Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction

Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecules (Basel, Switzerland) Ročník 28; číslo 10; s. 4149
Hlavní autori: Kearney, Lauren, Brandon, Michael P., Coleman, Andrew, Chippindale, Ann M., Hartl, František, Lalrempuia, Ralte, Pižl, Martin, Pryce, Mary T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 17.05.2023
MDPI
Predmet:
ISSN:1420-3049, 1420-3049
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re−NHC−2 differs from Re−NHC−1 by replacing N−H with an N−benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re−NHC−2 with the larger pyrene gives Re−NHC−3. The two−electron electrochemical reductions of Re−NHC−2 and Re−NHC−3 result in the formation of the five−coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re−Re bound dimer intermediates at the second cathodic wave R2. All three Re−NHC−1−3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re−NHC−3, being the most effective for this conversion. Re−NHC−1 and Re−NHC−2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re−NHC−3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re−NHC−3 is red−shifted compared to those of Re−NHC−1 and Re−NHC−2, and previously reported similar [Re]−NHC complexes. This observation, together with TD−DFT calculations, suggests that the nature of the lowest−energy optical excitation for Re−NHC−3 has π→π*(NHC−pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re−NHC−3 are attributed to the extended conjugation of the π−electron system, leading to the beneficial modulation of the strongly electron−donating tendency of the NHC group.
AbstractList Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re−NHC−2 differs from Re−NHC−1 by replacing N−H with an N−benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re−NHC−2 with the larger pyrene gives Re−NHC−3. The two−electron electrochemical reductions of Re−NHC−2 and Re−NHC−3 result in the formation of the five−coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re−Re bound dimer intermediates at the second cathodic wave R2. All three Re−NHC−1−3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re−NHC−3, being the most effective for this conversion. Re−NHC−1 and Re−NHC−2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re−NHC−3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re−NHC−3 is red−shifted compared to those of Re−NHC−1 and Re−NHC−2, and previously reported similar [Re]−NHC complexes. This observation, together with TD−DFT calculations, suggests that the nature of the lowest−energy optical excitation for Re−NHC−3 has π→π*(NHC−pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re−NHC−3 are attributed to the extended conjugation of the π−electron system, leading to the beneficial modulation of the strongly electron−donating tendency of the NHC group.
Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.
Author Brandon, Michael P.
Hartl, František
Pryce, Mary T.
Coleman, Andrew
Pižl, Martin
Lalrempuia, Ralte
Chippindale, Ann M.
Kearney, Lauren
AuthorAffiliation 1 School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland; lauren.kearney25@mail.dcu.ie (L.K.); michael.brandon@dcu.ie (M.P.B.); lalrempuia.ralte@mzu.edu.in (R.L.)
3 Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, India
4 Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; martin.pizl@vscht.cz
2 Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK; a.m.chippindale@reading.ac.uk
AuthorAffiliation_xml – name: 1 School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland; lauren.kearney25@mail.dcu.ie (L.K.); michael.brandon@dcu.ie (M.P.B.); lalrempuia.ralte@mzu.edu.in (R.L.)
– name: 2 Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK; a.m.chippindale@reading.ac.uk
– name: 3 Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, India
– name: 4 Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; martin.pizl@vscht.cz
Author_xml – sequence: 1
  givenname: Lauren
  orcidid: 0009-0002-1042-3149
  surname: Kearney
  fullname: Kearney, Lauren
– sequence: 2
  givenname: Michael P.
  orcidid: 0009-0006-5729-7871
  surname: Brandon
  fullname: Brandon, Michael P.
– sequence: 3
  givenname: Andrew
  surname: Coleman
  fullname: Coleman, Andrew
– sequence: 4
  givenname: Ann M.
  orcidid: 0000-0002-5918-8701
  surname: Chippindale
  fullname: Chippindale, Ann M.
– sequence: 5
  givenname: František
  orcidid: 0000-0002-7013-5360
  surname: Hartl
  fullname: Hartl, František
– sequence: 6
  givenname: Ralte
  orcidid: 0000-0001-9613-0974
  surname: Lalrempuia
  fullname: Lalrempuia, Ralte
– sequence: 7
  givenname: Martin
  orcidid: 0000-0003-4990-9218
  surname: Pižl
  fullname: Pižl, Martin
– sequence: 8
  givenname: Mary T.
  orcidid: 0000-0003-2270-2452
  surname: Pryce
  fullname: Pryce, Mary T.
BookMark eNp9ks2KFDEUhYOMOD_6AO4Cbty05qeqUlmJNK0z0Dgy6jqkbt3qTlOVjElK6Ddw7SP6JKbtQZwRJIuE3HO_HHLuOTnxwSMhzzl7JaVmr6cwIswjJtFyVvFKPyJnvBJsIVmlT_46n5LzlHaMCV7x-gk5lUpUvNXsjExrt7G-__n9x6ccZ8hzRLoaBoScaPD0QylcYsYYYA-jA7q0sUOP9GaL3s0T_bgNORQRLRC6KnZykdpsx306EAa6vBb0BvuCdsE_JY8HOyZ8drdfkC_vVp-Xl4v19fur5dv1AirF8wJYBxI1qwFQ9gBcFkONAt7WupFKD2hhUKJu67ZjHVN900tZY99K1TVWW3lBro7cPtiduY1usnFvgnXm90WIG2NjdjCi4S0XrO1EK1RdaQFd1ammYYfVIvKusN4cWbdzN2EP6HO04z3o_Yp3W7MJ3wxnQnCp6kJ4eUeI4euMKZvJJcBxtB7DnEx5u0RTlzyK9MUD6S7M0Ze_KiquK6W5PKj4UQUxpBRx-OOGM3OYDPPPZJQe9aAHXLaHUIppN_6n8xen2sTk
CitedBy_id crossref_primary_10_1039_D5RA01561H
Cites_doi 10.1021/acsenergylett.6b00159
10.1016/j.pnsc.2019.03.004
10.1039/C7TA07290B
10.1002/ejic.202100884
10.1016/j.joule.2018.04.018
10.1021/acs.organomet.8b00601
10.1021/acs.inorgchem.7b00393
10.1038/ncomms8958
10.1021/acs.inorgchem.0c00263
10.1007/BF01114537
10.1021/acs.chemrev.5b00370
10.1039/c1dt11233c
10.1016/j.cej.2022.137161
10.1002/adma.201400087
10.1039/C6EE00383D
10.1002/celc.202100576
10.1021/om9709042
10.1021/acs.inorgchem.9b02591
10.1021/acs.chemrev.7b00459
10.1039/dt9910000849
10.1016/j.ccr.2017.11.023
10.1021/acs.inorgchem.6b00079
10.1021/ja017032m
10.1002/cptc.201700197
10.1107/S0021889807029238
10.1039/C9DT04890A
10.1039/C7DT02874A
10.1039/C39830000536
10.1039/C9DT02533B
10.3390/inorganics6010022
10.3389/fchem.2021.795877
10.1021/acs.inorgchem.6b02384
10.1016/j.jorganchem.2004.06.047
10.1021/ja077752e
10.1021/acs.energyfuels.1c02372
10.1021/ic00346a033
10.1039/C7RA01586K
10.1007/s10311-020-01131-5
10.1039/C6DT01686C
10.1002/adma.201004554
10.1038/nature13384
10.1021/acsenergylett.9b02585
10.1126/science.1224581
10.1107/S0021889803021800
10.1002/ejic.202000283
10.1021/acs.inorgchem.5b02015
10.1016/j.ccr.2019.03.019
10.1016/j.electacta.2018.03.111
10.1021/acs.inorgchem.6b00626
10.1063/1.464913
10.1002/cptc.202000296
10.1039/c3dt51614h
10.1103/PhysRevB.37.785
10.1021/acsomega.9b01914
10.1016/j.ica.2016.09.019
10.1016/j.joule.2017.09.003
10.1021/jp9716997
10.1016/j.jphotochemrev.2019.02.002
10.1002/jcc.10189
10.1021/acs.organomet.5b00406
10.1016/j.ccr.2022.214599
10.1039/C4EE01958J
10.1016/j.poly.2021.115025
10.1063/1.1337864
10.1016/j.ccr.2018.05.022
10.1021/om960044+
10.1016/j.jcou.2019.05.017
10.1021/om2006408
10.1016/0022-0728(91)85012-E
10.1021/ic00076a035
10.1021/jp980659f
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules28104149
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_181208b28275492cb4b766060608ee1b
PMC10221375
10_3390_molecules28104149
GrantInformation_xml – fundername: UCT Prague
– fundername: XRD instrumentation
– fundername: Sustainable Energy Authority of Ireland; SEAI National Energy Research, Development and Demonstration Funding Programme 2018; Research, Development and Demonstration Funding Programme 2019
  grantid: 18/RDD/282; 19/RDD/566
– fundername: Spectroelectroelectrochemistry Reading (startup)
– fundername: European Commission; Marie Sklodowska−Curie Fellowship
  grantid: 799778
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-c0bc3e905cce3dcc13fec67c18596379feacf725858b0b07d6d335ed837b6a9a3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997745800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-3049
IngestDate Mon Nov 10 04:31:15 EST 2025
Tue Nov 04 02:06:44 EST 2025
Thu Oct 02 06:29:53 EDT 2025
Tue Oct 07 07:50:28 EDT 2025
Sat Nov 29 07:10:41 EST 2025
Tue Nov 18 20:57:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-c0bc3e905cce3dcc13fec67c18596379feacf725858b0b07d6d335ed837b6a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9613-0974
0009-0002-1042-3149
0009-0006-5729-7871
0000-0002-5918-8701
0000-0003-2270-2452
0000-0002-7013-5360
0000-0003-4990-9218
OpenAccessLink https://www.proquest.com/docview/2819479130?pq-origsite=%requestingapplication%
PMID 37241890
PQID 2819479130
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_181208b28275492cb4b766060608ee1b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10221375
proquest_miscellaneous_2820025890
proquest_journals_2819479130
crossref_primary_10_3390_molecules28104149
crossref_citationtrail_10_3390_molecules28104149
PublicationCentury 2000
PublicationDate 2023-05-17
PublicationDateYYYYMMDD 2023-05-17
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-17
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jo (ref_62) 2019; 4
Lee (ref_71) 1988; 37
Zada (ref_9) 2019; 29
Luengo (ref_39) 2018; 37
Suntrup (ref_51) 2017; 56
Grills (ref_21) 2018; 374
Suntrup (ref_34) 2020; 59
Zipp (ref_44) 1993; 32
Stratakes (ref_60) 2021; 8
ref_53
Frayne (ref_20) 2018; 2
Sinha (ref_35) 2017; 460
Majumdar (ref_3) 2018; 2
Koike (ref_45) 2002; 124
Martin (ref_73) 2001; 114
Friaes (ref_24) 2022; 2022
Zhao (ref_17) 2017; 5
Liyanage (ref_25) 2016; 55
Casson (ref_37) 2011; 40
Bushuyev (ref_4) 2018; 2
Robert (ref_6) 2016; 1
Li (ref_38) 2012; 31
Hopkinson (ref_26) 2014; 510
Zhao (ref_52) 2017; 7
Cerpentier (ref_57) 2021; 9
Andrae (ref_72) 1990; 77
Johnson (ref_47) 1996; 15
Yaashikaa (ref_12) 2019; 33
Kuramochi (ref_14) 2018; 373
Kumaravel (ref_15) 2020; 5
ref_69
Nganga (ref_59) 2017; 56
ref_22
ref_65
Asbai (ref_55) 2021; 197
Hartl (ref_68) 1991; 317
Stanton (ref_33) 2016; 55
Cardona (ref_63) 2011; 23
Luo (ref_19) 2019; 390
Herron (ref_13) 2014; 8
ref_27
Bonfiglio (ref_50) 2020; 49
Palatinus (ref_66) 2007; 40
Machan (ref_48) 2015; 34
Takeda (ref_64) 2008; 130
White (ref_16) 2015; 115
Becke (ref_70) 1993; 98
Maurin (ref_30) 2016; 45
Vaughan (ref_36) 2013; 42
Ochedi (ref_2) 2021; 19
ref_32
Siegmund (ref_41) 2017; 46
Xue (ref_42) 1998; 17
Gasser (ref_1) 2015; 6
Tu (ref_5) 2014; 26
Wang (ref_11) 2019; 40
Cossi (ref_74) 2003; 24
Shirley (ref_29) 2021; 5
Sacksteder (ref_43) 1990; 29
Kearney (ref_58) 2022; 467
Chang (ref_8) 2016; 9
Shirley (ref_28) 2020; 2020
Costentin (ref_61) 2012; 338
Paolucci (ref_56) 1998; 102
Barone (ref_75) 1998; 102
Feng (ref_31) 2021; 35
ref_46
Abramov (ref_49) 2018; 270
Francke (ref_7) 2018; 118
Raziq (ref_18) 2022; 446
Betteridge (ref_67) 2003; 36
Huckaba (ref_10) 2016; 55
Frantz (ref_23) 2004; 689
Nicholls (ref_40) 2019; 48
Taylor (ref_54) 2020; 59
References_xml – volume: 1
  start-page: 281
  year: 2016
  ident: ref_6
  article-title: Running the Clock: CO2 Catalysis in the Age of Anthropocene
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00159
– volume: 29
  start-page: 138
  year: 2019
  ident: ref_9
  article-title: Suitable Energy Platform Significantly Improves Charge Separation of G-C3N4 for CO2 Reduction and Pollutant Oxidation under Visible-Light
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2019.03.004
– volume: 5
  start-page: 21625
  year: 2017
  ident: ref_17
  article-title: Progress in Catalyst Exploration for Heterogeneous CO2 Reduction and Utilization: A Critical Review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07290B
– volume: 2022
  start-page: e202100884
  year: 2022
  ident: ref_24
  article-title: N-Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.202100884
– volume: 2
  start-page: 805
  year: 2018
  ident: ref_3
  article-title: Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.018
– volume: 37
  start-page: 3993
  year: 2018
  ident: ref_39
  article-title: Bioactive Heterobimetallic Re(I)/Au(I) Complexes Containing Bidentate N-Heterocyclic Carbenes
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00601
– volume: 56
  start-page: 5771
  year: 2017
  ident: ref_51
  article-title: Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00393
– volume: 6
  start-page: 7958
  year: 2015
  ident: ref_1
  article-title: Negative Emissions Physically Needed to Keep Global Warming below 2 °C
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8958
– volume: 59
  start-page: 5564
  year: 2020
  ident: ref_54
  article-title: Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3′-Dihydroxy-2,2′-Bipyridine)(CO)3Cl] and Catalytic Reduction of Carbon Dioxide
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00263
– volume: 77
  start-page: 123
  year: 1990
  ident: ref_72
  article-title: Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements
  publication-title: Theoret. Chim. Acta
  doi: 10.1007/BF01114537
– volume: 115
  start-page: 12888
  year: 2015
  ident: ref_16
  article-title: Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00370
– ident: ref_65
– volume: 40
  start-page: 11960
  year: 2011
  ident: ref_37
  article-title: N-Heterocyclic Carbenes as Π*-Acceptors in Luminescent Re(I) Triscarbonyl Complexes
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt11233c
– volume: 446
  start-page: 137161
  year: 2022
  ident: ref_18
  article-title: Accelerating CO2 Reduction on Novel Double Perovskite Oxide with Sulfur, Carbon Incorporation: Synergistic Electronic and Chemical Engineering
  publication-title: J. Chem. Eng.
  doi: 10.1016/j.cej.2022.137161
– volume: 26
  start-page: 4607
  year: 2014
  ident: ref_5
  article-title: Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400087
– volume: 9
  start-page: 2177
  year: 2016
  ident: ref_8
  article-title: CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00383D
– volume: 8
  start-page: 4161
  year: 2021
  ident: ref_60
  article-title: Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100576
– volume: 17
  start-page: 1622
  year: 1998
  ident: ref_42
  article-title: Spectroscopic and Excited-State Properties of Luminescent Rhenium(I) N-Heterocyclic Carbene Complexes Containing Aromatic Diimine Ligands
  publication-title: Organometallics
  doi: 10.1021/om9709042
– volume: 59
  start-page: 4215
  year: 2020
  ident: ref_34
  article-title: Rhenium Complexes of Pyridyl-Mesoionic Carbenes: Photochemical Properties and Electrocatalytic CO2 Reduction
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02591
– volume: 118
  start-page: 4631
  year: 2018
  ident: ref_7
  article-title: Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00459
– ident: ref_27
– ident: ref_46
  doi: 10.1039/dt9910000849
– ident: ref_69
– volume: 373
  start-page: 333
  year: 2018
  ident: ref_14
  article-title: Reaction Mechanisms of Catalytic Photochemical CO2 Reduction Using Re(I) and Ru(II) Complexes
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.11.023
– volume: 55
  start-page: 3136
  year: 2016
  ident: ref_33
  article-title: Re(I) NHC Complexes for Electrocatalytic Conversion of CO2
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00079
– volume: 124
  start-page: 11448
  year: 2002
  ident: ref_45
  article-title: Mechanism of the Photochemical Ligand Substitution Reactions of fac-[Re(Bpy)(CO)3(PR3)]+ Complexes and the Properties of Their Triplet Ligand-Field Excited States
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017032m
– volume: 2
  start-page: 323
  year: 2018
  ident: ref_20
  article-title: Photo- and Electrochemical Properties of a CO2 Reducing Ruthenium–Rhenium Quaterpyridine-Based Catalyst
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.201700197
– volume: 40
  start-page: 786
  year: 2007
  ident: ref_66
  article-title: SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807029238
– volume: 49
  start-page: 3102
  year: 2020
  ident: ref_50
  article-title: Red-Emitting Neutral Rhenium(I) Complexes Bearing a Pyridyl Pyridoannelated N-Heterocyclic Carbene
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04890A
– volume: 46
  start-page: 15269
  year: 2017
  ident: ref_41
  article-title: Benzannulated Re(I)–NHC Complexes: Synthesis, Photophysical Properties and Antimicrobial Activity
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02874A
– ident: ref_53
– ident: ref_22
  doi: 10.1039/C39830000536
– volume: 48
  start-page: 12749
  year: 2019
  ident: ref_40
  article-title: Tricarbonyl Rhenium(I) Tetrazolato and N-Heterocyclic Carbene Complexes: Versatile Visible-Light-Mediated Photoredox Catalysts
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02533B
– ident: ref_32
  doi: 10.3390/inorganics6010022
– volume: 9
  start-page: 795877
  year: 2021
  ident: ref_57
  article-title: Ruthenium Assemblies for CO2 Reduction and H2 Generation: Time Resolved Infrared Spectroscopy, Spectroelectrochemistry and a Photocatalysis Study in Solution and on NiO
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.795877
– volume: 56
  start-page: 3214
  year: 2017
  ident: ref_59
  article-title: Electrochemical Reduction of CO2 Catalyzed by Re(Pyridine-Oxazoline)(CO)3Cl Complexes
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02384
– volume: 689
  start-page: 3031
  year: 2004
  ident: ref_23
  article-title: A Complete Series of Tricarbonylhalidorhenium(I) Complexes (Abpy)Re(CO)3(Hal), Hal=F, Cl, Br, I., Abpy=2,2′-Azobispyridine: Structures, Spectroelectrochemistry and EPR of Reduced Forms
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2004.06.047
– volume: 130
  start-page: 2023
  year: 2008
  ident: ref_64
  article-title: Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077752e
– volume: 35
  start-page: 19170
  year: 2021
  ident: ref_31
  article-title: Study of Re(I) Carbene Complexes for Photocatalytic Reduction of Carbon Dioxide
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c02372
– volume: 29
  start-page: 4335
  year: 1990
  ident: ref_43
  article-title: Luminescence Studies of Pyridine.Alpha.-Diimine Rhenium(I) Tricarbonyl Complexes
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00346a033
– volume: 7
  start-page: 22882
  year: 2017
  ident: ref_52
  article-title: Twisted Configuration Pyrene Derivative: Exhibiting Pure Blue Monomer Photoluminescence and Electrogenerated Chemiluminescence Emissions in Non-Aqueous Media
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01586K
– volume: 19
  start-page: 941
  year: 2021
  ident: ref_2
  article-title: Photocatalytic, Electrocatalytic and Photoelectrocatalytic Conversion of Carbon Dioxide: A Review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01131-5
– volume: 45
  start-page: 14524
  year: 2016
  ident: ref_30
  article-title: Photochemical and Electrochemical Catalytic Reduction of CO 2 with NHC-Containing Dicarbonyl Rhenium(i) Bipyridine Complexes
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01686C
– volume: 23
  start-page: 2367
  year: 2011
  ident: ref_63
  article-title: Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004554
– volume: 510
  start-page: 485
  year: 2014
  ident: ref_26
  article-title: An Overview of N-Heterocyclic Carbenes
  publication-title: Nature
  doi: 10.1038/nature13384
– volume: 5
  start-page: 486
  year: 2020
  ident: ref_15
  article-title: Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02585
– volume: 338
  start-page: 90
  year: 2012
  ident: ref_61
  article-title: A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst
  publication-title: Science
  doi: 10.1126/science.1224581
– volume: 36
  start-page: 1487
  year: 2003
  ident: ref_67
  article-title: CRYSTALS Version 12: Software for Guided Crystal Structure Analysis
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889803021800
– volume: 2020
  start-page: 1844
  year: 2020
  ident: ref_28
  article-title: Effect of “X” Ligands on the Photocatalytic Reduction of CO2 to CO with Re(PyridylNHC-CF3)(CO)3X Complexes
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.202000283
– volume: 55
  start-page: 682
  year: 2016
  ident: ref_10
  article-title: Photocatalytic Reduction of CO2 with Re-Pyridyl-NHCs
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02015
– volume: 390
  start-page: 86
  year: 2019
  ident: ref_19
  article-title: From Molecular Metal Complex to Metal-Organic Framework: The CO2 Reduction Photocatalysts with Clear and Tunable Structure
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.03.019
– volume: 270
  start-page: 526
  year: 2018
  ident: ref_49
  article-title: Mechanistic Study of the [(Dpp-Bian)Re(CO)3Br] Electrochemical Reduction Using in Situ EPR Spectroscopy and Computational Chemistry
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.111
– volume: 55
  start-page: 6085
  year: 2016
  ident: ref_25
  article-title: Electrocatalytic Reduction of CO2 to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00626
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref_70
  article-title: Density-Functional Thermochemistry. III. The Role of Exact Exchange
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 5
  start-page: 353
  year: 2021
  ident: ref_29
  article-title: Probing the Effects of Electron Deficient Aryl Substituents and a π-System Extended NHC Ring on the Photocatalytic CO2 Reduction Reaction with Re-PyNHC-Aryl Complexes**
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.202000296
– volume: 42
  start-page: 14100
  year: 2013
  ident: ref_36
  article-title: The Photochemistry of Rhenium(I) Tricarbonyl N-Heterocyclic Carbene Complexes
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51614h
– volume: 37
  start-page: 785
  year: 1988
  ident: ref_71
  article-title: Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density
  publication-title: Phy. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.37.785
– volume: 4
  start-page: 14272
  year: 2019
  ident: ref_62
  article-title: Utility of Squaraine Dyes for Dye-Sensitized Photocatalysis on Water or Carbon Dioxide Reduction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01914
– volume: 460
  start-page: 63
  year: 2017
  ident: ref_35
  article-title: Electrocatalytic CO2 Reduction Using Rhenium(I) Complexes with Modified 2-(2′-Pyridyl)Imidazole Ligands
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2016.09.019
– volume: 2
  start-page: 825
  year: 2018
  ident: ref_4
  article-title: What Should We Make with CO2 and How Can We Make It?
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.003
– volume: 102
  start-page: 1995
  year: 1998
  ident: ref_75
  article-title: Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9716997
– volume: 40
  start-page: 117
  year: 2019
  ident: ref_11
  article-title: Catalysts in Electro-, Photo- and Photoelectrocatalytic CO2 Reduction Reactions
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2019.02.002
– volume: 24
  start-page: 669
  year: 2003
  ident: ref_74
  article-title: Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10189
– volume: 34
  start-page: 4678
  year: 2015
  ident: ref_48
  article-title: Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) Fac-Tricarbonyl Electrocatalyst
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.5b00406
– volume: 467
  start-page: 214599
  year: 2022
  ident: ref_58
  article-title: Design Components of Porphyrin-Based Photocatalytic Hydrogen Evolution Systems: A Review
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214599
– volume: 8
  start-page: 126
  year: 2014
  ident: ref_13
  article-title: A General Framework for the Assessment of Solar Fuel Technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01958J
– volume: 197
  start-page: 115025
  year: 2021
  ident: ref_55
  article-title: Cationic Rhenium(I) Complexes Bearing a π-Accepting Pyridoannulated N-Heterocyclic Carbene Ligand: Synthesis, Photophysical, Electrochemical and Theoretical Investigation
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2021.115025
– volume: 114
  start-page: 3408
  year: 2001
  ident: ref_73
  article-title: Correlation Consistent Valence Basis Sets for Use with the Stuttgart–Dresden–Bonn Relativistic Effective Core Potentials: The Atoms Ga–Kr and In–Xe
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1337864
– volume: 374
  start-page: 173
  year: 2018
  ident: ref_21
  article-title: Mechanistic Aspects of CO2 Reduction Catalysis with Manganese-Based Molecular Catalysts
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.05.022
– volume: 15
  start-page: 3374
  year: 1996
  ident: ref_47
  article-title: Electrocatalytic Reduction of CO2 Using the Complexes [Re(Bpy)(CO)3L]n (n = +1, L = P(OEt)3, CH3CN; n = 0, L = Cl−, Otf−; Bpy = 2,2‘-Bipyridine; Otf− = CF3SO3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation
  publication-title: Organometallics
  doi: 10.1021/om960044+
– volume: 33
  start-page: 131
  year: 2019
  ident: ref_12
  article-title: A Review on Photochemical, Biochemical and Electrochemical Transformation of CO2 into Value-Added Products
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.05.017
– volume: 31
  start-page: 3829
  year: 2012
  ident: ref_38
  article-title: Blue-Green Luminescent Rhenium(I) Tricarbonyl Complexes with Pyridine-Functionalized N-Heterocyclic Carbene Ligands
  publication-title: Organometallics
  doi: 10.1021/om2006408
– volume: 317
  start-page: 179
  year: 1991
  ident: ref_68
  article-title: Simple Construction of an Infrared Optically Transparent Thin-Layer Electrochemical Cell: Applications to the Redox Reactions of Ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-Di-t-Butyl-Catecholate)−
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(91)85012-E
– volume: 32
  start-page: 5629
  year: 1993
  ident: ref_44
  article-title: Luminescence of Rhenium(I) Complexes with Highly Sterically Hindered.Alpha.-Diimine Ligands
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00076a035
– volume: 102
  start-page: 4759
  year: 1998
  ident: ref_56
  article-title: Dynamics of the Electrochemical Behavior of Diimine Tricarbonyl Rhenium(I) Complexes in Strictly Aprotic Media
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980659f
SSID ssj0021415
Score 2.3942363
Snippet Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic...
Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4149
SubjectTerms Antifungal agents
CO2 reduction
electrocatalysis
Emissions
Energy
Investigations
Ligands
N−heterocyclic carbene
Photocatalysis
Radiation
rhenium
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUlBNpLaZuWbpsGBXIqmFjWypKOzZKQQ9iEJIXcjDWSu4asHda7hfxBz_3EfklmbO-yppBeim_W2MiaGc08a3jD2FGeAtqKM1FuvY9w9_ORscJGGpQToApMKqBtNqGnU3N3Z6-2Wn1RTVhHD9wt3DFFoNg4RAaayMTAjZ1OMevGy4QgHO2-mPWswVQPtQTGpe4MUyKoP553rWZDkxiEH4KIM7eiUEvWP8gwh_WRWwHn7A173WeK_Fs3w7fsRajesZeTdYO2PTa_KH_klf_z6_dNSwK7WgTekRE3vK74FAfOqdilhke4L4FP8oXDnY1fz0JVrub8alYvaxTi-BJ-2rXDaf_mPDb0hoJPLhN-TdSupLz37PvZ6e3kPOq7J0SAS76MIHYgg40VQJAeQEicQKoBAzQ6nbYFbrmFThAuGBe7WPvUS6mCR8Tq0tzm8gPbqeoqfGQ8gChiRN0-Re8tlMmDT6RLQ-q8VyoZj1i8Xs0Mempx6nBxnyHEIAVkfylgxL5uHnnoeDWeEz4hFW0EiRK7vYGGkvWGkv3LUEZsf63grPfTJqNjxLG2GMhH7HAzjHqkY5O8CvWKZKiQRRmLMmZgGIMJDUeqctZydROgFlKrT__jEz6zV9TtnooXhN5nO2hc4QvbhZ_LslkctB7wBAfSEUA
  priority: 102
  providerName: Directory of Open Access Journals
Title Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction
URI https://www.proquest.com/docview/2819479130
https://www.proquest.com/docview/2820025890
https://pubmed.ncbi.nlm.nih.gov/PMC10221375
https://doaj.org/article/181208b28275492cb4b766060608ee1b
Volume 28
WOSCitedRecordID wos000997745800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9NAEB-8nqAv_herZ1nBJyFc_u_mSbzS4wStoSrUp5Cd3VwL1-RsWuG-gc9-RD-JM0laLwj3IoFAspPNwszOzm93-A3A6zxGshWtnDwxxiHvZxyVeIkjMdIeRgUFFdgUm5DTqZrPk7TbcKu7tMqdT2wctamQ98iP-cAnlAm53LeX3x2uGsWnq10JjQM4ZKaycACHJ5NpOttDLo_Wp_YsMyBwf7xqS87amnpzQ48JNK-tRg1pfy_S7OdJXlt4Tu__75AfwL0u5BTvWht5CLds-QjujHeV3h7D6sPyPC_N75-_Pjdsstu1FS2rcS2qUkyp4YyzZiq8woslinG-1uQixWxhy-V2JdJFtalISFAnYtLW1Wm2ha5q7qEQ40--mDFHLFvBE_h6OvkyPnO6MgwOku42DroaA5u4EaINDKIX0ABiibTS0-yVSUG-u5A-4Q6lXe1KE5sgiKwh6KvjPMmDpzAoq9I-A2HRK1yC7yYmN1BEKrfGD3RsY21MFPnhENydOjLsOMq5VMZFRliFNZj9o8EhvNl_ctkSdNwkfMI63gsyt3bzolqfZ91UzTjmcZUmLCqZvg51qGVMOI8uZa2nh3C0U3fWTfg6-6vrIbzaN5Me-fwlL221ZRnOiIlUQjKqZ1m9AfVbyuWiIf1mZO4FMnp-899fwF2fwjDOb_DkEQzIbOxLuI0_Nst6PYIDOZfNXY26qTJqdiHoKX3_Mf32B1erJvg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFKlcyr9IKbBIcEGyanttr31ACEKrRE1DVIpUTsY7u24sNXaJE1DegDMPwkPxJMz4JzRC6q0H5Jt3vF57P8_P7vgbxl4kASBWVGglkdYWaj9thZETWRJ85YCfolMBVbEJORqFp6fReIP9av-FobTKVidWiloXQGvke7Th48kIVe6bi68WVY2i3dW2hEYNi0Oz_I4hW_l68B7n96XrHuyf9PpWU1XAAhzK3AJbgTCR7QMYoQEckRoIJKDhQjDKKEVVlEoX3ehQ2cqWOtBC-EZjJKeCJEoE9nuDbXoI9rDDNseDo_HnVYjnoD2s906FiOy9aV3i1pQ4ettziLDzkvWrigSsebbreZmXDN3B7f_tFd1h241Lzd_W38BdtmHye2yr11ayu8-mw-wsyfXvHz8_Vmy5i5nhNWtzyYucj7ChT1lBBSzhPAPeS2YKTQA_npg8W0z5eFLMCxTi2Anfr-sGVctey5J6SHnvg8uPiQOXUP6AfbqWp33IOnmRm0eMG3BS2yihA1RzqR8mRrtCBSZQWvu-63WZ3U5_DA0HO5UCOY8xFiPExP8gpsterS65qAlIrhJ-R5haCRJ3eHWimJ3FjSqKyaezQ4WxtiR6PlCekgHGsXiExjiqy3ZbeMWNQivjv9jqsuerZpxH2l9KclMsSIYyfvwwQplwDclrA1pvybNJRWpOKw-OkP7O1Xd_xrb6J0fDeDgYHT5mt1x0OSmXw5G7rIMQMk_YTfg2z8rZ0-bT5OzLdUP9D8nzgbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFgEb3ohAgUGCDZIV22N77AVCkDZq1BKsAlK7Mp4748ZSY5c4AeUPWPM5fA5fwr1-hEZI3XWBssvcTOz4zH3M3JzD2Is0AMSKCq000tpC76etMHIiS4KvHPAzTCqgFpuQ43F4dBTFG-xX918YaqvsfGLtqHUJtEfepwMfT0bocvtZ2xYR7wzfnH21SEGKTlo7OY0GIvtm-R3Lt-r1aAef9UvXHe5-GuxZrcKABXhZcwtsBcJEtg9ghAZwRGYgkIBBDIEpowzdUiZdTKlDZStb6kAL4RuNVZ0K0igVOO8VtoUpuYdrbCsevY-PV-Weg7GxOUcVIrL700bu1lR4J7bnEHnnuUhYCwasZbnrPZrngt7w1v_8c91mN9tUm79t1sYdtmGKu-z6oFO4u8emB_lJWujfP35-rFl0FzPDGzbnipcFH-PAHnULlbCE0xz4IJ0pDA38cGKKfDHl8aScl2jEcRK-2-gJ1dthy4pmyPjgg8sPiRuX0H-ffb6Uu33ANouyMA8ZN-BktlFCB-j-Mj9MjXaFCkygtPZ91-sxu4NCAi03O0mEnCZYoxF6kn_Q02OvVh85a4hJLjJ-R_haGRKneP1GOTtJWheVUK5nhwprcEm0faA8JQOsb_EVGuOoHtvuoJa0jq5K_uKsx56vhvE50rlTWphyQTbUCeSHEdqEa6heu6D1kSKf1GTntCPhCOk_uvjbn7FriO_kYDTef8xuuJiJUouHI7fZJiLIPGFX4ds8r2ZP21XK2ZfLRvoflXOKeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand%E2%88%92Structure+Effects+on+N%E2%88%92Heterocyclic+Carbene+Rhenium+Photo%E2%88%92+and+Electrocatalysts+of+CO2+Reduction&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Kearney%2C+Lauren&rft.au=Brandon%2C+Michael+P.&rft.au=Coleman%2C+Andrew&rft.au=Chippindale%2C+Ann+M.&rft.date=2023-05-17&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=10&rft.spage=4149&rft_id=info:doi/10.3390%2Fmolecules28104149&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28104149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon