Apple Yield Estimation Method Based on CBAM-ECA-Deeplabv3+ Image Segmentation and Multi-Source Feature Fusion

Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural featu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 10; s. 3140
Hlavní autori: Cui, Wenhao, Lan, Yubin, Li, Jingqian, Yang, Lei, Zhou, Qi, Han, Guotao, Xiao, Xiao, Zhao, Jing, Qiao, Yongliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 15.05.2025
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.
AbstractList Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.
Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.
Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R[sup.2] = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.
Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.
Audience Academic
Author Cui, Wenhao
Zhou, Qi
Yang, Lei
Xiao, Xiao
Zhao, Jing
Lan, Yubin
Qiao, Yongliang
Li, Jingqian
Han, Guotao
AuthorAffiliation 2 Shandong Provincial Engineering Technology Research Center for Agricultural Aviation Intelligent Equipment, Zibo 255049, China
3 Australian Institute of Machine Learning (AIML), The University of Adelaide, Adelaide, SA 5000, Australia
1 College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; 15053648985@163.com (W.C.); ylan@sdut.edu.cn (Y.L.); 19811715026@163.com (J.L.); 23403010305@stumail.sdut.edu.cn (L.Y.); 18095219962@163.com (Q.Z.); 17852030301@163.com (G.H.); 23403010293@stumail.sdut.edu.cn (X.X.)
AuthorAffiliation_xml – name: 2 Shandong Provincial Engineering Technology Research Center for Agricultural Aviation Intelligent Equipment, Zibo 255049, China
– name: 3 Australian Institute of Machine Learning (AIML), The University of Adelaide, Adelaide, SA 5000, Australia
– name: 1 College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; 15053648985@163.com (W.C.); ylan@sdut.edu.cn (Y.L.); 19811715026@163.com (J.L.); 23403010305@stumail.sdut.edu.cn (L.Y.); 18095219962@163.com (Q.Z.); 17852030301@163.com (G.H.); 23403010293@stumail.sdut.edu.cn (X.X.)
Author_xml – sequence: 1
  givenname: Wenhao
  surname: Cui
  fullname: Cui, Wenhao
– sequence: 2
  givenname: Yubin
  surname: Lan
  fullname: Lan, Yubin
– sequence: 3
  givenname: Jingqian
  surname: Li
  fullname: Li, Jingqian
– sequence: 4
  givenname: Lei
  surname: Yang
  fullname: Yang, Lei
– sequence: 5
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
– sequence: 6
  givenname: Guotao
  surname: Han
  fullname: Han, Guotao
– sequence: 7
  givenname: Xiao
  surname: Xiao
  fullname: Xiao, Xiao
– sequence: 8
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
– sequence: 9
  givenname: Yongliang
  orcidid: 0000-0003-2142-0154
  surname: Qiao
  fullname: Qiao, Yongliang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40431931$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1v1DAQjVAR_YADfwBF4gJCKR6Ps4lPaLvdwkpdcWgvnCwnnmy9SuIlTirx75l2y6pFPow98-bNPOudJkd96ClJ3oM4R9Tia5Q5CAQlXiUnoKTKSinF0bP7cXIa41YIiYjlm-RYCYWgEU6Sbr7btZT-8tS6dBlH39nRhz5d03gXXHphI7mU34uL-TpbLubZJdGutdU9fklXnd1QekObjvpx32Z7l66ndvTZTZiGmtIrsuM0cJwi198mrxvbRnr3FM-S26vl7eJHdv3z-2oxv85qVcCY2UpX6HjvMtdQo8KiUTlQoVFXpEXlanQutxYapZtC5iRKzfWqbrQThcSzZLWndcFuzW5gUcMfE6w3j4kwbIwdRl-3ZIpSlmRVU5FExRO0A5vLqhQzJ7Aoc-b6tufaTVVHrmapg21fkL6s9P7ObMK9AQkwg5lihk9PDEP4PVEcTedjTW1rewpTNChB8howmzH043_QLX9jz1_1iALIAYFR53vUxrIC3zeBB9d8HHW-Zms0nvPzUskCMS81N3x4ruGw_D8bMODzHlAPIcaBmgMEhHmwmDlYDP8Ct-m_ow
Cites_doi 10.1078/0176-1617-00887
10.1007/978-3-030-01234-2_1
10.3390/s18082674
10.3390/s20102985
10.1016/j.compag.2020.105900
10.1016/j.agrformet.2021.108369
10.1016/j.compag.2017.05.019
10.3389/fpls.2023.1307492
10.1016/j.eja.2020.126030
10.1016/j.compag.2010.09.013
10.3390/horticulturae8020109
10.1007/s11119-022-09947-7
10.1109/TPAMI.2017.2699184
10.1016/j.engappai.2018.09.011
10.1016/j.compag.2019.04.017
10.1109/CVPR42600.2020.01155
10.3390/plants12030446
10.1016/S0034-4257(01)00289-9
10.14716/ijtech.v10i7.3275
10.3390/rs61110395
10.1080/07038992.1993.10874543
10.3389/fpls.2022.864458
10.1016/j.scienta.2021.110530
10.1016/j.eja.2020.126153
