Research on Lightweight Dynamic Security Protocol for Intelligent In-Vehicle CAN Bus

With the integration of an increasing number of outward-facing components in intelligent and connected vehicles, the open controller area network (CAN) bus environment faces increasingly severe security threats. However, existing security measures remain inadequate, and CAN bus messages lack effecti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 11; s. 3380
Hlavní autoři: Wang, Yuanhao, Xu, Yinan, Liu, Zhiquan, Liu, Suya, Wu, Yujing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 27.05.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the integration of an increasing number of outward-facing components in intelligent and connected vehicles, the open controller area network (CAN) bus environment faces increasingly severe security threats. However, existing security measures remain inadequate, and CAN bus messages lack effective security mechanisms and are vulnerable to malicious attacks. Although encryption algorithms can enhance system security, their high bandwidth consumption negatively impacts the real-time performance of intelligent and connected vehicles. Moreover, the message authentication mechanism of the CAN bus requires lengthy authentication codes, further exacerbating the bandwidth burden. To address these issues, we propose an improved dynamic compression algorithm that achieves higher compression rates and efficiency by optimizing header information processing during data reorganization. Additionally, we have proposed a novel dynamic key management approach, incorporating a dynamic key distribution mechanism, which effectively resolves the challenges associated with key management. Each Electronic Control Unit (ECU) node independently performs compression, encryption, and authentication while periodically updating its keys to enhance system security and strengthen defense capabilities. Experimental results show that the proposed dynamic compression algorithm improves the average compression rate by 2.24% and enhances compression time efficiency by 10% compared to existing solutions. The proposed security protocol effectively defends against four different types of attacks. In hardware tests, using an ECU operating at a frequency of 30 MHz, the computation time for the security algorithm on a single message was 0.85 ms, while at 400 MHz, the computation time was reduced to 0.064 ms. Additionally, for different vehicle models, the average CAN bus load rate was reduced by 8.28%. The proposed security mechanism ensures the security, real-time performance, and freshness of CAN bus messages while reducing bus load, providing a more efficient and reliable solution for the cybersecurity of intelligent and connected vehicles.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25113380