Apple Yield Estimation Method Based on CBAM-ECA-Deeplabv3+ Image Segmentation and Multi-Source Feature Fusion
Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural featu...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 25; číslo 10; s. 3140 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
15.05.2025
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications. |
|---|---|
| AbstractList | Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R
= 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications. Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications. Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson’s correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R[sup.2] = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications. Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications.Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard heterogeneity. In this study, we apply multi-source feature fusion by combining vegetation indices from UAV remote sensing imagery, structural feature ratios from ground-based fruit tree images, and leaf chlorophyll content (SPAD) to improve apple yield estimation accuracy. The DeepLabv3+ network, optimized with Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA), improved fruit tree image segmentation accuracy. Four structural feature ratios were extracted, visible-light and multispectral vegetation indices were calculated, and feature selection was performed using Pearson's correlation coefficient analysis. Yield estimation models were constructed using k-nearest neighbors (KNN), partial least squares (PLS), random forest (RF), and support vector machine (SVM) algorithms under both single feature sets and combined feature sets (including vegetation indices, structural feature ratios, SPAD, vegetation indices + SPAD, vegetation indices + structural feature ratios, structural feature ratios + SPAD, and the combination of all three). The optimized CBAM-ECA-DeepLabv3+ model achieved a mean Intersection over Union (mIoU) of 0.89, an 8% improvement over the baseline DeepLabv3+, and outperformed U2Net and PSPNet. The SVM model based on multi-source feature fusion achieved the highest apple yield estimation accuracy in small-scale orchard sample plots (R2 = 0.942, RMSE = 12.980 kg). This study establishes a reliable framework for precise fruit tree image segmentation and early yield estimation, advancing precision agriculture applications. |
| Audience | Academic |
| Author | Cui, Wenhao Zhou, Qi Yang, Lei Xiao, Xiao Zhao, Jing Lan, Yubin Qiao, Yongliang Li, Jingqian Han, Guotao |
| AuthorAffiliation | 2 Shandong Provincial Engineering Technology Research Center for Agricultural Aviation Intelligent Equipment, Zibo 255049, China 3 Australian Institute of Machine Learning (AIML), The University of Adelaide, Adelaide, SA 5000, Australia 1 College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; 15053648985@163.com (W.C.); ylan@sdut.edu.cn (Y.L.); 19811715026@163.com (J.L.); 23403010305@stumail.sdut.edu.cn (L.Y.); 18095219962@163.com (Q.Z.); 17852030301@163.com (G.H.); 23403010293@stumail.sdut.edu.cn (X.X.) |
| AuthorAffiliation_xml | – name: 2 Shandong Provincial Engineering Technology Research Center for Agricultural Aviation Intelligent Equipment, Zibo 255049, China – name: 3 Australian Institute of Machine Learning (AIML), The University of Adelaide, Adelaide, SA 5000, Australia – name: 1 College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; 15053648985@163.com (W.C.); ylan@sdut.edu.cn (Y.L.); 19811715026@163.com (J.L.); 23403010305@stumail.sdut.edu.cn (L.Y.); 18095219962@163.com (Q.Z.); 17852030301@163.com (G.H.); 23403010293@stumail.sdut.edu.cn (X.X.) |
| Author_xml | – sequence: 1 givenname: Wenhao surname: Cui fullname: Cui, Wenhao – sequence: 2 givenname: Yubin surname: Lan fullname: Lan, Yubin – sequence: 3 givenname: Jingqian surname: Li fullname: Li, Jingqian – sequence: 4 givenname: Lei surname: Yang fullname: Yang, Lei – sequence: 5 givenname: Qi surname: Zhou fullname: Zhou, Qi – sequence: 6 givenname: Guotao surname: Han fullname: Han, Guotao – sequence: 7 givenname: Xiao surname: Xiao fullname: Xiao, Xiao – sequence: 8 givenname: Jing surname: Zhao fullname: Zhao, Jing – sequence: 9 givenname: Yongliang orcidid: 0000-0003-2142-0154 surname: Qiao fullname: Qiao, Yongliang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40431931$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdUk1v1DAQjVAR_YADfwBF4gJCKR6Ps4lPaLvdwkpdcWgvnCwnnmy9SuIlTirx75l2y6pFPow98-bNPOudJkd96ClJ3oM4R9Tia5Q5CAQlXiUnoKTKSinF0bP7cXIa41YIiYjlm-RYCYWgEU6Sbr7btZT-8tS6dBlH39nRhz5d03gXXHphI7mU34uL-TpbLubZJdGutdU9fklXnd1QekObjvpx32Z7l66ndvTZTZiGmtIrsuM0cJwi198mrxvbRnr3FM-S26vl7eJHdv3z-2oxv85qVcCY2UpX6HjvMtdQo8KiUTlQoVFXpEXlanQutxYapZtC5iRKzfWqbrQThcSzZLWndcFuzW5gUcMfE6w3j4kwbIwdRl-3ZIpSlmRVU5FExRO0A5vLqhQzJ7Aoc-b6tufaTVVHrmapg21fkL6s9P7ObMK9AQkwg5lihk9PDEP4PVEcTedjTW1rewpTNChB8howmzH043_QLX9jz1_1iALIAYFR53vUxrIC3zeBB9d8HHW-Zms0nvPzUskCMS81N3x4ruGw_D8bMODzHlAPIcaBmgMEhHmwmDlYDP8Ct-m_ow |
| Cites_doi | 10.1078/0176-1617-00887 10.1007/978-3-030-01234-2_1 10.3390/s18082674 10.3390/s20102985 10.1016/j.compag.2020.105900 10.1016/j.agrformet.2021.108369 10.1016/j.compag.2017.05.019 10.3389/fpls.2023.1307492 10.1016/j.eja.2020.126030 10.1016/j.compag.2010.09.013 10.3390/horticulturae8020109 10.1007/s11119-022-09947-7 10.1109/TPAMI.2017.2699184 10.1016/j.engappai.2018.09.011 10.1016/j.compag.2019.04.017 10.1109/CVPR42600.2020.01155 10.3390/plants12030446 10.1016/S0034-4257(01)00289-9 10.14716/ijtech.v10i7.3275 10.3390/rs61110395 10.1080/07038992.1993.10874543 10.3389/fpls.2022.864458 10.1016/j.scienta.2021.110530 10.1016/j.eja.2020.126153 10.1016/S0034-4257(96)00112-5 10.1016/j.patcog.2020.107404 10.1109/CVPR.2017.660 10.1007/s00530-024-01643-y 10.3389/fpls.2022.864892 10.1016/j.rse.2019.111402 10.1007/s11119-021-09813-y 10.1016/j.compag.2022.106812 10.3390/rs16244805 10.1016/j.agrformet.2020.108275 10.1016/j.compag.2022.107275 10.3390/rs6021211 10.1007/s11119-021-09846-3 10.1007/s00344-022-10710-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25103140 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_7828ea4fbe234e799d1a52b806d03785 PMC12116164 A842733589 40431931 10_3390_s25103140 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c471t-ab9b3d2208591c3437f451e7939be90bdc3dd5aa1f49f725e08951ebcf9d0723 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496915900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:39:57 EDT 2025 Tue Nov 04 02:02:50 EST 2025 Fri Sep 05 15:59:33 EDT 2025 Tue Oct 07 07:41:17 EDT 2025 Tue Nov 04 18:12:23 EST 2025 Sun Jun 01 01:35:21 EDT 2025 Sat Nov 29 07:09:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | CBAM-ECA-DeepLabv3+ model multi-source feature fusion apple yield estimation UAV remote sensing imagery support vector machine semantic segmentation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-ab9b3d2208591c3437f451e7939be90bdc3dd5aa1f49f725e08951ebcf9d0723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2142-0154 |
| OpenAccessLink | https://www.proquest.com/docview/3212115131?pq-origsite=%requestingapplication% |
| PMID | 40431931 |
| PQID | 3212115131 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7828ea4fbe234e799d1a52b806d03785 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12116164 proquest_miscellaneous_3212782166 proquest_journals_3212115131 gale_infotracacademiconefile_A842733589 pubmed_primary_40431931 crossref_primary_10_3390_s25103140 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Li (ref_7) 2021; 180 Li (ref_10) 2025; 31 Brinkhoff (ref_3) 2021; 303 Jia (ref_8) 2022; 23 Dorj (ref_5) 2017; 140 Bendig (ref_33) 2014; 6 Kumarihami (ref_40) 2021; 290 Schauberger (ref_2) 2020; 120 Chen (ref_28) 2017; 40 He (ref_4) 2022; 195 Qin (ref_26) 2020; 106 Zhang (ref_1) 2021; 22 Koirala (ref_11) 2019; 162 ref_38 Gitelson (ref_39) 2003; 160 Egea (ref_12) 2020; 115 Huete (ref_36) 1997; 59 Kestur (ref_14) 2019; 77 Weiss (ref_15) 2020; 236 Cao (ref_22) 2021; 297 Suarez (ref_16) 2023; 122 Yuan (ref_19) 2021; 41 Kuai (ref_18) 2022; 24 ref_25 Eng (ref_31) 2019; 10 ref_47 ref_24 ref_46 Gitelson (ref_29) 2002; 80 ref_45 ref_44 ref_21 ref_43 ref_20 (ref_37) 2009; 26 ref_42 Rana (ref_41) 2023; 42 (ref_17) 2023; 24 Zhijun (ref_13) 2021; 3 Guijarro (ref_30) 2011; 75 ref_27 McNairn (ref_32) 1993; 19 ref_9 Chen (ref_23) 2022; 201 Richardson (ref_34) 1977; 43 Wu (ref_35) 2014; 6 ref_6 |
| References_xml | – volume: 160 start-page: 271 year: 2003 ident: ref_39 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 – ident: ref_42 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_21 doi: 10.3390/s18082674 – ident: ref_24 doi: 10.3390/s20102985 – volume: 180 start-page: 105900 year: 2021 ident: ref_7 article-title: A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105900 – volume: 303 start-page: 108369 year: 2021 ident: ref_3 article-title: Block-level macadamia yield forecasting using spatio-temporal datasets publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108369 – volume: 43 start-page: 1541 year: 1977 ident: ref_34 article-title: Distinguishing vegetation from soil background information publication-title: Photogramm. Eng. Remote Sens. – volume: 140 start-page: 103 year: 2017 ident: ref_5 article-title: An yield estimation in citrus orchards via fruit detection and counting using image processing publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.05.019 – ident: ref_9 doi: 10.3389/fpls.2023.1307492 – volume: 24 start-page: 962 year: 2022 ident: ref_18 article-title: Urban vegetation classification based on multi-scale feature perception network for UAV images publication-title: J. Geo-Inf. Sci. – volume: 115 start-page: 126030 year: 2020 ident: ref_12 article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126030 – volume: 122 start-page: 103434 year: 2023 ident: ref_16 article-title: Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 75 start-page: 75 year: 2011 ident: ref_30 article-title: Automatic segmentation of relevant textures in agricultural images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.09.013 – ident: ref_47 doi: 10.3390/horticulturae8020109 – volume: 24 start-page: 326 year: 2023 ident: ref_17 article-title: A new method based on machine learning to forecast fruit yield using spectrometric data: Analysis in a fruit supply chain context publication-title: Precis. Agric. doi: 10.1007/s11119-022-09947-7 – volume: 40 start-page: 834 year: 2017 ident: ref_28 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_44 – volume: 77 start-page: 59 year: 2019 ident: ref_14 article-title: MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.011 – volume: 162 start-page: 219 year: 2019 ident: ref_11 article-title: Deep learning–Method overview and review of use for fruit detection and yield estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.017 – ident: ref_43 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_25 doi: 10.3390/plants12030446 – volume: 80 start-page: 76 year: 2002 ident: ref_29 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00289-9 – volume: 10 start-page: 1385 year: 2019 ident: ref_31 article-title: The use of VARI, GLI, and VIgreen formulas in detecting vegetation in aerial images publication-title: Int. J. Technol. doi: 10.14716/ijtech.v10i7.3275 – volume: 6 start-page: 10395 year: 2014 ident: ref_33 article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging publication-title: Remote Sens. doi: 10.3390/rs61110395 – volume: 19 start-page: 152 year: 1993 ident: ref_32 article-title: Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using Thematic Mapper publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1993.10874543 – volume: 26 start-page: 44 year: 2009 ident: ref_37 article-title: Enhancement of Remote Sensing Information Technique of Rocky Desertification publication-title: Guizhou Geol. – ident: ref_6 doi: 10.3389/fpls.2022.864458 – volume: 290 start-page: 110530 year: 2021 ident: ref_40 article-title: Flower and leaf bud density manipulation affects fruit set, leaf-to-fruit ratio, and yield in southern highbush ‘Misty’blueberry publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2021.110530 – volume: 120 start-page: 126153 year: 2020 ident: ref_2 article-title: A systematic review of local to regional yield forecasting approaches and frequently used data resources publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126153 – volume: 59 start-page: 440 year: 1997 ident: ref_36 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00112-5 – volume: 106 start-page: 107404 year: 2020 ident: ref_26 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – ident: ref_27 doi: 10.1109/CVPR.2017.660 – volume: 3 start-page: 100 year: 2021 ident: ref_13 article-title: Yield estimation method of apple tree based on improved lightweight YOLOv5 publication-title: Smart Agric. – volume: 31 start-page: 36 year: 2025 ident: ref_10 article-title: Enhanced Multiview attention network with random interpolation resize for few-shot surface defect detection publication-title: Multimed. Syst. doi: 10.1007/s00530-024-01643-y – ident: ref_45 doi: 10.3389/fpls.2022.864892 – ident: ref_46 – volume: 236 start-page: 111402 year: 2020 ident: ref_15 article-title: Remote sensing for agricultural applications: A meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – volume: 41 start-page: 2565 year: 2021 ident: ref_19 article-title: Combining textures and spatial features to extract tea plantations based on object-oriented method by using multispectral image publication-title: Spectrosc. Spectr. Anal. – volume: 22 start-page: 2007 year: 2021 ident: ref_1 article-title: Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches publication-title: Precis. Agric. doi: 10.1007/s11119-021-09813-y – volume: 195 start-page: 106812 year: 2022 ident: ref_4 article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106812 – ident: ref_20 doi: 10.3390/rs16244805 – ident: ref_38 – volume: 297 start-page: 108275 year: 2021 ident: ref_22 article-title: Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108275 – volume: 201 start-page: 107275 year: 2022 ident: ref_23 article-title: Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107275 – volume: 6 start-page: 1211 year: 2014 ident: ref_35 article-title: The generalized difference vegetation index (GDVI) for dryland characterization publication-title: Remote Sens. doi: 10.3390/rs6021211 – volume: 23 start-page: 492 year: 2022 ident: ref_8 article-title: RS-Net: Robust segmentation of green overlapped apples publication-title: Precis. Agric. doi: 10.1007/s11119-021-09846-3 – volume: 42 start-page: 2360 year: 2023 ident: ref_41 article-title: Differential response of the leaf fruit ratio and girdling on the leaf nutrient concentrations, yield, and quality of nectarine publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-022-10710-5 |
| SSID | ssj0023338 |
| Score | 2.4496472 |
| Snippet | Apple yield estimation is a critical task in precision agriculture, challenged by complex tree canopy structures, growth stage variability, and orchard... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 3140 |
| SubjectTerms | Accuracy Agricultural production Agriculture Agriculture - methods Algorithms Apple apple yield estimation Artificial intelligence CBAM-ECA-DeepLabv3+ model Chlorophyll Citrus fruits Comparative analysis Crop yields Deep learning Fruit - growth & development Identification and classification Image Processing, Computer-Assisted - methods Image segmentation Least-Squares Analysis Leaves Machine learning Malus - growth & development Measurement Methods multi-source feature fusion Neural networks Plant Leaves Remote sensing Remote Sensing Technology - methods semantic segmentation Semantics Smartphones Support Vector Machine Trees UAV remote sensing imagery Vegetation |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEFAeKS1yERIHFDV-JLaPu8tWcGiF1B7KyXL8gB42rfbR389MnF1lxYELpyixo0zm82RmHPsbQj4ZCVYEjrZsPeSqMoRcyL0UgYsko26Mz8Um1NWVvr01P0alvnBNWKYHzoo7Bw-mo5OpjVzIqIwJzNW81VUTKqF0z15aKbNNpoZUS0DmlXmEBCT15yuOxHEMZzhG3qcn6f_7UzzyRfvrJEeO5-IFeT5EjHSSJX1JnsTuFXk24hE8IguMJSP9iavR6ByMNu9HpJd9eWg6BU8VKJzPppPLcj6blF9jfAD4H8UX-n0BXxR6HX8thl1IHXVdoP3G3PK6n9qnGCdulnDc4Nzaa3JzMb-ZfSuHOgqlB9ezLl1rWtA9VuM0zAspVJI1A10K00ZTtcGLEGrnWJImKV7HSkPcFVufTKgUF2_IQXffxXeEtlylxmlkkUOuMKZ9UlEaFUMK3CtTkI9b9dqHzJZhIctADOwOg4JMUfG7Dkhw3V8A2O0Au_0X7AX5jLBZNEPAxrthNwHIiYRWdqIlBGai1iDTyRZZO9jnygqO1HY1E6wgZ7tmsCz8XeK6eL_JfUAM1jQFeZsHwk7mnpPI4N16b4jsvdR-S3f3u2fvxgc3kKQe_w81vCdPORYkRjrZ-oQcrJebeEoO_eP6brX80NvEH5OjDxw priority: 102 providerName: Directory of Open Access Journals |
| Title | Apple Yield Estimation Method Based on CBAM-ECA-Deeplabv3+ Image Segmentation and Multi-Source Feature Fusion |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40431931 https://www.proquest.com/docview/3212115131 https://www.proquest.com/docview/3212782166 https://pubmed.ncbi.nlm.nih.gov/PMC12116164 https://doaj.org/article/7828ea4fbe234e799d1a52b806d03785 |
| Volume | 25 |
| WOSCitedRecordID | wos001496915900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQEgcUbRI7sX1CaUnFHlpV7B66pyixnbKHpqWPPfLbmXHcbiskLlwixXGUieY9tr8h5JPioEXgaMNaQ67KjekauYfMJKzhVmZKd80mxHgsp1M18QW3td9WubOJzlCbhcYa-TlLEIwsjVn8dfkrxK5RuLrqW2jcJ6fYNhvlXEzvEi4G-VeHJsQgtT9fJwgfF2Od48AHOaj-vw3ygUc63i154H6GT_6X8KfksQ88ad5JyjNyz7bPyaN8tvLgGxbuDsAJX5A5BqiWXuMWN1qAJegOOdKR6zlN--D-DIX7QT8fhcUgD79ZuwSZumVf6MUczBS9tLO5P9rU0qo11J32DS_degHF4BM-S4dbLNi9JFfD4mrwPfTNGUIN_mwTVrWqgaHY4lPFmnEmGp7GFtRd1VZFtdHMmLSq4oarRiSpjSQEc7bWjTKRSNgrctIuWvuG0DoRTVZJhKZDALJY6kZYroQ1jUm0UAH5uONWuewgOEpIXZCl5Z6lAekjH_cTEDXbDSxWs9IrYQnRkLQVb2qbMA6kKhNXaVLLKDMREzINyGeUghJ1G1itK39EAehElKwylxyiPZZKoOlsx-zSK_26vON0QD7sH4O64hpM1drFtpsDZMRZFpDXnVztaXZARwrflkcSd_RTx0_am58OEhw_nEHm-_bfdL0jDxPsX4zos-kZOdmstvY9eaBvNzfrVc8pj7vKHjntF-PJj56rUcB19LuAscnFaHL9B6AfKGQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQk48IYGCiwIxKGyau_a3t0DQk6aqFGbCKk5hNPK3l2HHuKkeRTxo_iPzPiRJkLi1gNHv-Rx8u03M7s73xDyUYUwisDRepmBXDW0tmrk7nHLeB46GStTNZsQw6Ecj9W3PfK7qYXBbZUNJ5ZEbWcG58iPOUMxsijgwdf5lYddo3B1tWmhUcHizP36CSnb8kv_BP7fT4z1uqPOqVd3FfAMEPHKSzOVgSXYm1IFhodc5GEUOMCpypzyM2u4tVGaBnmocsEi50uIQlxmcmV9gToHwPh3gMYF5npifJPfcUj3KvEizpV_vGSoVhfgtMqWyys7A_zN_1sOcHdz5pa36z36z36nx-RhHVbTpBoHT8ieK56SB8lkUUuLODjakl58RqYYfjv6HTfw0S7wXFXCSQdlR23aBuduKRx32snA63YS78S5OYyYa35E-1MgYXrhJtO6cKugaWFpWcvsXZSrIRRDa3gt7a1xOvI5Gd3Gx78g-8WscAeEZkzkcSpReA_l1QJpcuFCJZzNLTNCtciHBhx6XgmMaEjMEEF6g6AWaSNsNjegJnh5YraY6JpiNMR60qVhnjnGQzBV2SCNWCb92PpcyKhFPiPoNDIXIMukdQEG2IkaYDqRIcSyPJJg02GDLV1T2lLfAKtF3m8uAxnhClNauNm6ugfMCOK4RV5WMN7YXMo4KXxa7gB856N2rxSXP0rBc3xxDHn9q3_b9Y7cOx0NzvV5f3j2mtxn2KkZdXajQ7K_WqzdG3LXXK8ul4u35bilRN8y_v8AKlN-KA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXYTgwBs2sIBBIA6rqIntJPYBoT5FtbSqtHvYPVmJ7ZQ9NO32sYifxr9jJklLKyRue-CYlzJpP38zY3u-IeSDEjCKwNH6mYFcVVhbNXL3uWU8F07GylTNJpLRSF5cqPEB-bWphcFtlRtOLInazgzOkTc5QzGyKORhM6-3RYy7_S_zax87SOFK66adRgWRU_fzB6Rvy8-DLvzXHxnr9847X_26w4BvgJRXfpqpDKzCPpUqNFzwJBdR6ACzKnMqyKzh1kZpGuZC5QmLXCAhInGZyZUNEtQ8APY_hIhcsAY5HA-G48tttsch-aukjDhXQXPJULsuxEmWHQdY9gn42xvsuMP9rZo7vq__8D_-1R6RB3XATVvVCHlMDlzxhNxvTRa16IiDox1RxqdkioG5o5e4tY_2gAGr4k46LHtt0za4fUvhuNNuDf1ep-V3nZvDWLrhJ3QwBXqmZ24yrUu6CpoWlpZVzv5ZuU5CMeiG19L-Gicqn5Hz2_j456RRzAp3RGjGkjxOJUryofBaKE2eOKESZ3PLTKI88n4DFD2vpEc0pGyIJr1Fk0faCKHtDagWXp6YLSa6Jh8NUaB0qcgzx7gAU5UN04hlMohtwBMZeeQTAlAjpwHKTFqXZoCdqA6mW1JAlMsjCTYdb3Cma7Jb6j8g88i77WWgKVx7Sgs3W1f3gBlhHHvkRQXprc2lwJPCp-Ue2Pc-av9KcfW9lELHF8eQ8b_8t11vyV2Avf42GJ2-IvcYtnBGAd7omDRWi7V7Te6Ym9XVcvGmHsSU6FseAL8Bj_iIdw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+Yield+Estimation+Method+Based+on+CBAM-ECA-Deeplabv3%2B+Image+Segmentation+and+Multi-Source+Feature+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cui%2C+Wenhao&rft.au=Lan%2C+Yubin&rft.au=Li%2C+Jingqian&rft.au=Yang%2C+Lei&rft.date=2025-05-15&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft_id=info:doi/10.3390%2Fs25103140&rft_id=info%3Apmid%2F40431931&rft.externalDocID=40431931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |