Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction
Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic...
Uložené v:
| Vydané v: | Molecules (Basel, Switzerland) Ročník 28; číslo 10; s. 4149 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
17.05.2023
MDPI |
| Predmet: | |
| ISSN: | 1420-3049, 1420-3049 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re−NHC−2 differs from Re−NHC−1 by replacing N−H with an N−benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re−NHC−2 with the larger pyrene gives Re−NHC−3. The two−electron electrochemical reductions of Re−NHC−2 and Re−NHC−3 result in the formation of the five−coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re−Re bound dimer intermediates at the second cathodic wave R2. All three Re−NHC−1−3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re−NHC−3, being the most effective for this conversion. Re−NHC−1 and Re−NHC−2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re−NHC−3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re−NHC−3 is red−shifted compared to those of Re−NHC−1 and Re−NHC−2, and previously reported similar [Re]−NHC complexes. This observation, together with TD−DFT calculations, suggests that the nature of the lowest−energy optical excitation for Re−NHC−3 has π→π*(NHC−pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re−NHC−3 are attributed to the extended conjugation of the π−electron system, leading to the beneficial modulation of the strongly electron−donating tendency of the NHC group. |
|---|---|
| AbstractList | Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re−NHC−2 differs from Re−NHC−1 by replacing N−H with an N−benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re−NHC−2 with the larger pyrene gives Re−NHC−3. The two−electron electrochemical reductions of Re−NHC−2 and Re−NHC−3 result in the formation of the five−coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re−Re bound dimer intermediates at the second cathodic wave R2. All three Re−NHC−1−3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re−NHC−3, being the most effective for this conversion. Re−NHC−1 and Re−NHC−2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re−NHC−3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re−NHC−3 is red−shifted compared to those of Re−NHC−1 and Re−NHC−2, and previously reported similar [Re]−NHC complexes. This observation, together with TD−DFT calculations, suggests that the nature of the lowest−energy optical excitation for Re−NHC−3 has π→π*(NHC−pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re−NHC−3 are attributed to the extended conjugation of the π−electron system, leading to the beneficial modulation of the strongly electron−donating tendency of the NHC group. Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group. |
| Author | Brandon, Michael P. Hartl, František Pryce, Mary T. Coleman, Andrew Pižl, Martin Lalrempuia, Ralte Chippindale, Ann M. Kearney, Lauren |
| AuthorAffiliation | 1 School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland; lauren.kearney25@mail.dcu.ie (L.K.); michael.brandon@dcu.ie (M.P.B.); lalrempuia.ralte@mzu.edu.in (R.L.) 3 Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, India 4 Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; martin.pizl@vscht.cz 2 Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK; a.m.chippindale@reading.ac.uk |
| AuthorAffiliation_xml | – name: 1 School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland; lauren.kearney25@mail.dcu.ie (L.K.); michael.brandon@dcu.ie (M.P.B.); lalrempuia.ralte@mzu.edu.in (R.L.) – name: 2 Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK; a.m.chippindale@reading.ac.uk – name: 3 Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, India – name: 4 Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; martin.pizl@vscht.cz |
| Author_xml | – sequence: 1 givenname: Lauren orcidid: 0009-0002-1042-3149 surname: Kearney fullname: Kearney, Lauren – sequence: 2 givenname: Michael P. orcidid: 0009-0006-5729-7871 surname: Brandon fullname: Brandon, Michael P. – sequence: 3 givenname: Andrew surname: Coleman fullname: Coleman, Andrew – sequence: 4 givenname: Ann M. orcidid: 0000-0002-5918-8701 surname: Chippindale fullname: Chippindale, Ann M. – sequence: 5 givenname: František orcidid: 0000-0002-7013-5360 surname: Hartl fullname: Hartl, František – sequence: 6 givenname: Ralte orcidid: 0000-0001-9613-0974 surname: Lalrempuia fullname: Lalrempuia, Ralte – sequence: 7 givenname: Martin orcidid: 0000-0003-4990-9218 surname: Pižl fullname: Pižl, Martin – sequence: 8 givenname: Mary T. orcidid: 0000-0003-2270-2452 surname: Pryce fullname: Pryce, Mary T. |
| BookMark | eNp9ks2KFDEUhYOMOD_6AO4Cbty05qeqUlmJNK0z0Dgy6jqkbt3qTlOVjElK6Ddw7SP6JKbtQZwRJIuE3HO_HHLuOTnxwSMhzzl7JaVmr6cwIswjJtFyVvFKPyJnvBJsIVmlT_46n5LzlHaMCV7x-gk5lUpUvNXsjExrt7G-__n9x6ccZ8hzRLoaBoScaPD0QylcYsYYYA-jA7q0sUOP9GaL3s0T_bgNORQRLRC6KnZykdpsx306EAa6vBb0BvuCdsE_JY8HOyZ8drdfkC_vVp-Xl4v19fur5dv1AirF8wJYBxI1qwFQ9gBcFkONAt7WupFKD2hhUKJu67ZjHVN900tZY99K1TVWW3lBro7cPtiduY1usnFvgnXm90WIG2NjdjCi4S0XrO1EK1RdaQFd1ammYYfVIvKusN4cWbdzN2EP6HO04z3o_Yp3W7MJ3wxnQnCp6kJ4eUeI4euMKZvJJcBxtB7DnEx5u0RTlzyK9MUD6S7M0Ze_KiquK6W5PKj4UQUxpBRx-OOGM3OYDPPPZJQe9aAHXLaHUIppN_6n8xen2sTk |
| CitedBy_id | crossref_primary_10_1039_D5RA01561H |
| Cites_doi | 10.1021/acsenergylett.6b00159 10.1016/j.pnsc.2019.03.004 10.1039/C7TA07290B 10.1002/ejic.202100884 10.1016/j.joule.2018.04.018 10.1021/acs.organomet.8b00601 10.1021/acs.inorgchem.7b00393 10.1038/ncomms8958 10.1021/acs.inorgchem.0c00263 10.1007/BF01114537 10.1021/acs.chemrev.5b00370 10.1039/c1dt11233c 10.1016/j.cej.2022.137161 10.1002/adma.201400087 10.1039/C6EE00383D 10.1002/celc.202100576 10.1021/om9709042 10.1021/acs.inorgchem.9b02591 10.1021/acs.chemrev.7b00459 10.1039/dt9910000849 10.1016/j.ccr.2017.11.023 10.1021/acs.inorgchem.6b00079 10.1021/ja017032m 10.1002/cptc.201700197 10.1107/S0021889807029238 10.1039/C9DT04890A 10.1039/C7DT02874A 10.1039/C39830000536 10.1039/C9DT02533B 10.3390/inorganics6010022 10.3389/fchem.2021.795877 10.1021/acs.inorgchem.6b02384 10.1016/j.jorganchem.2004.06.047 10.1021/ja077752e 10.1021/acs.energyfuels.1c02372 10.1021/ic00346a033 10.1039/C7RA01586K 10.1007/s10311-020-01131-5 10.1039/C6DT01686C 10.1002/adma.201004554 10.1038/nature13384 10.1021/acsenergylett.9b02585 10.1126/science.1224581 10.1107/S0021889803021800 10.1002/ejic.202000283 10.1021/acs.inorgchem.5b02015 10.1016/j.ccr.2019.03.019 10.1016/j.electacta.2018.03.111 10.1021/acs.inorgchem.6b00626 10.1063/1.464913 10.1002/cptc.202000296 10.1039/c3dt51614h 10.1103/PhysRevB.37.785 10.1021/acsomega.9b01914 10.1016/j.ica.2016.09.019 10.1016/j.joule.2017.09.003 10.1021/jp9716997 10.1016/j.jphotochemrev.2019.02.002 10.1002/jcc.10189 10.1021/acs.organomet.5b00406 10.1016/j.ccr.2022.214599 10.1039/C4EE01958J 10.1016/j.poly.2021.115025 10.1063/1.1337864 10.1016/j.ccr.2018.05.022 10.1021/om960044+ 10.1016/j.jcou.2019.05.017 10.1021/om2006408 10.1016/0022-0728(91)85012-E 10.1021/ic00076a035 10.1021/jp980659f |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/molecules28104149 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1420-3049 |
| ExternalDocumentID | oai_doaj_org_article_181208b28275492cb4b766060608ee1b PMC10221375 10_3390_molecules28104149 |
| GrantInformation_xml | – fundername: UCT Prague – fundername: XRD instrumentation – fundername: Sustainable Energy Authority of Ireland; SEAI National Energy Research, Development and Demonstration Funding Programme 2018; Research, Development and Demonstration Funding Programme 2019 grantid: 18/RDD/282; 19/RDD/566 – fundername: Spectroelectroelectrochemistry Reading (startup) – fundername: European Commission; Marie Sklodowska−Curie Fellowship grantid: 799778 |
| GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFFHD AFKRA AFPKN AFRAH AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c471t-c0bc3e905cce3dcc13fec67c18596379feacf725858b0b07d6d335ed837b6a9a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997745800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-3049 |
| IngestDate | Mon Nov 10 04:31:15 EST 2025 Tue Nov 04 02:06:44 EST 2025 Thu Oct 02 06:29:53 EDT 2025 Tue Oct 07 07:50:28 EDT 2025 Sat Nov 29 07:10:41 EST 2025 Tue Nov 18 20:57:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-c0bc3e905cce3dcc13fec67c18596379feacf725858b0b07d6d335ed837b6a9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9613-0974 0009-0002-1042-3149 0009-0006-5729-7871 0000-0002-5918-8701 0000-0003-2270-2452 0000-0002-7013-5360 0000-0003-4990-9218 |
| OpenAccessLink | https://www.proquest.com/docview/2819479130?pq-origsite=%requestingapplication% |
| PMID | 37241890 |
| PQID | 2819479130 |
| PQPubID | 2032355 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_181208b28275492cb4b766060608ee1b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10221375 proquest_miscellaneous_2820025890 proquest_journals_2819479130 crossref_primary_10_3390_molecules28104149 crossref_citationtrail_10_3390_molecules28104149 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-17 |
| PublicationDateYYYYMMDD | 2023-05-17 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Molecules (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Jo (ref_62) 2019; 4 Lee (ref_71) 1988; 37 Zada (ref_9) 2019; 29 Luengo (ref_39) 2018; 37 Suntrup (ref_51) 2017; 56 Grills (ref_21) 2018; 374 Suntrup (ref_34) 2020; 59 Zipp (ref_44) 1993; 32 Stratakes (ref_60) 2021; 8 ref_53 Frayne (ref_20) 2018; 2 Sinha (ref_35) 2017; 460 Majumdar (ref_3) 2018; 2 Koike (ref_45) 2002; 124 Martin (ref_73) 2001; 114 Friaes (ref_24) 2022; 2022 Zhao (ref_17) 2017; 5 Liyanage (ref_25) 2016; 55 Casson (ref_37) 2011; 40 Bushuyev (ref_4) 2018; 2 Robert (ref_6) 2016; 1 Li (ref_38) 2012; 31 Hopkinson (ref_26) 2014; 510 Zhao (ref_52) 2017; 7 Cerpentier (ref_57) 2021; 9 Andrae (ref_72) 1990; 77 Johnson (ref_47) 1996; 15 Yaashikaa (ref_12) 2019; 33 Kuramochi (ref_14) 2018; 373 Kumaravel (ref_15) 2020; 5 ref_69 Nganga (ref_59) 2017; 56 ref_22 ref_65 Asbai (ref_55) 2021; 197 Hartl (ref_68) 1991; 317 Stanton (ref_33) 2016; 55 Cardona (ref_63) 2011; 23 Luo (ref_19) 2019; 390 Herron (ref_13) 2014; 8 ref_27 Bonfiglio (ref_50) 2020; 49 Palatinus (ref_66) 2007; 40 Machan (ref_48) 2015; 34 Takeda (ref_64) 2008; 130 White (ref_16) 2015; 115 Becke (ref_70) 1993; 98 Maurin (ref_30) 2016; 45 Vaughan (ref_36) 2013; 42 Ochedi (ref_2) 2021; 19 ref_32 Siegmund (ref_41) 2017; 46 Xue (ref_42) 1998; 17 Gasser (ref_1) 2015; 6 Tu (ref_5) 2014; 26 Wang (ref_11) 2019; 40 Cossi (ref_74) 2003; 24 Shirley (ref_29) 2021; 5 Sacksteder (ref_43) 1990; 29 Kearney (ref_58) 2022; 467 Chang (ref_8) 2016; 9 Shirley (ref_28) 2020; 2020 Costentin (ref_61) 2012; 338 Paolucci (ref_56) 1998; 102 Barone (ref_75) 1998; 102 Feng (ref_31) 2021; 35 ref_46 Abramov (ref_49) 2018; 270 Francke (ref_7) 2018; 118 Raziq (ref_18) 2022; 446 Betteridge (ref_67) 2003; 36 Huckaba (ref_10) 2016; 55 Frantz (ref_23) 2004; 689 Nicholls (ref_40) 2019; 48 Taylor (ref_54) 2020; 59 |
| References_xml | – volume: 1 start-page: 281 year: 2016 ident: ref_6 article-title: Running the Clock: CO2 Catalysis in the Age of Anthropocene publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00159 – volume: 29 start-page: 138 year: 2019 ident: ref_9 article-title: Suitable Energy Platform Significantly Improves Charge Separation of G-C3N4 for CO2 Reduction and Pollutant Oxidation under Visible-Light publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2019.03.004 – volume: 5 start-page: 21625 year: 2017 ident: ref_17 article-title: Progress in Catalyst Exploration for Heterogeneous CO2 Reduction and Utilization: A Critical Review publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07290B – volume: 2022 start-page: e202100884 year: 2022 ident: ref_24 article-title: N-Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.202100884 – volume: 2 start-page: 805 year: 2018 ident: ref_3 article-title: Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale publication-title: Joule doi: 10.1016/j.joule.2018.04.018 – volume: 37 start-page: 3993 year: 2018 ident: ref_39 article-title: Bioactive Heterobimetallic Re(I)/Au(I) Complexes Containing Bidentate N-Heterocyclic Carbenes publication-title: Organometallics doi: 10.1021/acs.organomet.8b00601 – volume: 56 start-page: 5771 year: 2017 ident: ref_51 article-title: Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00393 – volume: 6 start-page: 7958 year: 2015 ident: ref_1 article-title: Negative Emissions Physically Needed to Keep Global Warming below 2 °C publication-title: Nat. Commun. doi: 10.1038/ncomms8958 – volume: 59 start-page: 5564 year: 2020 ident: ref_54 article-title: Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3′-Dihydroxy-2,2′-Bipyridine)(CO)3Cl] and Catalytic Reduction of Carbon Dioxide publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00263 – volume: 77 start-page: 123 year: 1990 ident: ref_72 article-title: Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements publication-title: Theoret. Chim. Acta doi: 10.1007/BF01114537 – volume: 115 start-page: 12888 year: 2015 ident: ref_16 article-title: Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00370 – ident: ref_65 – volume: 40 start-page: 11960 year: 2011 ident: ref_37 article-title: N-Heterocyclic Carbenes as Π*-Acceptors in Luminescent Re(I) Triscarbonyl Complexes publication-title: Dalton Trans. doi: 10.1039/c1dt11233c – volume: 446 start-page: 137161 year: 2022 ident: ref_18 article-title: Accelerating CO2 Reduction on Novel Double Perovskite Oxide with Sulfur, Carbon Incorporation: Synergistic Electronic and Chemical Engineering publication-title: J. Chem. Eng. doi: 10.1016/j.cej.2022.137161 – volume: 26 start-page: 4607 year: 2014 ident: ref_5 article-title: Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects publication-title: Adv. Mater. doi: 10.1002/adma.201400087 – volume: 9 start-page: 2177 year: 2016 ident: ref_8 article-title: CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00383D – volume: 8 start-page: 4161 year: 2021 ident: ref_60 article-title: Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges publication-title: ChemElectroChem doi: 10.1002/celc.202100576 – volume: 17 start-page: 1622 year: 1998 ident: ref_42 article-title: Spectroscopic and Excited-State Properties of Luminescent Rhenium(I) N-Heterocyclic Carbene Complexes Containing Aromatic Diimine Ligands publication-title: Organometallics doi: 10.1021/om9709042 – volume: 59 start-page: 4215 year: 2020 ident: ref_34 article-title: Rhenium Complexes of Pyridyl-Mesoionic Carbenes: Photochemical Properties and Electrocatalytic CO2 Reduction publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02591 – volume: 118 start-page: 4631 year: 2018 ident: ref_7 article-title: Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00459 – ident: ref_27 – ident: ref_46 doi: 10.1039/dt9910000849 – ident: ref_69 – volume: 373 start-page: 333 year: 2018 ident: ref_14 article-title: Reaction Mechanisms of Catalytic Photochemical CO2 Reduction Using Re(I) and Ru(II) Complexes publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.11.023 – volume: 55 start-page: 3136 year: 2016 ident: ref_33 article-title: Re(I) NHC Complexes for Electrocatalytic Conversion of CO2 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00079 – volume: 124 start-page: 11448 year: 2002 ident: ref_45 article-title: Mechanism of the Photochemical Ligand Substitution Reactions of fac-[Re(Bpy)(CO)3(PR3)]+ Complexes and the Properties of Their Triplet Ligand-Field Excited States publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017032m – volume: 2 start-page: 323 year: 2018 ident: ref_20 article-title: Photo- and Electrochemical Properties of a CO2 Reducing Ruthenium–Rhenium Quaterpyridine-Based Catalyst publication-title: ChemPhotoChem doi: 10.1002/cptc.201700197 – volume: 40 start-page: 786 year: 2007 ident: ref_66 article-title: SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807029238 – volume: 49 start-page: 3102 year: 2020 ident: ref_50 article-title: Red-Emitting Neutral Rhenium(I) Complexes Bearing a Pyridyl Pyridoannelated N-Heterocyclic Carbene publication-title: Dalton Trans. doi: 10.1039/C9DT04890A – volume: 46 start-page: 15269 year: 2017 ident: ref_41 article-title: Benzannulated Re(I)–NHC Complexes: Synthesis, Photophysical Properties and Antimicrobial Activity publication-title: Dalton Trans. doi: 10.1039/C7DT02874A – ident: ref_53 – ident: ref_22 doi: 10.1039/C39830000536 – volume: 48 start-page: 12749 year: 2019 ident: ref_40 article-title: Tricarbonyl Rhenium(I) Tetrazolato and N-Heterocyclic Carbene Complexes: Versatile Visible-Light-Mediated Photoredox Catalysts publication-title: Dalton Trans. doi: 10.1039/C9DT02533B – ident: ref_32 doi: 10.3390/inorganics6010022 – volume: 9 start-page: 795877 year: 2021 ident: ref_57 article-title: Ruthenium Assemblies for CO2 Reduction and H2 Generation: Time Resolved Infrared Spectroscopy, Spectroelectrochemistry and a Photocatalysis Study in Solution and on NiO publication-title: Front. Chem. doi: 10.3389/fchem.2021.795877 – volume: 56 start-page: 3214 year: 2017 ident: ref_59 article-title: Electrochemical Reduction of CO2 Catalyzed by Re(Pyridine-Oxazoline)(CO)3Cl Complexes publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02384 – volume: 689 start-page: 3031 year: 2004 ident: ref_23 article-title: A Complete Series of Tricarbonylhalidorhenium(I) Complexes (Abpy)Re(CO)3(Hal), Hal=F, Cl, Br, I., Abpy=2,2′-Azobispyridine: Structures, Spectroelectrochemistry and EPR of Reduced Forms publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2004.06.047 – volume: 130 start-page: 2023 year: 2008 ident: ref_64 article-title: Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077752e – volume: 35 start-page: 19170 year: 2021 ident: ref_31 article-title: Study of Re(I) Carbene Complexes for Photocatalytic Reduction of Carbon Dioxide publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c02372 – volume: 29 start-page: 4335 year: 1990 ident: ref_43 article-title: Luminescence Studies of Pyridine.Alpha.-Diimine Rhenium(I) Tricarbonyl Complexes publication-title: Inorg. Chem. doi: 10.1021/ic00346a033 – volume: 7 start-page: 22882 year: 2017 ident: ref_52 article-title: Twisted Configuration Pyrene Derivative: Exhibiting Pure Blue Monomer Photoluminescence and Electrogenerated Chemiluminescence Emissions in Non-Aqueous Media publication-title: RSC Adv. doi: 10.1039/C7RA01586K – volume: 19 start-page: 941 year: 2021 ident: ref_2 article-title: Photocatalytic, Electrocatalytic and Photoelectrocatalytic Conversion of Carbon Dioxide: A Review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01131-5 – volume: 45 start-page: 14524 year: 2016 ident: ref_30 article-title: Photochemical and Electrochemical Catalytic Reduction of CO 2 with NHC-Containing Dicarbonyl Rhenium(i) Bipyridine Complexes publication-title: Dalton Trans. doi: 10.1039/C6DT01686C – volume: 23 start-page: 2367 year: 2011 ident: ref_63 article-title: Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications publication-title: Adv. Mater. doi: 10.1002/adma.201004554 – volume: 510 start-page: 485 year: 2014 ident: ref_26 article-title: An Overview of N-Heterocyclic Carbenes publication-title: Nature doi: 10.1038/nature13384 – volume: 5 start-page: 486 year: 2020 ident: ref_15 article-title: Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02585 – volume: 338 start-page: 90 year: 2012 ident: ref_61 article-title: A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst publication-title: Science doi: 10.1126/science.1224581 – volume: 36 start-page: 1487 year: 2003 ident: ref_67 article-title: CRYSTALS Version 12: Software for Guided Crystal Structure Analysis publication-title: J. Appl. Cryst. doi: 10.1107/S0021889803021800 – volume: 2020 start-page: 1844 year: 2020 ident: ref_28 article-title: Effect of “X” Ligands on the Photocatalytic Reduction of CO2 to CO with Re(PyridylNHC-CF3)(CO)3X Complexes publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.202000283 – volume: 55 start-page: 682 year: 2016 ident: ref_10 article-title: Photocatalytic Reduction of CO2 with Re-Pyridyl-NHCs publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02015 – volume: 390 start-page: 86 year: 2019 ident: ref_19 article-title: From Molecular Metal Complex to Metal-Organic Framework: The CO2 Reduction Photocatalysts with Clear and Tunable Structure publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.019 – volume: 270 start-page: 526 year: 2018 ident: ref_49 article-title: Mechanistic Study of the [(Dpp-Bian)Re(CO)3Br] Electrochemical Reduction Using in Situ EPR Spectroscopy and Computational Chemistry publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.111 – volume: 55 start-page: 6085 year: 2016 ident: ref_25 article-title: Electrocatalytic Reduction of CO2 to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00626 – volume: 98 start-page: 5648 year: 1993 ident: ref_70 article-title: Density-Functional Thermochemistry. III. The Role of Exact Exchange publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 5 start-page: 353 year: 2021 ident: ref_29 article-title: Probing the Effects of Electron Deficient Aryl Substituents and a π-System Extended NHC Ring on the Photocatalytic CO2 Reduction Reaction with Re-PyNHC-Aryl Complexes** publication-title: ChemPhotoChem doi: 10.1002/cptc.202000296 – volume: 42 start-page: 14100 year: 2013 ident: ref_36 article-title: The Photochemistry of Rhenium(I) Tricarbonyl N-Heterocyclic Carbene Complexes publication-title: Dalton Trans. doi: 10.1039/c3dt51614h – volume: 37 start-page: 785 year: 1988 ident: ref_71 article-title: Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density publication-title: Phy. Rev. B Condens. Matter doi: 10.1103/PhysRevB.37.785 – volume: 4 start-page: 14272 year: 2019 ident: ref_62 article-title: Utility of Squaraine Dyes for Dye-Sensitized Photocatalysis on Water or Carbon Dioxide Reduction publication-title: ACS Omega doi: 10.1021/acsomega.9b01914 – volume: 460 start-page: 63 year: 2017 ident: ref_35 article-title: Electrocatalytic CO2 Reduction Using Rhenium(I) Complexes with Modified 2-(2′-Pyridyl)Imidazole Ligands publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2016.09.019 – volume: 2 start-page: 825 year: 2018 ident: ref_4 article-title: What Should We Make with CO2 and How Can We Make It? publication-title: Joule doi: 10.1016/j.joule.2017.09.003 – volume: 102 start-page: 1995 year: 1998 ident: ref_75 article-title: Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model publication-title: J. Phys. Chem. A doi: 10.1021/jp9716997 – volume: 40 start-page: 117 year: 2019 ident: ref_11 article-title: Catalysts in Electro-, Photo- and Photoelectrocatalytic CO2 Reduction Reactions publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2019.02.002 – volume: 24 start-page: 669 year: 2003 ident: ref_74 article-title: Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model publication-title: J. Comput. Chem. doi: 10.1002/jcc.10189 – volume: 34 start-page: 4678 year: 2015 ident: ref_48 article-title: Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) Fac-Tricarbonyl Electrocatalyst publication-title: Organometallics doi: 10.1021/acs.organomet.5b00406 – volume: 467 start-page: 214599 year: 2022 ident: ref_58 article-title: Design Components of Porphyrin-Based Photocatalytic Hydrogen Evolution Systems: A Review publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214599 – volume: 8 start-page: 126 year: 2014 ident: ref_13 article-title: A General Framework for the Assessment of Solar Fuel Technologies publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01958J – volume: 197 start-page: 115025 year: 2021 ident: ref_55 article-title: Cationic Rhenium(I) Complexes Bearing a π-Accepting Pyridoannulated N-Heterocyclic Carbene Ligand: Synthesis, Photophysical, Electrochemical and Theoretical Investigation publication-title: Polyhedron doi: 10.1016/j.poly.2021.115025 – volume: 114 start-page: 3408 year: 2001 ident: ref_73 article-title: Correlation Consistent Valence Basis Sets for Use with the Stuttgart–Dresden–Bonn Relativistic Effective Core Potentials: The Atoms Ga–Kr and In–Xe publication-title: J. Chem. Phys. doi: 10.1063/1.1337864 – volume: 374 start-page: 173 year: 2018 ident: ref_21 article-title: Mechanistic Aspects of CO2 Reduction Catalysis with Manganese-Based Molecular Catalysts publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.05.022 – volume: 15 start-page: 3374 year: 1996 ident: ref_47 article-title: Electrocatalytic Reduction of CO2 Using the Complexes [Re(Bpy)(CO)3L]n (n = +1, L = P(OEt)3, CH3CN; n = 0, L = Cl−, Otf−; Bpy = 2,2‘-Bipyridine; Otf− = CF3SO3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation publication-title: Organometallics doi: 10.1021/om960044+ – volume: 33 start-page: 131 year: 2019 ident: ref_12 article-title: A Review on Photochemical, Biochemical and Electrochemical Transformation of CO2 into Value-Added Products publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.05.017 – volume: 31 start-page: 3829 year: 2012 ident: ref_38 article-title: Blue-Green Luminescent Rhenium(I) Tricarbonyl Complexes with Pyridine-Functionalized N-Heterocyclic Carbene Ligands publication-title: Organometallics doi: 10.1021/om2006408 – volume: 317 start-page: 179 year: 1991 ident: ref_68 article-title: Simple Construction of an Infrared Optically Transparent Thin-Layer Electrochemical Cell: Applications to the Redox Reactions of Ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-Di-t-Butyl-Catecholate)− publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(91)85012-E – volume: 32 start-page: 5629 year: 1993 ident: ref_44 article-title: Luminescence of Rhenium(I) Complexes with Highly Sterically Hindered.Alpha.-Diimine Ligands publication-title: Inorg. Chem. doi: 10.1021/ic00076a035 – volume: 102 start-page: 4759 year: 1998 ident: ref_56 article-title: Dynamics of the Electrochemical Behavior of Diimine Tricarbonyl Rhenium(I) Complexes in Strictly Aprotic Media publication-title: J. Phys. Chem. B doi: 10.1021/jp980659f |
| SSID | ssj0021415 |
| Score | 2.3942363 |
| Snippet | Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic... Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4149 |
| SubjectTerms | Antifungal agents CO2 reduction electrocatalysis Emissions Energy Investigations Ligands N−heterocyclic carbene Photocatalysis Radiation rhenium |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUlBNpLaZuWbpsGBXIqmFjWypKOzZKQQ9iEJIXcjDWSu4asHda7hfxBz_3EfklmbO-yppBeim_W2MiaGc08a3jD2FGeAtqKM1FuvY9w9_ORscJGGpQToApMKqBtNqGnU3N3Z6-2Wn1RTVhHD9wt3DFFoNg4RAaayMTAjZ1OMevGy4QgHO2-mPWswVQPtQTGpe4MUyKoP553rWZDkxiEH4KIM7eiUEvWP8gwh_WRWwHn7A173WeK_Fs3w7fsRajesZeTdYO2PTa_KH_klf_z6_dNSwK7WgTekRE3vK74FAfOqdilhke4L4FP8oXDnY1fz0JVrub8alYvaxTi-BJ-2rXDaf_mPDb0hoJPLhN-TdSupLz37PvZ6e3kPOq7J0SAS76MIHYgg40VQJAeQEicQKoBAzQ6nbYFbrmFThAuGBe7WPvUS6mCR8Tq0tzm8gPbqeoqfGQ8gChiRN0-Re8tlMmDT6RLQ-q8VyoZj1i8Xs0Mempx6nBxnyHEIAVkfylgxL5uHnnoeDWeEz4hFW0EiRK7vYGGkvWGkv3LUEZsf63grPfTJqNjxLG2GMhH7HAzjHqkY5O8CvWKZKiQRRmLMmZgGIMJDUeqctZydROgFlKrT__jEz6zV9TtnooXhN5nO2hc4QvbhZ_LslkctB7wBAfSEUA priority: 102 providerName: Directory of Open Access Journals |
| Title | Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction |
| URI | https://www.proquest.com/docview/2819479130 https://www.proquest.com/docview/2820025890 https://pubmed.ncbi.nlm.nih.gov/PMC10221375 https://doaj.org/article/181208b28275492cb4b766060608ee1b |
| Volume | 28 |
| WOSCitedRecordID | wos000997745800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9NAEB-8nqAv_herZ1nBJyFc_u_mSbzS4wStoSrUp5Cd3VwL1-RsWuG-gc9-RD-JM0laLwj3IoFAspPNwszOzm93-A3A6zxGshWtnDwxxiHvZxyVeIkjMdIeRgUFFdgUm5DTqZrPk7TbcKu7tMqdT2wctamQ98iP-cAnlAm53LeX3x2uGsWnq10JjQM4ZKaycACHJ5NpOttDLo_Wp_YsMyBwf7xqS87amnpzQ48JNK-tRg1pfy_S7OdJXlt4Tu__75AfwL0u5BTvWht5CLds-QjujHeV3h7D6sPyPC_N75-_Pjdsstu1FS2rcS2qUkyp4YyzZiq8woslinG-1uQixWxhy-V2JdJFtalISFAnYtLW1Wm2ha5q7qEQ40--mDFHLFvBE_h6OvkyPnO6MgwOku42DroaA5u4EaINDKIX0ABiibTS0-yVSUG-u5A-4Q6lXe1KE5sgiKwh6KvjPMmDpzAoq9I-A2HRK1yC7yYmN1BEKrfGD3RsY21MFPnhENydOjLsOMq5VMZFRliFNZj9o8EhvNl_ctkSdNwkfMI63gsyt3bzolqfZ91UzTjmcZUmLCqZvg51qGVMOI8uZa2nh3C0U3fWTfg6-6vrIbzaN5Me-fwlL221ZRnOiIlUQjKqZ1m9AfVbyuWiIf1mZO4FMnp-899fwF2fwjDOb_DkEQzIbOxLuI0_Nst6PYIDOZfNXY26qTJqdiHoKX3_Mf32B1erJvg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFKlcyr9IKbBIcEGyanttr31ACEKrRE1DVIpUTsY7u24sNXaJE1DegDMPwkPxJMz4JzRC6q0H5Jt3vF57P8_P7vgbxl4kASBWVGglkdYWaj9thZETWRJ85YCfolMBVbEJORqFp6fReIP9av-FobTKVidWiloXQGvke7Th48kIVe6bi68WVY2i3dW2hEYNi0Oz_I4hW_l68B7n96XrHuyf9PpWU1XAAhzK3AJbgTCR7QMYoQEckRoIJKDhQjDKKEVVlEoX3ehQ2cqWOtBC-EZjJKeCJEoE9nuDbXoI9rDDNseDo_HnVYjnoD2s906FiOy9aV3i1pQ4ettziLDzkvWrigSsebbreZmXDN3B7f_tFd1h241Lzd_W38BdtmHye2yr11ayu8-mw-wsyfXvHz8_Vmy5i5nhNWtzyYucj7ChT1lBBSzhPAPeS2YKTQA_npg8W0z5eFLMCxTi2Anfr-sGVctey5J6SHnvg8uPiQOXUP6AfbqWp33IOnmRm0eMG3BS2yihA1RzqR8mRrtCBSZQWvu-63WZ3U5_DA0HO5UCOY8xFiPExP8gpsterS65qAlIrhJ-R5haCRJ3eHWimJ3FjSqKyaezQ4WxtiR6PlCekgHGsXiExjiqy3ZbeMWNQivjv9jqsuerZpxH2l9KclMsSIYyfvwwQplwDclrA1pvybNJRWpOKw-OkP7O1Xd_xrb6J0fDeDgYHT5mt1x0OSmXw5G7rIMQMk_YTfg2z8rZ0-bT5OzLdUP9D8nzgbg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFgEb3ohAgUGCDZIV22N77AVCkDZq1BKsAlK7Mp4748ZSY5c4AeUPWPM5fA5fwr1-hEZI3XWBssvcTOz4zH3M3JzD2Is0AMSKCq000tpC76etMHIiS4KvHPAzTCqgFpuQ43F4dBTFG-xX918YaqvsfGLtqHUJtEfepwMfT0bocvtZ2xYR7wzfnH21SEGKTlo7OY0GIvtm-R3Lt-r1aAef9UvXHe5-GuxZrcKABXhZcwtsBcJEtg9ghAZwRGYgkIBBDIEpowzdUiZdTKlDZStb6kAL4RuNVZ0K0igVOO8VtoUpuYdrbCsevY-PV-Weg7GxOUcVIrL700bu1lR4J7bnEHnnuUhYCwasZbnrPZrngt7w1v_8c91mN9tUm79t1sYdtmGKu-z6oFO4u8emB_lJWujfP35-rFl0FzPDGzbnipcFH-PAHnULlbCE0xz4IJ0pDA38cGKKfDHl8aScl2jEcRK-2-gJ1dthy4pmyPjgg8sPiRuX0H-ffb6Uu33ANouyMA8ZN-BktlFCB-j-Mj9MjXaFCkygtPZ91-sxu4NCAi03O0mEnCZYoxF6kn_Q02OvVh85a4hJLjJ-R_haGRKneP1GOTtJWheVUK5nhwprcEm0faA8JQOsb_EVGuOoHtvuoJa0jq5K_uKsx56vhvE50rlTWphyQTbUCeSHEdqEa6heu6D1kSKf1GTntCPhCOk_uvjbn7FriO_kYDTef8xuuJiJUouHI7fZJiLIPGFX4ds8r2ZP21XK2ZfLRvoflXOKeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand%E2%88%92Structure+Effects+on+N%E2%88%92Heterocyclic+Carbene+Rhenium+Photo%E2%88%92+and+Electrocatalysts+of+CO2+Reduction&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Kearney%2C+Lauren&rft.au=Brandon%2C+Michael+P.&rft.au=Coleman%2C+Andrew&rft.au=Chippindale%2C+Ann+M.&rft.date=2023-05-17&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=10&rft.spage=4149&rft_id=info:doi/10.3390%2Fmolecules28104149&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28104149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |