A Review on UAS Trajectory Estimation Using Decentralized Multi-Sensor Systems Based on Robotic Total Stations

In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 25; H. 13; S. 3838
Hauptverfasser: Dammert, Lucas, Thalmann, Tomas, Monetti, David, Neuner, Hans-Berndt, Mandlburger, Gottfried
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 20.06.2025
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s−1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
AbstractList In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s−1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub- c m and sub- 0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s−1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300-500 m) and speeds (>2.5 m s-1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300-500 m) and speeds (>2.5 m s-1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s[sup.−1] ). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300-500 m) and speeds (>2.5 m s ). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data.
Audience Academic
Author Mandlburger, Gottfried
Thalmann, Tomas
Monetti, David
Neuner, Hans-Berndt
Dammert, Lucas
AuthorAffiliation 1 Research Units Engineering Geodesy and Photogrammetry, Department Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria; tomas.thalmann@geo.tuwien.ac.at (T.T.); hans.neuner@geo.tuwien.ac.at (H.-B.N.); gottfried.mandlburger@geo.tuwien.ac.at (G.M.)
2 Skyability GmbH, 7011 Siegendorf, Austria; david.monetti@skyability.com
AuthorAffiliation_xml – name: 1 Research Units Engineering Geodesy and Photogrammetry, Department Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria; tomas.thalmann@geo.tuwien.ac.at (T.T.); hans.neuner@geo.tuwien.ac.at (H.-B.N.); gottfried.mandlburger@geo.tuwien.ac.at (G.M.)
– name: 2 Skyability GmbH, 7011 Siegendorf, Austria; david.monetti@skyability.com
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0009-0007-0029-2372
  surname: Dammert
  fullname: Dammert, Lucas
– sequence: 2
  givenname: Tomas
  orcidid: 0009-0002-4587-2200
  surname: Thalmann
  fullname: Thalmann, Tomas
– sequence: 3
  givenname: David
  surname: Monetti
  fullname: Monetti, David
– sequence: 4
  givenname: Hans-Berndt
  orcidid: 0000-0002-2846-1402
  surname: Neuner
  fullname: Neuner, Hans-Berndt
– sequence: 5
  givenname: Gottfried
  orcidid: 0000-0002-2332-293X
  surname: Mandlburger
  fullname: Mandlburger, Gottfried
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40648097$$D View this record in MEDLINE/PubMed
BookMark eNpdkl1vFCEUhiemxn7ohX_AkHijF1NhYBi4Mmut2qTGpLu9JgxzZmUzAxWYmu2vL_vhpjVcQM55eDnn8J4WR847KIq3BJ9TKvGnWNWEUkHFi-KEsIqVoqrw0ZPzcXEa4wrjimbsVXHMMGcCy-akcDN0A_cW_iLv0O1sjhZBr8AkH9boMiY76mQ3mWjdEn0FAy4FPdgH6NDPaUi2nIOLPqD5OiYYI_qiY07lGze-9ckatPBJD2ietjrxdfGy10OEN_v9rLj9drm4-FFe__p-dTG7Lg1rSCpN1xswFQjZCcw10ULLVlOQDXSYSNEJI6FrWkZrRoXgnBMAzju9CYpa07Piaqfbeb1SdyH3EdbKa6u2AR-WSodc3gAKWMM1p0Sbus5zqfNcWiOY7mlvcNuzrPV5p3U3tSN0-xE8E32ecfa3Wvp7Rar8L42UWeHDXiH4PxPEpEYbDQyDduCnqGhVSV5xSXlG3_-HrvwUXJ7VliJ1g-sNdb6jljp3YF3v88Mmrw5Ga7I5epvjM8Ga3FLDaL7w7mkPh-L_GSEDH3eACT7GAP0BIVhtTKYOJqOP0XTDnw
Cites_doi 10.1515/jag-2022-0027
10.1515/jag-2019-0070
10.20944/preprints202112.0206.v1
10.1016/j.biosystemseng.2016.03.006
10.3390/rs13183564
10.1061/(ASCE)SU.1943-5428.0000208
10.1109/CRV52889.2021.00012
10.5194/isprsarchives-XXXIX-B1-405-2012
10.1117/12.2084221
10.3390/rs15215141
10.1016/j.isprsjprs.2024.06.014
10.33012/2016.14604
10.1080/14498596.2015.1068232
10.1127/1432-8364/2012/0108
10.1007/s12518-024-00593-4
10.3390/drones6110317
10.1016/j.compag.2016.04.019
10.1016/j.isprsjprs.2017.05.008
10.1007/978-3-642-45583-4
10.1109/MFI62651.2024.10705770
10.1515/jag-2024-0040
10.1109/IROS55552.2023.10341529
10.1016/j.isprsjprs.2022.12.022
10.3390/agriculture12060885
10.1371/journal.pone.0251281
10.3390/s17020255
10.1007/BF02026796
10.1515/jag-2016-0028
10.3390/s19163568
10.1016/j.isprsjprs.2025.03.007
10.1016/j.isprsjprs.2006.07.003
10.14358/PERS.82.12.945
10.1109/IPIN.2010.5646270
10.5194/isprsarchives-XXXIX-B7-487-2012
10.33012/2020.17557
10.3390/geomatics2010001
10.1016/j.isprsjprs.2022.04.027
10.1029/2010JD014067
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25133838
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e476a631ac554065809bc84af3fc0bf4
PMC12251799
A847540743
40648097
10_3390_s25133838
Genre Journal Article
Review
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GrantInformation_xml – fundername: Austrian Research Promotion Agency
  grantid: 895310
– fundername: Austrian Research Promotion Agency (FFG)
  grantid: 895310
– fundername: TU Wien Bibliothek
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-cdfcec2e89d806a1a8a9ba3e97ed0198d8c9ed7b43543886661ee66daed7b85a3
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528238900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:28:57 EDT 2025
Tue Nov 04 02:04:26 EST 2025
Fri Sep 05 15:40:17 EDT 2025
Tue Oct 07 07:21:18 EDT 2025
Tue Nov 18 03:51:03 EST 2025
Thu Jul 17 02:14:22 EDT 2025
Sat Nov 29 07:19:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords sensor synchronization
image-assisted total station
6-DoF trajectory estimation
UAV
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-cdfcec2e89d806a1a8a9ba3e97ed0198d8c9ed7b43543886661ee66daed7b85a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0002-4587-2200
0000-0002-2846-1402
0000-0002-2332-293X
0009-0007-0029-2372
OpenAccessLink https://www.proquest.com/docview/3229157056?pq-origsite=%requestingapplication%
PMID 40648097
PQID 3229157056
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e476a631ac554065809bc84af3fc0bf4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12251799
proquest_miscellaneous_3229626936
proquest_journals_3229157056
gale_infotracacademiconefile_A847540743
pubmed_primary_40648097
crossref_primary_10_3390_s25133838
PublicationCentury 2000
PublicationDate 2025-06-20
PublicationDateYYYYMMDD 2025-06-20
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-20
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Glira (ref_75) 2016; 82
ref_13
ref_11
Hennes (ref_28) 2002; 64
Pfeifer (ref_73) 2012; 39
ref_10
ref_53
Roberts (ref_47) 2016; 61
Hauth (ref_12) 2013; 6/2013
Ullrich (ref_18) 2024; 215
Tombrink (ref_55) 2025; 19
ref_59
Glira (ref_20) 2019; IV-2/W5
Thalmann (ref_5) 2021; 15
ref_60
Kohoutek (ref_57) 2012; 39
Ehrhart (ref_19) 2017; 143
ref_25
ref_24
ref_68
ref_23
Eisenbeiss (ref_56) 2012; 38
ref_22
ref_66
ref_21
ref_65
ref_64
ref_63
Zschiesche (ref_67) 2022; 2
Lienhart (ref_71) 2017; 11
Wagner (ref_14) 2013; 120
ref_29
Glira (ref_74) 2015; II-3/W5
Vougioukas (ref_51) 2016; 147
ref_27
ref_26
Gojcic (ref_62) 2018; 125
Maxim (ref_48) 2017; Volume 86
ref_72
ref_70
ref_36
ref_35
ref_79
ref_34
ref_78
ref_33
ref_77
Skaloud (ref_2) 2006; 61
Thalmann (ref_16) 2024; 16
ref_32
ref_76
ref_30
Vroegindeweij (ref_52) 2016; 124
Kleemaier (ref_58) 2018; Volume 92
Ehrhart (ref_69) 2015; 9
Tombrink (ref_54) 2023; 17
ref_39
ref_38
ref_37
Brun (ref_17) 2022; 189
ref_82
ref_81
Favre (ref_31) 2000; 98
Ullrich (ref_83) 2025; 223
Cucci (ref_80) 2017; 130
Brocks (ref_9) 1950; 3
Niemeyer (ref_15) 2012; 2012
ref_46
ref_45
ref_44
ref_43
Neuner (ref_3) 2023; 196
ref_41
ref_40
ref_1
Thalmann (ref_61) 2018; 125
ref_49
ref_8
Liu (ref_42) 2016; 9
ref_4
ref_7
ref_6
References_xml – volume: 17
  start-page: 205
  year: 2023
  ident: ref_54
  article-title: Trajectory evaluation using repeated rail-bound measurements
  publication-title: J. Appl. Geod.
  doi: 10.1515/jag-2022-0027
– ident: ref_32
– volume: 15
  start-page: 13
  year: 2021
  ident: ref_5
  article-title: Temporal calibration and synchronization of robotic total stations for kinematic multi-sensor-systems
  publication-title: J. Appl. Geod.
  doi: 10.1515/jag-2019-0070
– ident: ref_26
– ident: ref_6
  doi: 10.20944/preprints202112.0206.v1
– volume: 98
  start-page: 72
  year: 2000
  ident: ref_31
  article-title: Zum Einfluss der geometrischen Ausrichtung von 360°-Reflektoren bei Messungen mit automatischer Zielerfassung
  publication-title: Mensurat. Photogramm. Genie Rural
– volume: 6/2013
  start-page: 210
  year: 2013
  ident: ref_12
  article-title: Schneller und ausdauernder als das menschliche Auge: Modulare Okularkameras am Motortachymeter
  publication-title: Allg. Vermess.
– ident: ref_39
– volume: 147
  start-page: 1
  year: 2016
  ident: ref_51
  article-title: Orchard worker localisation relative to a vehicle using radio ranging and trilateration
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.03.006
– ident: ref_1
  doi: 10.3390/rs13183564
– ident: ref_35
– volume: 143
  start-page: 1
  year: 2017
  ident: ref_19
  article-title: Accurate Measurements with Image-Assisted Total Stations and Their Prerequisites
  publication-title: J. Surv. Eng.
  doi: 10.1061/(ASCE)SU.1943-5428.0000208
– ident: ref_43
  doi: 10.1109/CRV52889.2021.00012
– volume: 39
  start-page: 405
  year: 2012
  ident: ref_57
  article-title: Processing of UAV based range imaging data to generate detailed elevation models of complex natural structures
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XXXIX-B1-405-2012
– ident: ref_70
  doi: 10.1117/12.2084221
– ident: ref_8
– ident: ref_49
  doi: 10.3390/rs15215141
– ident: ref_4
– volume: 215
  start-page: 62
  year: 2024
  ident: ref_18
  article-title: A flexible trajectory estimation methodology for kinematic laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.06.014
– ident: ref_66
  doi: 10.33012/2016.14604
– ident: ref_10
– volume: 61
  start-page: 29
  year: 2016
  ident: ref_47
  article-title: Kinematic positioning using a robotic total station as applied to small-scale UAVs
  publication-title: J. Spat. Sci.
  doi: 10.1080/14498596.2015.1068232
– volume: 2012
  start-page: 141
  year: 2012
  ident: ref_15
  article-title: Konzeption und Genauigkeitsabschätzungen für eine Bestimmung der äußeren Orientierung eines Unmanned Aerial Vehicles (UAV)
  publication-title: Photogramm. Fernerkund. Geoinform.
  doi: 10.1127/1432-8364/2012/0108
– volume: 64
  start-page: 73
  year: 2002
  ident: ref_28
  article-title: Zum Refraktionseinfluss auf terrestrische geodätische Messungen im Kontext der Messtechnik und der Instrumentenentwicklung
  publication-title: FuB-Flächenmanag. Bodenordn.
– ident: ref_41
– volume: 16
  start-page: 933
  year: 2024
  ident: ref_16
  article-title: Sensor fusion of robotic total station and inertial navigation system for 6DoF tracking applications
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-024-00593-4
– ident: ref_13
– ident: ref_38
– ident: ref_45
– ident: ref_72
– ident: ref_59
– ident: ref_68
  doi: 10.3390/drones6110317
– ident: ref_7
– ident: ref_53
– ident: ref_30
– ident: ref_76
– volume: 124
  start-page: 303
  year: 2016
  ident: ref_52
  article-title: Probabilistic localisation in repetitive environments: Estimating a robot’s position in an aviary poultry house
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.04.019
– volume: 130
  start-page: 1
  year: 2017
  ident: ref_80
  article-title: Bundle adjustment with raw inertial observations in UAV applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.008
– ident: ref_24
– ident: ref_23
  doi: 10.1007/978-3-642-45583-4
– ident: ref_34
– ident: ref_82
– volume: Volume 92
  start-page: 25
  year: 2018
  ident: ref_58
  article-title: Multisensorsystem Totalstation
  publication-title: MST 2018–Multisensortechnologie: Low-Cost Sensoren im Verbund
– ident: ref_40
  doi: 10.1109/MFI62651.2024.10705770
– ident: ref_37
– ident: ref_63
– volume: Volume 86
  start-page: 145
  year: 2017
  ident: ref_48
  article-title: UAV Guidance with Robotic Total Station for Architectural Fabrication Processes
  publication-title: Unmanned Aerial Vehicles
– volume: 19
  start-page: 321
  year: 2025
  ident: ref_55
  article-title: Spatio-temporal trajectory alignment for trajectory evaluation
  publication-title: J. Appl. Geod.
  doi: 10.1515/jag-2024-0040
– ident: ref_21
– ident: ref_44
  doi: 10.1109/IROS55552.2023.10341529
– volume: 196
  start-page: 287
  year: 2023
  ident: ref_3
  article-title: Integrated trajectory estimation for 3D kinematic mapping with GNSS, INS and imaging sensors: A framework and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.12.022
– ident: ref_50
  doi: 10.3390/agriculture12060885
– volume: 9
  start-page: 21
  year: 2016
  ident: ref_42
  article-title: Development of an unmanned surface vehicle for autonomous navigation in a paddy field
  publication-title: Eng. Agric. Environ. Food
– ident: ref_27
  doi: 10.1371/journal.pone.0251281
– volume: 120
  start-page: 283
  year: 2013
  ident: ref_14
  article-title: Bridge monitoring by means of video-tacheometer–A case study
  publication-title: Allg. Vermess.
– ident: ref_77
  doi: 10.3390/s17020255
– volume: II-3/W5
  start-page: 73
  year: 2015
  ident: ref_74
  article-title: Rigorous Strip Adjustment of Airborne Laserscanning Data Based on the ICP Algorithm
  publication-title: Isprs Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_25
– volume: 125
  start-page: 299
  year: 2018
  ident: ref_62
  article-title: A routine for time-synchronization of robotic total stations
  publication-title: AVN—Allg. Vermess.
– ident: ref_81
– volume: 3
  start-page: 241
  year: 1950
  ident: ref_9
  article-title: The curvature of rays of light near the earth’s surface: Tabellen des Refraktionskoeffizienten, I. Teil (Bereich des Präzisionsnivellements)
  publication-title: Dtsch. Hydrogr. Z.
  doi: 10.1007/BF02026796
– ident: ref_29
– ident: ref_33
– volume: 9
  start-page: 174
  year: 2015
  ident: ref_69
  article-title: Monitoring of civil engineering structures using a state-of-the-art image assisted total station
  publication-title: J. Appl. Geod.
– ident: ref_46
– volume: 11
  start-page: 1
  year: 2017
  ident: ref_71
  article-title: High frequent total station measurements for the monitoring of bridge vibrations
  publication-title: J. Appl. Geod.
  doi: 10.1515/jag-2016-0028
– volume: IV-2/W5
  start-page: 567
  year: 2019
  ident: ref_20
  article-title: Hybrid orientation of airborne LIDAR point clouds and aerial images
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci.
– ident: ref_78
  doi: 10.3390/s19163568
– volume: 223
  start-page: 344
  year: 2025
  ident: ref_83
  article-title: Precise and efficient high-frequency trajectory estimation for LiDAR georeferencing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2025.03.007
– volume: 61
  start-page: 47
  year: 2006
  ident: ref_2
  article-title: Rigorous approach to bore-sight self-calibration in airborne laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.07.003
– volume: 82
  start-page: 945
  year: 2016
  ident: ref_75
  article-title: Rigorous Strip Adjustment of UAV-Based Laserscanning Data Including Time-Dependent Correction of Trajectory Errors
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.82.12.945
– ident: ref_65
  doi: 10.1109/IPIN.2010.5646270
– volume: 39
  start-page: 487
  year: 2012
  ident: ref_73
  article-title: Direct georeferencing with on board navigation components of light weight UAV platforms
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XXXIX-B7-487-2012
– ident: ref_64
– ident: ref_79
  doi: 10.33012/2020.17557
– volume: 125
  start-page: 163
  year: 2018
  ident: ref_61
  article-title: Untersuchung des Network Time Protocols für die Synchronisation von Multi-Sensor-Systemen
  publication-title: AVN Allg. Vermess.
– volume: 2
  start-page: 1
  year: 2022
  ident: ref_67
  article-title: Image Assisted Total Stations for Structural Health Monitoring—A Review
  publication-title: Geomatics
  doi: 10.3390/geomatics2010001
– ident: ref_36
– ident: ref_60
– volume: 189
  start-page: 185
  year: 2022
  ident: ref_17
  article-title: Lidar point–to–point correspondences for rigorous registration of kinematic scanning in dynamic networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.04.027
– ident: ref_22
– ident: ref_11
  doi: 10.1029/2010JD014067
– volume: 38
  start-page: 131
  year: 2012
  ident: ref_56
  article-title: Direct georeferencing of UAVs
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
SSID ssj0023338
Score 2.4523165
SecondaryResourceType review_article
Snippet In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3838
SubjectTerms 6-DoF trajectory estimation
Accuracy
Automation
Cameras
Comparative analysis
Drone aircraft
Electronic data processing
image-assisted total station
Inertial measurement units
Investigations
Kinematics
Lasers
Remote sensing
Review
Robotics
sensor synchronization
Sensors
Technology application
UAV
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VFQc4oPJsoFSmqsQpahI_Yh-3tBWnCnVbqTfL8UMshwTtbpHor2dsZ1cbceiFa-Ikk5mMv_kc-zPAqZFRZc-0pWEcCYqToewqw8pAmeWKB-GUTZtNtNfX8v5efd_Z6ivOCcvywNlxZ561wghaG4vAF_GyUp2VzAQabNWFpARatWpDpkaqRZF5ZR0hiqT-bNXwxMXkBH2SSP-_XfEOFk3nSe4Az9UBvBwrRjLLlr6CPd-_hhc7OoJvoJ-RPMZPhp7czeYEEehnGo7_Qy4xh_PyRJKmB5ALPz5o8egdSQtwyzmS2WFJRvlyco7Q5uK9boZuwMeS2wFrdDLPv-1Xb-Hu6vL267dy3EihtIg969K6YL1tvFROVsLURhrVGepV6x2WeNJJq7xrOyydGJUSGU3tvRDOxIOSG_oO9vuh94dAXGBdMJx3lWhYEJjNjmM3ITleVZlaFXCycbD-lfUyNPKMGAW9jUIB59H12wZR4jodwMDrMfD6qcAX8CUGTsdERKdZM64nQDujpJWeIe5GdUFGCzjaxFaPGbrS2JGpmrdY_xXweXsacyv-MDG9Hx5yGyR8imKb9_lT2NqMJjE0qS1ATj6SyUtNz_SLH0m_u26STpz68D_c8BGeN3FL4kpgh3cE--vlg_8Ez-zv9WK1PE5Z8RcpfRP2
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review on UAS Trajectory Estimation Using Decentralized Multi-Sensor Systems Based on Robotic Total Stations
URI https://www.ncbi.nlm.nih.gov/pubmed/40648097
https://www.proquest.com/docview/3229157056
https://www.proquest.com/docview/3229626936
https://pubmed.ncbi.nlm.nih.gov/PMC12251799
https://doaj.org/article/e476a631ac554065809bc84af3fc0bf4
Volume 25
WOSCitedRecordID wos001528238900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6CGQ5wYF8CQ2UQEqdostiJfUItdASHqarpjFROkeMFyiEZmg4SHPjtPDtupxESFy4-OE7ykrd7-R7AG8kdyp4sY0kZJiia27hOJI1tThUTzBZaKF9sopzN-HIp5mHCrQvbKrc20Rtq3So3R36MgidSVqK_fnf5PXZVo9zqaiihcRMOXdlsJ-fl8jrhyjH_6tGEckztj7uM-YyMD3yQh-r_2yDveaThbsk993Ny738Jvw93Q-BJxr2kPIAbpnkId_bgCB9BMyb9UgFpG3IxXhB0ZN_8rP5PMkVT0J9yJH6XAflgAqWrX0YTf443XmBO3K5JQEEnE_SQ2j3rrK1bfC05bzHUJ4t-9b97DBcn0_P3H-NQjyFW6MI2sdJWGZUZLjRPCplKLkUtcyNKozFS5JorYXRZYwRGc84xMUqNKQotXSdnMn8CB03bmGdAtKW1lYzVSZFRW6BR0AytDWd4VyJTEcHrLYeqyx52o8J0xbGx2rExgonj3W6AQ8r2He36SxUUrzK0LGSRp1Jh4OTirUTUilNpc6uS2tII3jrOV06f8acpGY4lIJ0OGasao_t2IIU0j-Boy-AqKHpXXXM3gle7y6iibt1FNqa96sdg3ihyHPO0l6UdzUgSRZLKCPhAygYfNbzSrL56GPA083Bz4vm_6XoBtzNXszgp0CIewcFmfWVewi31Y7Pq1iOvML7lIzicTGfzs5Gfl8D29PcU--afTuef_wAi-ig1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-P4IFDAI1FPUJLYT-4DQlrZq1bJC7FbaW3Bsp10OSdlsQeVH8RsZO8l2V0jceuCaeJOJ8_Jm3no8A_BWCVdlT2WhYhwFihFlWESKhSVlmktepkZq32wiGw7FZCI_r8Hvfi-MS6vsOdETtam1-498C4EnY56hv_5w9j10XaPc6mrfQqOFxaG9-ImSrXl_sIPv912S7O2OP-6HXVeBUCMRz0NtSm11YoU0IkpVrISShaJWZtZgvCOM0NKarMA4glEhMLyPrU1To9xBwRXF616D68jjmRN72eRS4FHUe231IkpltNUk3CtAseLzfGuAvx3Akgdczc5ccnd7d_-3iboHd7rAmgzaL-E-rNnqAdxeKrf4EKoBaZdCSF2R48GIoKP-5lctLsguUl27i5P4LAqyY7uZmf6yhvh9yuEINX89I12Vd7KNEYBx1_pSFzXeloxrlDJk1GY3NI_g-Eoe-DGsV3VlnwIxJStKxXkRpQkrUyQ9w5FNBcdfRSqWAbzpEZGftWVFcpRjDjb5AjYBbDusLAa4SuD-QD07yTtiyS3LUpXSWGkMDF08GclCC6ZKWuqoKFkAmw5pueMrnDStum0XaKer_JUPMDxxRRgZDWCjB1TeEVmTX6IpgNeL00hBbl1JVbY-b8egLpYUxzxpsbuwGU1iaFIWgFhB9cpDrZ6ppqe-zHmc-HJ68tm_7XoFN_fHn47yo4Ph4XO4lfAkdfk8SbQB6_PZuX0BN_SP-bSZvfQfK4GvVw36P0Ndgb8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4P0wFFgQiJMV27u2dw8IpaQRUSGKSCu1J7PeRwkHu8QpqPw0fh2zfoRESNx64Gpv7PH68zcz2dlvAF5K7lT2ZOpLFmOCorn180Ay31KmYhHbRAtVN5tIJxN-fCymW_Cr2wvjyio7TqyJWpfK_UfeR-CJME7RX_dtWxYxHY7enn3zXQcpt9LatdNoIHJgLn5g-la9GQ_xXb-KotH-4bv3ftthwFdIyktfaauMigwXmgeJDCWXIpfUiNRojH245koYneYYUzDKOYb6oTFJoqU7yGNJ8bpXYBtDchb1YHs6_jg9WaV7FLO_RsuIUhH0qyiu80G-4QHrRgF_u4M1f7hZq7nm_EY3_-dpuwU32pCbDJpv5DZsmeIOXF8TYrwLxYA0iySkLMjRYEbQhX-t1zMuyD6SYLO_k9T1FWRo2lma_zSa1DuY_ZkpqnJBWv13soexgXbX-lTmJd6WHJaY5JBZU_dQ3YOjS3ng-9ArysI8BKIty62M4zxIImYTpEMdI8_yGH8VyFB48KJDR3bWCI5kmKg5CGUrCHmw53CzGuA0wusD5eI0ayknMyxNZEJDqTBkdJFmIHLFmbTUqiC3zIPXDnWZYzKcNCXbDRlop9MEywYYuDh5RkY92O3AlbUUV2V_kOXB89VpJCe34iQLU543YzBjFhTHPGhwvLIZTWJoUuoB30D4xkNtninmX2oB9DCqhfbEo3_b9QyuIdazD-PJwWPYiVzj5iBBt7ALveXi3DyBq-r7cl4tnrZfLoHPl43633FVjAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+UAS+Trajectory+Estimation+Using+Decentralized+Multi-Sensor+Systems+Based+on+Robotic+Total+Stations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Dammert%2C+Lucas&rft.au=Thalmann%2C+Tomas&rft.au=Monetti%2C+David&rft.au=Neuner%2C+Hans-Berndt&rft.date=2025-06-20&rft.eissn=1424-8220&rft.volume=25&rft.issue=13&rft_id=info:doi/10.3390%2Fs25133838&rft_id=info%3Apmid%2F40648097&rft.externalDocID=40648097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon