aaai.v34i08.7033 10.1080/15481603.2019.1581475 10.1016/j.isprsjprs.2013.08.003 10.1109/WACV.2019.00190 10.3390/s140610454 10.1109/MetroAeroSpace.2016.7573217 10.1109/ICRA.2018.8461180 10.1109/ICIAS.2016.7824105 10.1109/IROS.2005.1545152 10.1109/TGRS.2016.2617819 10.1109/TITS.2020.3000797 10.3390/s21072477 10.1109/ACCESS.2022.3147495 10.3390/drones6070183 10.20944/preprints202209.0067.v1 10.1109/CVPR.2014.81 10.1109/CVPRW.2018.00141 10.1109/ACCESS.2021.3072739 10.1080/01441647.2018.1494640 10.3390/app12063153 10.1111/2041-210X.13166 10.1109/TRO.2021.3075644 10.1109/CVPR.2018.00474 10.1007/978-3-319-46454-1 10.3390/jmse10070895 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25072004 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_61eb33becc514a0c8fa9d77c8165da3c PMC11991209 A838363096 40218517 10_3390_s25072004 |
| Genre | Journal Article Review |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GrantInformation_xml | – fundername: PES University |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c471t-d48b872e5c54742809fa6f4de6f731ef2655c7bedc891e5bdcbc6fc799dd687d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465785800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:14 EST 2025 Tue Nov 04 02:04:51 EST 2025 Fri Sep 05 17:38:30 EDT 2025 Tue Oct 07 07:38:17 EDT 2025 Tue Nov 04 18:11:31 EST 2025 Tue Apr 15 01:23:26 EDT 2025 Sat Nov 29 07:20:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | localization autonomous vehicles mapping SLAM perception module LiDAR sensor fusion object detection HD maps tracking algorithms |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-d48b872e5c54742809fa6f4de6f731ef2655c7bedc891e5bdcbc6fc799dd687d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0009-0002-6030-114X 0000-0003-0283-8037 0000-0001-7493-6221 0009-0009-7329-244X 0009-0000-0665-6420 0009-0000-5520-4236 |
| OpenAccessLink | https://doaj.org/article/61eb33becc514a0c8fa9d77c8165da3c |
| PMID | 40218517 |
| PQID | 3188900907 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_61eb33becc514a0c8fa9d77c8165da3c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991209 proquest_miscellaneous_3189461894 proquest_journals_3188900907 gale_infotracacademiconefile_A838363096 pubmed_primary_40218517 crossref_primary_10_3390_s25072004 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-23 |
| PublicationDateYYYYMMDD | 2025-03-23 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhang (ref_109) 2023; 16 ref_136 ref_92 ref_90 ref_14 ref_12 ref_131 ref_99 ref_10 ref_98 ref_133 ref_132 Magnusson (ref_86) 2019; 43 ref_135 Brostow (ref_30) 2009; 30 ref_95 ref_19 ref_18 ref_17 ref_16 ref_15 Scholtes (ref_78) 2021; 9 ref_126 ref_125 Rawlinson (ref_53) 2008; 26 ref_128 Turay (ref_11) 2022; 10 ref_129 ref_25 ref_23 ref_120 ref_22 ref_21 ref_20 ref_121 Cadena (ref_134) 2016; 69 Zhao (ref_94) 2023; 26 Montemerlo (ref_137) 2003; 3 ref_29 ref_28 ref_27 ref_26 ref_72 ref_71 ref_79 ref_77 ref_76 ref_75 ref_74 ref_73 Li (ref_43) 2024; 36 Yin (ref_48) 2024; 132 Ren (ref_3) 2016; 39 Zheng (ref_97) 2023; 44 ref_83 Baten (ref_122) 1998; 13 ref_82 ref_80 Montiel (ref_127) 2015; 31 Chattopadhyay (ref_115) 2020; 22 Campos (ref_130) 2021; 37 ref_89 Zhao (ref_93) 2020; 20 Benamar (ref_84) 2022; 34 ref_85 Liu (ref_9) 2025; 239 Agostinho (ref_46) 2022; 10 Alonso (ref_103) 2012; 13 Li (ref_57) 2014; 14 Epstein (ref_51) 2017; 20 ref_50 Parkinson (ref_114) 2017; 18 Yin (ref_91) 2020; 23 ref_56 ref_55 ref_54 ref_52 Taeihagh (ref_112) 2019; 39 Taketomi (ref_123) 2017; 9 ref_59 Elghazaly (ref_63) 2023; 4 Civera (ref_124) 2008; 24 Xu (ref_87) 2016; 55 ref_61 He (ref_13) 2015; 37 ref_69 ref_68 ref_67 ref_65 Lafarge (ref_60) 2012; 99 ref_64 ref_62 Grisetti (ref_8) 2010; 2 Vijayarajan (ref_6) 2016; 8 Abouelyazid (ref_42) 2023; 8 Hnewa (ref_24) 2020; 38 ref_117 ref_119 ref_118 ref_36 ref_35 Song (ref_138) 2018; 92 ref_34 ref_33 ref_32 Tsushima (ref_107) 2020; 43 ref_110 ref_113 Huang (ref_96) 2009; 26 ref_39 ref_38 ref_37 ref_104 ref_106 ref_105 ref_108 Kumar (ref_88) 2013; 85 Geiger (ref_31) 2013; 32 ref_47 ref_45 ref_44 Sridhar (ref_41) 2019; 10 ref_100 ref_102 ref_40 ref_101 ref_1 Barsi (ref_111) 2017; 16 Lee (ref_116) 2024; 40 ref_2 ref_49 Gargoum (ref_70) 2019; 56 Wong (ref_66) 2020; 13 Hornung (ref_58) 2013; 34 Chang (ref_81) 2023; 48 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_117 – volume: 92 start-page: 107 year: 2018 ident: ref_138 article-title: Critical Rays Self-adaptive Particle Filtering SLAM publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0742-z – ident: ref_77 doi: 10.3390/s18124172 – ident: ref_74 – ident: ref_79 doi: 10.1109/ICITE56321.2022.10101411 – ident: ref_95 doi: 10.3390/rs15030597 – volume: 38 start-page: 53 year: 2020 ident: ref_24 article-title: Object detection under rainy conditions for autonomous vehicles: A review of state-of-the-art and emerging techniques publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2984801 – ident: ref_108 doi: 10.3390/s23146504 – ident: ref_39 – ident: ref_72 doi: 10.1109/ICRA.2015.7139314 – ident: ref_56 doi: 10.23919/ACC.2018.8431886 – ident: ref_17 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_22 doi: 10.1109/CVPR52733.2024.01605 – ident: ref_104 doi: 10.3390/s20082166 – ident: ref_110 doi: 10.1109/IROS40897.2019.8968122 – volume: 239 start-page: 39 year: 2025 ident: ref_9 article-title: Vision-based environmental perception for autonomous driving publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. – volume: 8 start-page: 42 year: 2023 ident: ref_42 article-title: Comparative Evaluation of SORT, DeepSORT, and ByteTrack for Multiple Object Tracking in Highway Videos publication-title: Int. J. Sustain. Infrastruct. Cities Soc. – ident: ref_83 doi: 10.3390/s20030899 – volume: 9 start-page: 1 year: 2017 ident: ref_123 article-title: Visual SLAM algorithms: A survey from 2010 to 2016 publication-title: IPSJ Trans. Comput. Vis. Appl. – ident: ref_135 – volume: 4 start-page: 527 year: 2023 ident: ref_63 article-title: High-definition maps: Comprehensive survey, challenges and future perspectives publication-title: IEEE Open J. Intell. Transp. Syst. doi: 10.1109/OJITS.2023.3295502 – ident: ref_69 doi: 10.3390/rs14164058 – ident: ref_64 doi: 10.3390/ijgi13070232 – ident: ref_67 doi: 10.3390/rs10020205 – volume: 16 start-page: 43 year: 2017 ident: ref_111 article-title: Supporting autonomous vehicles by creating HD maps publication-title: Prod. Eng. Arch. doi: 10.30657/pea.2017.16.09 – ident: ref_68 doi: 10.3390/rs12203343 – ident: ref_59 – volume: 26 start-page: 1158 year: 2023 ident: ref_94 article-title: Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2023.3277281 – volume: 43 start-page: 415 year: 2020 ident: ref_107 article-title: Creation of high definition map for autonomous driving publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B4-2020-415-2020 – volume: 34 start-page: 7366 year: 2022 ident: ref_84 article-title: A Comprehensive Survey on the Application of Deep and Reinforcement Learning Approaches in Autonomous Driving publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2022.03.013 – ident: ref_121 doi: 10.3390/app12146831 – ident: ref_5 doi: 10.1007/978-3-031-20047-2_1 – ident: ref_16 doi: 10.1109/CVPR.2017.106 – volume: 36 start-page: 5454 year: 2024 ident: ref_43 article-title: AttMOT: Improving multiple-object tracking by introducing auxiliary pedestrian attributes publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2024.3384446 – volume: 13 start-page: 91 year: 2020 ident: ref_66 article-title: Mapping for autonomous driving: Opportunities and challenges publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2020.3014152 – ident: ref_18 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_32 doi: 10.1109/CVPR.2016.350 – volume: 16 start-page: 2089 year: 2023 ident: ref_109 article-title: Open HD map service model: An interoperable high-Definition map data model for autonomous driving publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2023.2220615 – ident: ref_44 – ident: ref_105 doi: 10.3390/s21165397 – ident: ref_49 doi: 10.3390/jmse11040840 – volume: 13 start-page: 57 year: 1998 ident: ref_122 article-title: Techniques tor autonomous, off-road navigation publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.736003 – ident: ref_50 doi: 10.1108/9781615832538-028 – ident: ref_75 – ident: ref_82 doi: 10.3390/s20226536 – ident: ref_10 doi: 10.3390/s24103088 – ident: ref_14 doi: 10.1109/ICCV.2015.169 – ident: ref_28 doi: 10.3390/jimaging10070153 – volume: 132 start-page: 3139 year: 2024 ident: ref_48 article-title: A survey on global lidar localization: Challenges, advances and open problems publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-024-02019-5 – ident: ref_102 doi: 10.3390/s18093145 – ident: ref_55 doi: 10.15607/RSS.2007.III.016 – ident: ref_27 doi: 10.1109/CVPR.2018.00352 – volume: 39 start-page: 1137 year: 2016 ident: ref_3 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_73 doi: 10.1007/978-3-540-74764-2_32 – ident: ref_132 doi: 10.1155/2020/2138643 – ident: ref_4 doi: 10.1109/ICIP.2017.8296962 – volume: 2 start-page: 31 year: 2010 ident: ref_8 article-title: A tutorial on graph-based SLAM publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2010.939925 – volume: 32 start-page: 1231 year: 2013 ident: ref_31 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – ident: ref_34 doi: 10.1109/ICCV.2017.534 – volume: 10 start-page: 72182 year: 2022 ident: ref_46 article-title: A practical survey on visual odometry for autonomous driving in challenging scenarios and conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3188990 – volume: 43 start-page: 1117 year: 2019 ident: ref_86 article-title: 2D map alignment with region decomposition publication-title: Auton. Robot. doi: 10.1007/s10514-018-9785-7 – volume: 20 start-page: 4901 year: 2020 ident: ref_93 article-title: Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2966034 – volume: 99 start-page: 69 year: 2012 ident: ref_60 article-title: Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0517-8 – ident: ref_23 doi: 10.1109/CVPR52729.2023.00721 – volume: 13 start-page: 1535 year: 2012 ident: ref_103 article-title: Accurate global localization using visual odometry and digital maps on urban environments publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2193569 – volume: 40 start-page: 2888 year: 2024 ident: ref_116 article-title: Autonomous Vehicle Localization Without Prior High-Definition Map publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2024.3392149 – volume: 8 start-page: 18963 year: 2016 ident: ref_6 article-title: Automatidetection of moving objects using Kalman algorithm publication-title: Int. J. Pharm. Technol. IJPT – volume: 48 start-page: 93 year: 2023 ident: ref_81 article-title: The implementation of semi-automated road surface markings extraction schemes utilizing mobile laser scanned point clouds for HD maps production publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023 – ident: ref_54 doi: 10.1109/ITSC.2017.8317859 – ident: ref_106 doi: 10.3390/rs14061468 – ident: ref_136 – ident: ref_100 doi: 10.1109/ICRA46639.2022.9811573 – volume: 69 start-page: 59 year: 2016 ident: ref_134 article-title: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age publication-title: Robot. Auton. Syst. – ident: ref_36 doi: 10.1109/ICCV.2017.243 – ident: ref_90 – ident: ref_129 doi: 10.1145/3343031.3350539 – volume: 26 start-page: 103 year: 2009 ident: ref_96 article-title: Finding multiple lanes in urban road networks with vision and lidar publication-title: Auton. Robot. doi: 10.1007/s10514-009-9113-3 – ident: ref_25 doi: 10.1109/CVPR.2018.00263 – ident: ref_1 doi: 10.1109/CVPR.2017.690 – ident: ref_80 doi: 10.3390/s22114262 – ident: ref_47 doi: 10.3390/s23177424 – ident: ref_26 doi: 10.1109/CVPR.2019.00406 – ident: ref_89 doi: 10.3390/s20030704 – ident: ref_92 doi: 10.3390/s23146545 – ident: ref_98 doi: 10.1109/ICRA46639.2022.9812383 – volume: 18 start-page: 2898 year: 2017 ident: ref_114 article-title: Cyber threats facing autonomous and connected vehicles: Future challenges publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2665968 – ident: ref_126 doi: 10.1109/ISMAR.2007.4538852 – ident: ref_76 doi: 10.1109/IVS.2019.8814289 – ident: ref_29 doi: 10.1109/CVPR42600.2020.00271 – volume: 37 start-page: 1904 year: 2015 ident: ref_13 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_38 doi: 10.1109/CVPR42600.2020.00252 – ident: ref_35 doi: 10.1109/CVPR.2016.352 – ident: ref_65 doi: 10.3390/machines12020118 – ident: ref_40 doi: 10.1109/ICIP.2016.7533003 – volume: 30 start-page: 88 year: 2009 ident: ref_30 article-title: Semantic object classes in video: A high-definition ground truth database publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.04.005 – ident: ref_19 doi: 10.1109/CVPRW.2017.60 – volume: 24 start-page: 932 year: 2008 ident: ref_124 article-title: Inverse depth parametrization for monocular SLAM publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.2003276 – ident: ref_7 – volume: 20 start-page: 1504 year: 2017 ident: ref_51 article-title: The cognitive map in humans: Spatial navigation and beyond publication-title: Nat. Neurosci. doi: 10.1038/nn.4656 – ident: ref_45 doi: 10.1007/s42452-020-2001-3 – volume: 26 start-page: 189 year: 2008 ident: ref_53 article-title: Topologically-directed navigation publication-title: Robotica doi: 10.1017/S026357470700375X – volume: 23 start-page: 1543 year: 2020 ident: ref_91 article-title: Fusionlane: Multi-sensor fusion for lane marking semantic segmentation using deep neural networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3030767 – ident: ref_118 doi: 10.5772/46200 – ident: ref_113 doi: 10.3389/fpsyg.2019.00995 – ident: ref_71 doi: 10.1109/ICRA.2018.8460641 – volume: 31 start-page: 1147 year: 2015 ident: ref_127 article-title: ORB-SLAM: A versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – volume: 34 start-page: 189 year: 2013 ident: ref_58 article-title: OctoMap: An efficient probabilistic 3D mapping framework based on octrees publication-title: Auton. Robot. doi: 10.1007/s10514-012-9321-0 – ident: ref_99 doi: 10.1609/aaai.v34i08.7033 – ident: ref_125 – volume: 56 start-page: 864 year: 2019 ident: ref_70 article-title: A literature synthesis of LiDAR applications in transportation: Feature extraction and geometric assessments of highways publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2019.1581475 – volume: 85 start-page: 44 year: 2013 ident: ref_88 article-title: An automated algorithm for extracting road edges from terrestrial mobile LiDAR data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.08.003 – ident: ref_33 doi: 10.1109/WACV.2019.00190 – volume: 14 start-page: 10454 year: 2014 ident: ref_57 article-title: Occupancy grid mapping in urban environments from a moving on-board stereo-vision system publication-title: Sensors doi: 10.3390/s140610454 – ident: ref_131 doi: 10.1109/MetroAeroSpace.2016.7573217 – ident: ref_21 – ident: ref_128 doi: 10.1109/ICRA.2018.8461180 – ident: ref_133 doi: 10.1109/ICIAS.2016.7824105 – ident: ref_61 doi: 10.1109/IROS.2005.1545152 – volume: 55 start-page: 996 year: 2016 ident: ref_87 article-title: Road curb extraction from mobile LiDAR point clouds publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2617819 – volume: 22 start-page: 7015 year: 2020 ident: ref_115 article-title: Autonomous vehicle: Security by design publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3000797 – ident: ref_101 doi: 10.3390/s21072477 – volume: 10 start-page: 14076 year: 2022 ident: ref_11 article-title: Toward performing image classification and object detection with convolutional neural networks in autonomous driving systems: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147495 – ident: ref_52 doi: 10.3390/drones6070183 – ident: ref_62 doi: 10.20944/preprints202209.0067.v1 – ident: ref_12 doi: 10.1109/CVPR.2014.81 – ident: ref_37 doi: 10.1109/CVPRW.2018.00141 – ident: ref_85 – ident: ref_15 – volume: 9 start-page: 59131 year: 2021 ident: ref_78 article-title: 6-Layer Model for a Structured Description and Categorization of Urban Traffic and Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072739 – volume: 39 start-page: 103 year: 2019 ident: ref_112 article-title: Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and industry risks publication-title: Transp. Rev. doi: 10.1080/01441647.2018.1494640 – ident: ref_119 doi: 10.3390/app12063153 – volume: 3 start-page: 1151 year: 2003 ident: ref_137 article-title: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges publication-title: Proc. Int. Jt. Conf. Artif. Intell. – volume: 10 start-page: 815 year: 2019 ident: ref_41 article-title: Tracktor: Image-based automated tracking of animal movement and behaviour publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13166 – volume: 44 start-page: 418 year: 2023 ident: ref_97 article-title: High-definition map automatic annotation system based on active learning publication-title: AI Mag. – volume: 37 start-page: 1874 year: 2021 ident: ref_130 article-title: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3075644 – ident: ref_20 doi: 10.1109/CVPR.2018.00474 – ident: ref_2 doi: 10.1007/978-3-319-46454-1 – ident: ref_120 doi: 10.3390/jmse10070895 |
| RelatedPersons | Liu, Timothy |
| RelatedPersons_xml | – fullname: Liu, Timothy |
| SSID | ssj0023338 |
| Score | 2.4452639 |
| SecondaryResourceType | review_article |
| Snippet | Autonomous vehicles (AVs) depend on perception, localization, and mapping to interpret their surroundings and navigate safely. This paper reviews existing... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2004 |
| SubjectTerms | Accuracy Algorithms Autonomous vehicles Classification Datasets Deep learning Driverless cars Efficiency Global positioning systems GPS Liu, Timothy Localization Mapping Neural networks object detection Optical radar Proposals Remote sensing Review Sensors SLAM Surveys Telematics tracking algorithms Transportation Transportation industry |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagywEOy3MhsCCDkLhstHHsODYX1KKtOEBV8dLeIsd2dntJlrRdiX-_M4kbGiFx4dJDHqrbb15fMv6GkLfSMctMJuJMVkksgGDEGkJCzBOrODMCSlTbDZvIFwt1fq6X4YHbOrRV7mJiF6hdY_EZ-SnYntJQECT5h6tfMU6NwrerYYTGbXKASmViQg5mZ4vl14FycWBgvZ4QB3J_uoaEn6NdjLJQJ9b_d0jey0njfsm9BDS__79Lf0AOQ-lJp72tPCS3fP2I3NsTJHxMVrMwJZtCXUjnnd4IbSo6SKB3OL6nU4pxpPWXffs7_bZtr_1v2tR0-pMuh16ZE_oZU2XY6nlCTe3oF4OKEBdPyI_52fePn-IwjCG2kL82sROqVHnqM5sJoNMq0ZWRlXBeVjlnvkplltm8hD9Jaeaz0tnS4j4irZ2TKnf8iEzqpvbPCE2ZE9ZWQjjFhfJMOWs0N5lnvAT-ZyPyZgdOcdVrbhTAVRDBYkAwIjOEbbgAZbK7A017UQSvKyTzJedoplAXGjC_ymiX51YxmTnD4ZveIegFOjMga03YkwDrRFmsYqqAwEsONC8ixztsi-Dl6-IPsBF5PZwG_8SXLqb2zba7RguJHxF52pvRsGaBBVbG4G41MrDRjxqfqVeXnQY4w5a1NNHP_72uF-RuigOLEx6n_JhMNu3WvyR37PVmtW5fBW-5Ab-CIc4 priority: 102 providerName: ProQuest |
| Title | Building the Future of Transportation: A Comprehensive Survey on AV Perception, Localization, and Mapping |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40218517 https://www.proquest.com/docview/3188900907 https://www.proquest.com/docview/3189461894 https://pubmed.ncbi.nlm.nih.gov/PMC11991209 https://doaj.org/article/61eb33becc514a0c8fa9d77c8165da3c |
| Volume | 25 |
| WOSCitedRecordID | wos001465785800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOeSZakMQuKy0caxHdvcWtQKJFpFvFROkWM7bC8p6mOlvfDbGSdp1IgDFy4-2Hk4Mx7PfMr4G4A3maOWGsFjkVVJzBFgxBq3hJglVjFqOIaotik2IRcLtVzq_KjUV8gJa-mBW8FdZhThHgtvQtdu8AmV0U5Kq2gmnGE27L4Y9RzAVAe1GCKvlkeIIai_3KKjl2E9DLxPQ9L_91Z85IuGeZJHjmf2EB50ESMZtzN9BLd8_RjuH_EIPoHVpCtuTTCcI7OGJoSsK9Izlzfif0fGJJj_xl-1Wevky35z7W_Iuibj7yTvU1wuyKfg4boTmhfE1I7MTSBy-PkUvs2mX99_iLsaCrFFt7OLHVelkqkXVnBEwSrRlckq7nxWSUZ9lWZCWFniNypNvSidLW04_qO1c5mSjj2Dk3pd--dAUuq4tRXnTjGuPFXOGs2M8JSVCNtsBK8Psi1-tVQZBUKMoICiV0AEkyD1_oLAbt10oM6LTufFv3QewdugsyLYICrGmu4oAc4zsFkVY4W4O2OIziI4P6i16IxzW-A2pjTGlomM4FU_jGYV_pWY2q_3zTWaZ6GJ4LRdBf2ceYiLBMW71WB9DD5qOFKvrhrqbhoyzdJEn_0PMbyAe2moRpywOGXncLLb7P1LuGuvd6vtZgS35VI2rRrBncl0kX8eNUaC7fz3FPvyj_P8xx8TQhnT |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJw4PePwgCDQFwWLY6dxEZCqAOqVWurSgw0TsGxna2XZKTt0P4p_kaekzQ0QuK2A5ccYiexk8-f34ufvwfwKjJUUxVyL4wy3-PoYHgSKcFjvhaMKo4mqq6STcTTqTg-lrMt-LXeC-PCKtecWBG1KbT7R76H2BMSDQI_fn_2w3NZo9zq6jqFRg2LQ3vxE122xbvRR_y-r4Ng-Onow4HXZBXwNBLx0jNcpCIObKhDjn6h8GWmoowbG2UxozYLojDUcWqNFpLaMDU61W5DjJTGRCI2DO97BbY5gl30YHs2msy-tS4eQ4-v1i9iTPp7CzQwYofDzqxXJQf4ewrYmAO78ZkbE97w1v_2qm7Dzca0JoN6LNyBLZvfhRsbgov3YL7fZAEnaPeSYaWnQoqMtBLvFU7fkgFxPFna0zq8n3xelef2ghQ5GXwlszYWaJeMnSnQbGXdJSo3ZKKc4sXJffhyKX19AL28yO0jIAE1XOuMcyMYF5YKo5VkKrSUpejf6j68XIMhOas1RRL0xRxikhYxfdh3MGkrOBnw6kRRniQNqyQRtSljbhii3atweGVKmjjWgkahUQyf9MaBLHFkhUjSqtlzge10sl_JQDDBIoZubB921lhKGhZbJH-A1IcXbTHyj1tUUrktVlUdySN36MPDGrZtm7kzIEOKV4sOoDud6pbk89NK45y6kLzAl4__3a7ncO3gaDJOxqPp4RO4HrjkzD7zArYDvWW5sk_hqj5fzhfls2akEvh-2Yj_DehygXA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKixAseD8CBQwCsWk0cewkNhJCU8qIUdtRJCgqq-DYTjubpMyjqL_G13FvXswIiV0XbLKYZCZO5tzjc5Prcwl5FVtmmI6EH8VF4AtIMHwFlODzwEjOtACJaupmE8lkIo-PVbpBfnVrYbCssuPEmqhtZfAZ-QCwJxUIgiAZFG1ZRLo3en_2w8cOUvimtWun0UBk3138hPRt_m68B__16zAcffzy4ZPfdhjwDZDywrdC5jIJXWQiATmiDFSh40JYFxcJZ64I4ygySe6skYq5KLcmN7g4RilrY5lYDr97hWyBJBcQY1vp-DD91qd7HLK_xsuIcxUM5iA2EsTk2gxYNwr4ezpYmQ_XazVXJr_Rrf_5tt0mN1vJTYdNjNwhG668S26sGDHeI9Pdtjs4BT1MR7XPCq0K2lu_1_h9S4cU-XPmTpuyf_p5OTt3F7Qq6fArTfsaoR16gBKhXeK6Q3Vp6aFGJ4yT--ToUq71Adksq9I9IjRkVhhTCGElF9IxaY1WXEeO8RzyXuORlx0wsrPGaySDHA3Rk_Xo8cguQqY_AO3B6w-q2UnWsk0WM5dzjuEJelhD2BVa2SQxksWR1RzO9AYBlyGJAaqMbtdiwDjRDiwbSi55zCG99ch2h6usZbd59gdUHnnR7wZewpdNunTVsj5GiRg3HnnYQLgfs0BhGTH4tlwD99pFre8pp6e19znDUr0wUI__Pa7n5BrAPDsYT_afkOsh9mwOuB_ybbK5mC3dU3LVnC-m89mzNmgp-X7ZgP8NFaaKMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+the+Future+of+Transportation%3A+A+Comprehensive+Survey+on+AV+Perception%2C+Localization%2C+and+Mapping&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Patil%2C+Ashok+Kumar&rft.au=Punugupati%2C+Bhargav&rft.au=Gupta%2C+Himanshi&rft.au=Mayur%2C+Niranjan+S&rft.date=2025-03-23&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072004&rft.externalDocID=A838363096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |