Constrained Gaussian mixture model framework for automatic segmentation of MR brain images

An automated algorithm for tissue segmentation of noisy, low-contrast magnetic resonance (MR) images of the brain is presented. A mixture model composed of a large number of Gaussians is used to represent the brain image. Each tissue is represented by a large number of Gaussian components to capture...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on medical imaging Ročník 25; číslo 9; s. 1233 - 1245
Hlavní autoři: Greenspan, H., Ruf, A., Goldberger, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0062, 1558-254X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An automated algorithm for tissue segmentation of noisy, low-contrast magnetic resonance (MR) images of the brain is presented. A mixture model composed of a large number of Gaussians is used to represent the brain image. Each tissue is represented by a large number of Gaussian components to capture the complex tissue spatial layout. The intensity of a tissue is considered a global feature and is incorporated into the model through tying of all the related Gaussian parameters. The expectation-maximization (EM) algorithm is utilized to learn the parameter-tied, constrained Gaussian mixture model. An elaborate initialization scheme is suggested to link the set of Gaussians per tissue type, such that each Gaussian in the set has similar intensity characteristics with minimal overlapping spatial supports. Segmentation of the brain image is achieved by the affiliation of each voxel to the component of the model that maximized the a posteriori probability. The presented algorithm is used to segment three-dimensional, T1-weighted, simulated and real MR images of the brain into three different tissues, under varying noise conditions. Results are compared with state-of-the-art algorithms in the literature. The algorithm does not use an atlas for initialization or parameter learning. Registration processes are therefore not required and the applicability of the framework can be extended to diseased brains and neonatal brains
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2006.880668