10.1016/S0034-4257(96)00112-5
10.1016/j.patcog.2020.107404
10.1109/CVPR.2017.660
10.1007/s00530-024-01643-y
10.3389/fpls.2022.864892
10.1016/j.rse.2019.111402
10.1007/s11119-021-09813-y
10.1016/j.compag.2022.106812
10.3390/rs16244805
10.1016/j.agrformet.2020.108275
10.1016/j.compag.2022.107275
10.3390/rs6021211
10.1007/s11119-021-09846-3
10.1007/s00344-022-10710-5
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25103140
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7828ea4fbe234e799d1a52b806d03785
PMC12116164
A842733589
40431931
10_3390_s25103140
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-ab9b3d2208591c3437f451e7939be90bdc3dd5aa1f49f725e08951ebcf9d0723
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496915900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:39:57 EDT 2025
Tue Nov 04 02:02:50 EST 2025
Fri Sep 05 15:59:33 EDT 2025
Tue Oct 07 07:41:17 EDT 2025
Tue Nov 04 18:12:23 EST 2025
Sun Jun 01 01:35:21 EDT 2025
Sat Nov 29 07:09:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords CBAM-ECA-DeepLabv3+ model
multi-source feature fusion
apple yield estimation
UAV remote sensing imagery
support vector machine
semantic segmentation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-ab9b3d2208591c3437f451e7939be90bdc3dd5aa1f49f725e08951ebcf9d0723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2142-0154
OpenAccessLink https://www.proquest.com/docview/3212115131?pq-origsite=%requestingapplication%
PMID 40431931
PQID 3212115131
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7828ea4fbe234e799d1a52b806d03785
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12116164
proquest_miscellaneous_3212782166
proquest_journals_3212115131
gale_infotracacademiconefile_A842733589
pubmed_primary_40431931
crossref_primary_10_3390_s25103140
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_7) 2021; 180
Li (ref_10) 2025; 31
Brinkhoff (ref_3) 2021; 303
Jia (ref_8) 2022; 23
Dorj (ref_5) 2017; 140
Bendig (ref_33) 2014; 6
Kumarihami (ref_40) 2021; 290
Schauberger (ref_2) 2020; 120
Chen (ref_28) 2017; 40
He (ref_4) 2022; 195
Qin (ref_26) 2020; 106
Zhang (ref_1) 2021; 22
Koirala (ref_11) 2019; 162
ref_38
Gitelson (ref_39) 2003; 160
Egea (ref_12) 2020; 115
Huete (ref_36) 1997; 59
Kestur (ref_14) 2019; 77
Weiss (ref_15) 2020; 236
Cao (ref_22) 2021; 297
Suarez (ref_16) 2023; 122
Yuan (ref_19) 2021; 41
Kuai (ref_18) 2022; 24
ref_25
Eng (ref_31) 2019; 10
ref_47
ref_24
ref_46
Gitelson (ref_29) 2002; 80
ref_45
ref_44
ref_21
ref_43
ref_20
(ref_37) 2009; 26
ref_42
Rana (ref_41) 2023; 42
(ref_17) 2023; 24
Zhijun (ref_13) 2021; 3
Guijarro (ref_30) 2011; 75
ref_27
McNairn (ref_32) 1993; 19
ref_9
Chen (ref_23) 2022; 201
Richardson (ref_34) 1977; 43
Wu (ref_35) 2014; 6
ref_6
References_xml – volume: 160
  start-page: 271
  year: 2003
  ident: ref_39
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
– ident: ref_42
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_21
  doi: 10.3390/s18082674
– ident: ref_24
  doi: 10.3390/s20102985
– volume: 180
  start-page: 105900
  year: 2021
  ident: ref_7
  article-title: A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105900
– volume: 303
  start-page: 108369
  year: 2021
  ident: ref_3
  article-title: Block-level macadamia yield forecasting using spatio-temporal datasets
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108369
– volume: 43
  start-page: 1541
  year: 1977
  ident: ref_34
  article-title: Distinguishing vegetation from soil background information
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 140
  start-page: 103
  year: 2017
  ident: ref_5
  article-title: An yield estimation in citrus orchards via fruit detection and counting using image processing
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.05.019
– ident: ref_9
  doi: 10.3389/fpls.2023.1307492
– volume: 24
  start-page: 962
  year: 2022
  ident: ref_18
  article-title: Urban vegetation classification based on multi-scale feature perception network for UAV images
  publication-title: J. Geo-Inf. Sci.
– volume: 115
  start-page: 126030
  year: 2020
  ident: ref_12
  article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126030
– volume: 122
  start-page: 103434
  year: 2023
  ident: ref_16
  article-title: Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 75
  start-page: 75
  year: 2011
  ident: ref_30
  article-title: Automatic segmentation of relevant textures in agricultural images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.09.013
– ident: ref_47
  doi: 10.3390/horticulturae8020109
– volume: 24
  start-page: 326
  year: 2023
  ident: ref_17
  article-title: A new method based on machine learning to forecast fruit yield using spectrometric data: Analysis in a fruit supply chain context
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09947-7
– volume: 40
  start-page: 834
  year: 2017
  ident: ref_28
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_44
– volume: 77
  start-page: 59
  year: 2019
  ident: ref_14
  article-title: MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.011
– volume: 162
  start-page: 219
  year: 2019
  ident: ref_11
  article-title: Deep learning–Method overview and review of use for fruit detection and yield estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.017
– ident: ref_43
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_25
  doi: 10.3390/plants12030446
– volume: 80
  start-page: 76
  year: 2002
  ident: ref_29
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
– volume: 10
  start-page: 1385
  year: 2019
  ident: ref_31
  article-title: The use of VARI, GLI, and VIgreen formulas in detecting vegetation in aerial images
  publication-title: Int. J. Technol.
  doi: 10.14716/ijtech.v10i7.3275
– volume: 6
  start-page: 10395
  year: 2014
  ident: ref_33
  article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging
  publication-title: Remote Sens.
  doi: 10.3390/rs61110395
– volume: 19
  start-page: 152
  year: 1993
  ident: ref_32
  article-title: Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using Thematic Mapper
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1993.10874543
– volume: 26
  start-page: 44
  year: 2009
  ident: ref_37
  article-title: Enhancement of Remote Sensing Information Technique of Rocky Desertification
  publication-title: Guizhou Geol.
– ident: ref_6
  doi: 10.3389/fpls.2022.864458
– volume: 290
  start-page: 110530
  year: 2021
  ident: ref_40
  article-title: Flower and leaf bud density manipulation affects fruit set, leaf-to-fruit ratio, and yield in southern highbush ‘Misty’blueberry
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2021.110530
– volume: 120
  start-page: 126153
  year: 2020
  ident: ref_2
  article-title: A systematic review of local to regional yield forecasting approaches and frequently used data resources
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126153
– volume: 59
  start-page: 440
  year: 1997
  ident: ref_36
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 106
  start-page: 107404
  year: 2020
  ident: ref_26
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– ident: ref_27
  doi: 10.1109/CVPR.2017.660
– volume: 3
  start-page: 100
  year: 2021
  ident: ref_13
  article-title: Yield estimation method of apple tree based on improved lightweight YOLOv5
  publication-title: Smart Agric.
– volume: 31
  start-page: 36
  year: 2025
  ident: ref_10
  article-title: Enhanced Multiview attention network with random interpolation resize for few-shot surface defect detection
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-024-01643-y
– ident: ref_45
  doi: 10.3389/fpls.2022.864892
– ident: ref_46
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_15
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 41
  start-page: 2565
  year: 2021
  ident: ref_19
  article-title: Combining textures and spatial features to extract tea plantations based on object-oriented method by using multispectral image
  publication-title: Spectrosc. Spectr. Anal.
– volume: 22
  start-page: 2007
  year: 2021
  ident: ref_1
  article-title: Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09813-y
– volume: 195
  start-page: 106812
  year: 2022
  ident: ref_4
  article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106812
– ident: ref_20
  doi: 10.3390/rs16244805
– ident: ref_38
– volume: 297
  start-page: 108275
  year: 2021
  ident: ref_22
  article-title: Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108275
– volume: 201
  start-page: 107275
  year: 2022
  ident: ref_23
  article-title: Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107275
– volume: 6
  start-page: 1211
  year: 2014
  ident: ref_35
  article-title: The generalized difference vegetation index (GDVI) for dryland characterization
  publication-title: Remote Sens.
  doi: 10.3390/rs6021211
– volume: 23
  start-page: 492
  year: 2022
  ident: ref_8
  article-title: RS-Net: Robust segmentation of green overlapped apples
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09846-3
– volume: 42
  start-page: 2360
  year: 2023
  ident: ref_41
  article-title: Differential response of the leaf fruit ratio and girdling on the leaf nutrient concentrations, yield, and quality of nectarine
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-022-10710-5
SSID ssj0023338
Score 2.4496472
Snippet Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3140
SubjectTerms Accuracy
Agricultural production
Agriculture
Agriculture - methods
Algorithms
Apple
apple yield estimation
Artificial intelligence
CBAM-ECA-DeepLabv3+ model
Chlorophyll
Citrus fruits
Comparative analysis
Crop yields
Deep learning
Fruit - growth & development
Identification and classification
Image Processing, Computer-Assisted - methods
Image segmentation
Least-Squares Analysis
Leaves
Machine learning
Malus - growth & development
Measurement
Methods
multi-source feature fusion
Neural networks
Plant Leaves
Remote sensing
Remote Sensing Technology - methods
semantic segmentation
Semantics
Smartphones
Support Vector Machine
Trees
UAV remote sensing imagery
Vegetation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEFAeKS1yERIHFDV-JLaPu8tWcGiF1B7KyXL8gB42rfbR389MnF1lxYELpyixo0zm82RmHPsbQj4ZCVYEjrZsPeSqMoRcyL0UgYsko26Mz8Um1NWVvr01P0alvnBNWKYHzoo7Bw-mo5OpjVzIqIwJzNW81VUTKqF0z15aKbNNpoZUS0DmlXmEBCT15yuOxHEMZzhG3qcn6f_7UzzyRfvrJEeO5-IFeT5EjHSSJX1JnsTuFXk24hE8IguMJSP9iavR6ByMNu9HpJd9eWg6BU8VKJzPppPLcj6blF9jfAD4H8UX-n0BXxR6HX8thl1IHXVdoP3G3PK6n9qnGCdulnDc4Nzaa3JzMb-ZfSuHOgqlB9ezLl1rWtA9VuM0zAspVJI1A10K00ZTtcGLEGrnWJImKV7HSkPcFVufTKgUF2_IQXffxXeEtlylxmlkkUOuMKZ9UlEaFUMK3CtTkI9b9dqHzJZhIctADOwOg4JMUfG7Dkhw3V8A2O0Au_0X7AX5jLBZNEPAxrthNwHIiYRWdqIlBGai1iDTyRZZO9jnygqO1HY1E6wgZ7tmsCz8XeK6eL_JfUAM1jQFeZsHwk7mnpPI4N16b4jsvdR-S3f3u2fvxgc3kKQe_w81vCdPORYkRjrZ-oQcrJebeEoO_eP6brX80NvEH5OjDxw
  priority: 102
  providerName: Directory of Open Access Journals
Title Apple Yield Estimation Method Based on CBAM-ECA-Deeplabv3+ Image Segmentation and Multi-Source Feature Fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/40431931
https://www.proquest.com/docview/3212115131
https://www.proquest.com/docview/3212782166
https://pubmed.ncbi.nlm.nih.gov/PMC12116164
https://doaj.org/article/7828ea4fbe234e799d1a52b806d03785
Volume 25
WOSCitedRecordID wos001496915900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQEgcUbRI7sX1CaUnFHlpV7B66pyixnbKHpqWPPfLbmXHcbiskLlwixXGUieY9tr8h5JPioEXgaMNaQ67KjekauYfMJKzhVmZKd80mxHgsp1M18QW3td9WubOJzlCbhcYa-TlLEIwsjVn8dfkrxK5RuLrqW2jcJ6fYNhvlXEzvEi4G-VeHJsQgtT9fJwgfF2Od48AHOaj-vw3ygUc63i154H6GT_6X8KfksQ88ad5JyjNyz7bPyaN8tvLgGxbuDsAJX5A5BqiWXuMWN1qAJegOOdKR6zlN--D-DIX7QT8fhcUgD79ZuwSZumVf6MUczBS9tLO5P9rU0qo11J32DS_degHF4BM-S4dbLNi9JFfD4mrwPfTNGUIN_mwTVrWqgaHY4lPFmnEmGp7GFtRd1VZFtdHMmLSq4oarRiSpjSQEc7bWjTKRSNgrctIuWvuG0DoRTVZJhKZDALJY6kZYroQ1jUm0UAH5uONWuewgOEpIXZCl5Z6lAekjH_cTEDXbDSxWs9IrYQnRkLQVb2qbMA6kKhNXaVLLKDMREzINyGeUghJ1G1itK39EAehElKwylxyiPZZKoOlsx-zSK_26vON0QD7sH4O64hpM1drFtpsDZMRZFpDXnVztaXZARwrflkcSd_RTx0_am58OEhw_nEHm-_bfdL0jDxPsX4zos-kZOdmstvY9eaBvNzfrVc8pj7vKHjntF-PJj56rUcB19LuAscnFaHL9B6AfKGQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQk48IYGCiwIxKGyau_a3t0DQk6aqFGbCKk5hNPK3l2HHuKkeRTxo_iPzPiRJkLi1gNHv-Rx8u03M7s73xDyUYUwisDRepmBXDW0tmrk7nHLeB46GStTNZsQw6Ecj9W3PfK7qYXBbZUNJ5ZEbWcG58iPOUMxsijgwdf5lYddo3B1tWmhUcHizP36CSnb8kv_BP7fT4z1uqPOqVd3FfAMEPHKSzOVgSXYm1IFhodc5GEUOMCpypzyM2u4tVGaBnmocsEi50uIQlxmcmV9gToHwPh3gMYF5npifJPfcUj3KvEizpV_vGSoVhfgtMqWyys7A_zN_1sOcHdz5pa36z36z36nx-RhHVbTpBoHT8ieK56SB8lkUUuLODjakl58RqYYfjv6HTfw0S7wXFXCSQdlR23aBuduKRx32snA63YS78S5OYyYa35E-1MgYXrhJtO6cKugaWFpWcvsXZSrIRRDa3gt7a1xOvI5Gd3Gx78g-8WscAeEZkzkcSpReA_l1QJpcuFCJZzNLTNCtciHBhx6XgmMaEjMEEF6g6AWaSNsNjegJnh5YraY6JpiNMR60qVhnjnGQzBV2SCNWCb92PpcyKhFPiPoNDIXIMukdQEG2IkaYDqRIcSyPJJg02GDLV1T2lLfAKtF3m8uAxnhClNauNm6ugfMCOK4RV5WMN7YXMo4KXxa7gB856N2rxSXP0rBc3xxDHn9q3_b9Y7cOx0NzvV5f3j2mtxn2KkZdXajQ7K_WqzdG3LXXK8ul4u35bilRN8y_v8AKlN-KA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXYTgwBs2sIBBIA6rqIntJPYBoT5FtbSqtHvYPVmJ7ZQ9NO32sYifxr9jJklLKyRue-CYlzJpP38zY3u-IeSDEjCKwNH6mYFcVVhbNXL3uWU8F07GylTNJpLRSF5cqPEB-bWphcFtlRtOLInazgzOkTc5QzGyKORhM6-3RYy7_S_zax87SOFK66adRgWRU_fzB6Rvy8-DLvzXHxnr9847X_26w4BvgJRXfpqpDKzCPpUqNFzwJBdR6ACzKnMqyKzh1kZpGuZC5QmLXCAhInGZyZUNEtQ8APY_hIhcsAY5HA-G48tttsch-aukjDhXQXPJULsuxEmWHQdY9gn42xvsuMP9rZo7vq__8D_-1R6RB3XATVvVCHlMDlzxhNxvTRa16IiDox1RxqdkioG5o5e4tY_2gAGr4k46LHtt0za4fUvhuNNuDf1ep-V3nZvDWLrhJ3QwBXqmZ24yrUu6CpoWlpZVzv5ZuU5CMeiG19L-Gicqn5Hz2_j456RRzAp3RGjGkjxOJUryofBaKE2eOKESZ3PLTKI88n4DFD2vpEc0pGyIJr1Fk0faCKHtDagWXp6YLSa6Jh8NUaB0qcgzx7gAU5UN04hlMohtwBMZeeQTAlAjpwHKTFqXZoCdqA6mW1JAlMsjCTYdb3Cma7Jb6j8g88i77WWgKVx7Sgs3W1f3gBlhHHvkRQXprc2lwJPCp-Ue2Pc-av9KcfW9lELHF8eQ8b_8t11vyV2Avf42GJ2-IvcYtnBGAd7omDRWi7V7Te6Ym9XVcvGmHsSU6FseAL8Bj_iIdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+Yield+Estimation+Method+Based+on+CBAM-ECA-Deeplabv3%2B+Image+Segmentation+and+Multi-Source+Feature+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cui%2C+Wenhao&rft.au=Lan%2C+Yubin&rft.au=Li%2C+Jingqian&rft.au=Yang%2C+Lei&rft.date=2025-05-15&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft_id=info:doi/10.3390%2Fs25103140&rft_id=info%3Apmid%2F40431931&rft.externalDocID=40431931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon