Effects of stream restoration on denitrification in an urbanizing watershed
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase r...
Uloženo v:
| Vydáno v: | Ecological applications Ročník 18; číslo 3; s. 789 - 804 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Ecological Society of America
01.04.2008
|
| Témata: | |
| ISSN: | 1051-0761, 1939-5582 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 micrograms N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 micrograms N·kg⁻¹·d⁻¹(mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 micrograms N·kg⁻¹·d⁻¹. Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg ${\rm{NO}}_{\rm{3}} ^{\rm{ - }} {\rm{ - N}}$ could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams. |
|---|---|
| AbstractList | Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams. Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could increase rates of denitrification at the riparian‐zone–stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 μg N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 μg N·kg⁻¹·d⁻¹ (mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 μg N·kg⁻¹·d⁻¹. Concentrations of nitrate‐N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically “connected” streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high “nonconnected” banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO₃⁻‐N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian‐zone–stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate‐N in the restored reach were also considerable. Mass removal of nitrate‐N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to “reconnect” stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate‐N sources to streams. Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 micrograms N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 micrograms N·kg⁻¹·d⁻¹(mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 micrograms N·kg⁻¹·d⁻¹. Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg ${\rm{NO}}_{\rm{3}} ^{\rm{ - }} {\rm{ - N}}$ could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams. Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ super(15)N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 mu g N-(kg sediment) super(-1) times super(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 plus or minus 12.6 mu g N times kg super(-1) times d super(-1) (mean plus or minus SE) as compared to the unrestored reach at 34.8 plus or minus 8.0 mu g N times kg super(-1) times d super(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO sub(3)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams. Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams. Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could increase rates of denitrification at the riparian‐zone–stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 μg N·(kg sediment)−1·d−1. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 μg N·kg−1·d−1 (mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 μg N·kg−1·d−1. Concentrations of nitrate‐N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically “connected” streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high “nonconnected” banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3−‐N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian‐zone–stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate‐N in the restored reach were also considerable. Mass removal of nitrate‐N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to “reconnect” stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate‐N sources to streams. |
| Author | Striz, Elise Gold, Arthur J. Groffman, Peter M. Kaushal, Sujay S. Mayer, Paul M. |
| Author_xml | – sequence: 1 givenname: Sujay S. surname: Kaushal fullname: Kaushal, Sujay S. – sequence: 2 givenname: Peter M. surname: Groffman fullname: Groffman, Peter M. – sequence: 3 givenname: Paul M. surname: Mayer fullname: Mayer, Paul M. – sequence: 4 givenname: Elise surname: Striz fullname: Striz, Elise – sequence: 5 givenname: Arthur J. surname: Gold fullname: Gold, Arthur J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18488635$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9rFTEUxYNUbPt04QdQZ1VwMe3Nv7nJspRnFQsK2nXIZJKaMi9Tk3mU9tOb59QuRGkIJCS_czjcc0j20pQ8Ia8pHFOl4QSwpVTqY_qMHFDNdSulYnv1DpK2gB3dJ4elXENdjLEXZJ8qoVTH5QH5vA7Bu7k0U2jKnL3dNNmXecp2jlNq6h58inOOIbrlKabGpmabe5vifUxXza2dfS4__PCSPA92LP7Vw7kilx_W388-thdfzj-dnV60TiDVLWfSMxF4CI6hGjqnpUMQgvWyBw5OKhAWgeGA2KG2vWAO-w4GH6gLVvEVOVp8b_L0c1vTmk0szo-jTX7aFoOAUnHBngQFIkOBT4MMdE0meQXfPoDbfuMHc5PjxuY782egFThZAJenUrIPxsX59-DmbONoKJhdZQbQ7CoztCre_6V4NP0HKxb2No7-7v-gWZ9-ZQCKKo5KV9mbRXa9a_ZRJgA6RmvsFXm3_Ac7GXuVYzGX3xhQXi00Alf8F44ktjo |
| CitedBy_id | crossref_primary_10_1016_j_ecss_2020_106995 crossref_primary_10_1029_2011WR010641 crossref_primary_10_1139_cjfas_2013_0300 crossref_primary_10_1111_j_1752_1688_2010_00418_x crossref_primary_10_1002_eap_1941 crossref_primary_10_5194_hess_20_3419_2016 crossref_primary_10_1371_journal_pone_0212690 crossref_primary_10_1080_08920753_2017_1237240 crossref_primary_10_3390_challe12020032 crossref_primary_10_3389_fmicb_2023_1161043 crossref_primary_10_1080_03632415_2013_836500 crossref_primary_10_1111_jawr_12225 crossref_primary_10_1016_j_scitotenv_2023_164911 crossref_primary_10_1002_ehs2_1247 crossref_primary_10_1016_j_ecoleng_2016_10_036 crossref_primary_10_1016_j_scitotenv_2015_05_121 crossref_primary_10_1007_s10533_011_9585_z crossref_primary_10_1007_s11252_012_0266_z crossref_primary_10_3390_w10091249 crossref_primary_10_1007_s11270_009_0064_2 crossref_primary_10_1890_11_0381_1 crossref_primary_10_3390_f14112205 crossref_primary_10_1007_s10533_009_9375_z crossref_primary_10_1029_2011WR011720 crossref_primary_10_1007_s10533_013_9926_1 crossref_primary_10_1002_jeq2_20101 crossref_primary_10_1007_s10661_024_12570_w crossref_primary_10_3398_064_071_0404 crossref_primary_10_3390_w12112981 crossref_primary_10_1002_eap_2107 crossref_primary_10_1016_j_ejsobi_2017_03_005 crossref_primary_10_1016_j_jenvman_2010_08_022 crossref_primary_10_1016_j_scitotenv_2025_179184 crossref_primary_10_1007_s10750_014_2167_z crossref_primary_10_3390_w13151996 crossref_primary_10_1029_2021JG006552 crossref_primary_10_1016_j_envpol_2022_119118 crossref_primary_10_1002_ecs2_2284 crossref_primary_10_1007_s10533_014_9971_4 crossref_primary_10_1002_hyp_15128 crossref_primary_10_2134_jeq2017_01_0006 crossref_primary_10_1007_s11252_023_01370_8 crossref_primary_10_1111_jawr_12193 crossref_primary_10_1016_j_watres_2023_120174 crossref_primary_10_1002_hyp_14670 crossref_primary_10_1007_s10533_012_9708_1 crossref_primary_10_1656_045_017_0301 crossref_primary_10_1002_ecs2_2549 crossref_primary_10_1007_s10533_020_00670_x crossref_primary_10_1007_s10533_014_9979_9 crossref_primary_10_1007_s10640_021_00575_9 crossref_primary_10_1007_s10021_015_9902_9 crossref_primary_10_1007_s12237_008_9129_5 crossref_primary_10_1007_s10533_014_0014_y crossref_primary_10_1016_j_scitotenv_2018_12_023 crossref_primary_10_3390_w12092458 crossref_primary_10_1093_femsec_fiw198 crossref_primary_10_1890_10_0854_1 crossref_primary_10_1007_s11252_011_0166_7 crossref_primary_10_1093_biosci_biv120 crossref_primary_10_1002_hyp_14324 crossref_primary_10_1016_j_ecolmodel_2016_05_018 crossref_primary_10_2134_jeq2015_06_0330 crossref_primary_10_3390_w8040151 crossref_primary_10_1899_08_169_1 crossref_primary_10_1111_rec_12134 crossref_primary_10_1007_s10533_016_0181_0 crossref_primary_10_1007_s11252_012_0226_7 crossref_primary_10_1111_j_1526_100X_2008_00438_x crossref_primary_10_1111_rec_12010 crossref_primary_10_1007_s00267_012_9970_y crossref_primary_10_1007_s10533_013_9900_y crossref_primary_10_1016_j_ecoleng_2013_07_068 crossref_primary_10_1016_j_ecoleng_2018_01_011 crossref_primary_10_1890_14_1102_1 crossref_primary_10_1007_s10661_019_7443_y crossref_primary_10_3390_w12061568 crossref_primary_10_1007_s10533_014_9968_z crossref_primary_10_1016_j_agee_2014_11_002 crossref_primary_10_1007_s10533_022_00975_z crossref_primary_10_2134_jeq2008_0220 crossref_primary_10_3390_w7084063 crossref_primary_10_1016_j_ecoleng_2017_08_006 crossref_primary_10_1016_j_agee_2014_03_026 crossref_primary_10_1007_s10666_009_9218_2 crossref_primary_10_1016_j_rse_2010_05_004 crossref_primary_10_1007_s10533_008_9277_5 crossref_primary_10_1111_rec_14327 crossref_primary_10_1007_s10533_017_0336_7 crossref_primary_10_1016_j_advwatres_2021_104087 crossref_primary_10_1016_j_ecoleng_2011_09_001 crossref_primary_10_1029_2022WR033991 crossref_primary_10_1111_j_1752_1688_2011_00631_x crossref_primary_10_1016_j_ecoleng_2010_03_015 crossref_primary_10_1080_02755947_2011_598384 crossref_primary_10_1080_10643389_2013_829769 crossref_primary_10_1016_S1002_0160_14_60038_2 crossref_primary_10_1016_j_ecoleng_2020_106040 crossref_primary_10_1029_2018JG004436 crossref_primary_10_1111_j_1752_1688_2011_00635_x crossref_primary_10_1007_s00248_023_02179_w crossref_primary_10_1016_j_ecoleng_2013_07_059 crossref_primary_10_1016_j_ecoleng_2015_05_024 crossref_primary_10_1890_12_0458_1 crossref_primary_10_1007_s10533_014_0016_9 crossref_primary_10_1196_annals_1439_014 crossref_primary_10_1007_s13157_023_01768_2 crossref_primary_10_1016_j_ecolind_2018_09_013 crossref_primary_10_1111_1752_1688_13073 crossref_primary_10_1196_annals_1439_012 crossref_primary_10_5194_bg_10_1193_2013 crossref_primary_10_1002_hyp_10821 crossref_primary_10_1007_s11104_016_3038_3 crossref_primary_10_1007_s12237_008_9106_z crossref_primary_10_1007_s10021_012_9630_3 crossref_primary_10_1002_wrcr_20492 crossref_primary_10_1007_s10021_016_0103_y crossref_primary_10_5194_soil_3_95_2017 crossref_primary_10_1002_hyp_11236 crossref_primary_10_1016_j_apgeochem_2020_104632 crossref_primary_10_1080_10643389_2017_1318618 crossref_primary_10_1016_j_ecss_2013_04_015 crossref_primary_10_1002_wat2_1355 crossref_primary_10_1016_j_scitotenv_2012_10_085 crossref_primary_10_1007_s11270_015_2434_2 crossref_primary_10_1029_2020WR028518 crossref_primary_10_1890_10_0653_1 crossref_primary_10_1007_s10533_021_00784_w crossref_primary_10_1007_s11252_010_0134_7 crossref_primary_10_1007_s10533_021_00866_9 crossref_primary_10_1016_j_marpolbul_2012_10_020 crossref_primary_10_1002_rra_3990 crossref_primary_10_1002_lno_10613 crossref_primary_10_1016_j_scitotenv_2016_11_166 crossref_primary_10_1007_s10533_014_9958_1 crossref_primary_10_1007_s10533_020_00659_6 crossref_primary_10_1016_j_jclepro_2019_117721 crossref_primary_10_1111_rec_14070 crossref_primary_10_3389_fenvs_2023_1122485 crossref_primary_10_3389_fmicb_2017_02304 crossref_primary_10_2134_jeq2013_12_0481 crossref_primary_10_1002_2014WR016874 crossref_primary_10_2134_jeq2013_07_0303 crossref_primary_10_1016_j_ecolecon_2022_107654 crossref_primary_10_1016_j_ecoleng_2025_107733 crossref_primary_10_1016_j_ecoleng_2010_02_006 crossref_primary_10_1016_j_seares_2009_12_004 crossref_primary_10_1007_s11273_015_9445_z crossref_primary_10_1899_08_186_1 crossref_primary_10_1111_jawr_12205 crossref_primary_10_1088_1748_9326_abe007 crossref_primary_10_1016_j_ecoleng_2019_08_002 crossref_primary_10_1371_journal_pone_0261714 crossref_primary_10_1007_s11252_021_01199_z crossref_primary_10_2134_jeq2009_0012 crossref_primary_10_1111_1752_1688_12922 crossref_primary_10_1039_C0EM00055H crossref_primary_10_1007_s10533_014_0003_1 crossref_primary_10_2489_jswc_72_2_168 crossref_primary_10_2134_jeq2010_0335 crossref_primary_10_3390_w8040116 crossref_primary_10_1002_rra_2639 crossref_primary_10_1007_s00248_011_9833_8 crossref_primary_10_1007_s10533_018_0423_4 crossref_primary_10_1007_s11356_020_12319_1 crossref_primary_10_1111_j_1526_100X_2011_00824_x crossref_primary_10_3389_frwa_2023_1306481 crossref_primary_10_3390_w12082164 crossref_primary_10_1061__ASCE_HE_1943_5584_0002171 crossref_primary_10_1007_s10021_021_00687_9 crossref_primary_10_1111_j_1752_1688_2010_00420_x crossref_primary_10_1007_s10750_011_0619_2 crossref_primary_10_1016_j_ecoleng_2025_107748 crossref_primary_10_3390_soilsystems7020036 crossref_primary_10_1093_biosci_biae083 crossref_primary_10_1007_s13157_020_01279_4 crossref_primary_10_1890_10_0618_1 crossref_primary_10_1016_j_scitotenv_2020_138793 crossref_primary_10_1002_hyp_10210 crossref_primary_10_1007_s00027_009_0118_y crossref_primary_10_1021_es800264f crossref_primary_10_5194_bg_12_7331_2015 crossref_primary_10_1007_s10533_018_0431_4 crossref_primary_10_1088_1748_9326_abc914 crossref_primary_10_1111_rec_13394 crossref_primary_10_1007_s11252_021_01182_8 crossref_primary_10_1007_s00267_014_0270_6 crossref_primary_10_1007_s10533_014_9999_5 crossref_primary_10_2134_jeq2018_01_0009 |
| Cites_doi | 10.1029/2006WR005233 10.1890/03-5220 10.1890/05-0134 10.1111/j.1365-2427.2006.01710.x 10.1111/j.1752-1688.2000.tb05722.x 10.1126/science.1056874 10.1023/B:BIOG.0000025742.82155.92 10.2134/jeq2003.1144 10.1029/2005WR003985 10.1890/04-0171 10.1080/10643389709388502 10.2134/jeq1998.00472425002700010021x 10.1073/pnas.0405895101 10.1021/es020649z 10.1023/A:1015709302073 10.1023/A:1015745629794 10.1007/BF02179825 10.1038/35001562 10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2 10.2307/2404238 10.1899/04-026.1 10.2134/jeq1996.00472425002500060020x 10.1007/s00267-004-0315-3 10.1023/A:1005932528748 10.2134/jeq2006.0084 10.1007/s00248-004-0159-7 10.1029/2005WR004354 10.4319/lo.2004.49.3.0809 10.1111/j.1745-6584.1998.tb01097.x 10.1899/0887-3593(2007)26[38:EOUDAI]2.0.CO;2 10.1007/s10533-004-4723-5 10.2136/sssaj1985.03615995004900030025x 10.1046/j.1365-2427.1999.00399.x 10.1007/BF02696018 10.2134/jeq2005.0524 10.1890/1540-9295(2005)003[0259:RWPBPT]2.0.CO;2 10.1021/es061618x 10.4319/lo.1988.33.5.1209 10.1007/BF02804898 10.4319/lo.2004.49.3.0821 10.4319/lo.2006.51.3.1443 10.2134/jeq2001.302303x 10.1139/f05-199 10.2134/jeq2004.0483 10.1029/2006GL025845 10.3354/meps303001 10.2134/jeq1996.00472425002500040014x 10.1007/s10021-003-0161-9 10.1890/0012-9658(1998)079[0684:TCONAO]2.0.CO;2 10.4319/lo.2003.48.3.1120 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 10.2134/jeq2002.1017 10.2307/1939127 10.1023/A:1021192631423 10.2136/sssaj1988.03615995005200040060x 10.1007/s10533-004-0565-4 10.1899/04-027.1 10.1111/j.1745-6584.2005.00107.x 10.1016/0022-1694(86)90155-1 10.1146/annurev.ecolsys.32.081501.114040 10.1007/s10021-003-0143-y 10.1126/science.1109769 10.1111/j.1745-6584.1997.tb00127.x 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 10.4319/lo.1981.26.5.0867 10.1046/j.1365-2427.2002.00906.x 10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2 10.2307/520904 |
| ContentType | Journal Article |
| Copyright | Copyright 2008 Ecological Society of America 2008 by the Ecological Society of America |
| Copyright_xml | – notice: Copyright 2008 Ecological Society of America – notice: 2008 by the Ecological Society of America |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 7TV 7U6 7UA C1K F1W H95 L.G 7S9 L.6 7X8 |
| DOI | 10.1890/07-1159.1 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Pollution Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Environmental Sciences Chemistry |
| EISSN | 1939-5582 |
| EndPage | 804 |
| ExternalDocumentID | 18488635 10_1890_07_1159_1 EAP2008183789 40062186 US201300897038 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GeographicLocations | Maryland ANW, USA, Maryland, Baltimore |
| GeographicLocations_xml | – name: Maryland – name: ANW, USA, Maryland, Baltimore |
| GroupedDBID | --- -ET -~X .-4 ..I 0R~ 1OB 1OC 29G 2AX 33P 4.4 42X 53G 5GY 85S 8WZ A6W AAESR AAHBH AAHHS AAHKG AAHQN AAIHA AAIKC AAISJ AAKGQ AAMNL AAMNW AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABAWQ ABBHK ABCUV ABEFU ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABSQW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACGFS ACHIC ACHJO ACNCT ACPOU ACSTJ ACUBG ACXBN ACXQS ADBBV ADKYN ADMGS ADNWM ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFFPM AFGKR AFWVQ AFXHP AFZJQ AGHNM AGUYK AHBTC AHXOZ AI. AIDAL AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ANHSF AQVQM AS~ AZFZN AZVAB BFHJK BMXJE BRXPI CBGCD CS3 CUYZI DCZOG DDYGU DEVKO DRFUL DRSTM DU5 EBS ECGQY EJD F5P FBQ FVMVE GTFYD HGD HGLYW HQ2 HTVGU HVGLF H~9 IAG IAO IEA IEP IGH IOF IPSME ITC JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST L7B LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MV1 MVM MXFUL MXSTM NHB NXSMM O9- P0- P2P P2W PALCI RJQFR ROL RSZ SA0 SAMSI SUPJJ TN5 UKR V62 VH1 VOH WBKPD WH7 WOHZO WXSBR XIH XSW Y6R YV5 YXE YYM YYP Z0I ZCA ZCG ZO4 ZZTAW ~02 ~KM AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY ABYAD ACTWD AEUQT DOOOF EQZMY JSODD VQA AAYXX AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7SN 7ST 7TV 7U6 7UA C1K F1W H95 L.G 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c4719-325e24f3ffc278d6c95c70442b5b030c5804a7027d77679ab42c7b60def1cfa83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255437500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-0761 |
| IngestDate | Fri Sep 05 07:52:22 EDT 2025 Fri Sep 05 17:31:41 EDT 2025 Tue Oct 07 10:14:02 EDT 2025 Thu Apr 03 07:07:54 EDT 2025 Tue Nov 18 21:27:22 EST 2025 Sat Nov 29 03:26:29 EST 2025 Wed Jan 22 16:52:08 EST 2025 Thu Jul 03 21:22:36 EDT 2025 Thu Apr 03 09:45:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4719-325e24f3ffc278d6c95c70442b5b030c5804a7027d77679ab42c7b60def1cfa83 |
| Notes | Corresponding Editor: J. S. Baron. Present address: University of Maryland, Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, Maryland 20688 USA. E‐mail 5 kaushal@cbl.umccs.edu ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://digitalcommons.uri.edu/nrs_facpubs/431 |
| PMID | 18488635 |
| PQID | 20903053 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_70758342 proquest_miscellaneous_47727472 proquest_miscellaneous_20903053 pubmed_primary_18488635 crossref_citationtrail_10_1890_07_1159_1 crossref_primary_10_1890_07_1159_1 wiley_primary_10_1890_07_1159_1_EAP2008183789 jstor_primary_40062186 fao_agris_US201300897038 |
| PublicationCentury | 2000 |
| PublicationDate | April 2008 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: April 2008 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Ecological applications |
| PublicationTitleAlternate | Ecol Appl |
| PublicationYear | 2008 |
| Publisher | Ecological Society of America |
| Publisher_xml | – name: Ecological Society of America |
| References | 2002; 52 2006; 33 1984; 65 2002; 57 2004; 68 1988; 33 1999; 41 1996; 35 2005; 28 1998; 42 2007; 36 1979 2005; 24 1997; 7 2002; 47 2006; 63 1986; 83 2001; 292 2000; 403 2003; 6 2005; 303 1993; 30 2005; 73 2005; 74 2003; 48 2005; 308 1982 1996; 25 2005; 34 2007; 26 2005; 36 1998; 27 2004; 101 2002; 36 2004; 85 2006; 51 2002; 31 2002; 57–58 2004; 49 2006; 16 2005; 41 2007 1996 2006 1997; 27 1981; 26 2005 1994 1988; 52 2003 2007; 52 1967; 49 2003; 32 1985; 49 2002; 25 2006; 42 2000; 36 2006; 44 2005; 8 1997; 35 2005; 51 2005; 3 2007; 41 2005; 15 2007; 43 2003; 62 2001; 30 1998; 36 1998; 79 2001; 32 i1051-0761-18-3-789-Hall1 i1051-0761-18-3-789-Addy2 i1051-0761-18-3-789-Kaushal1 i1051-0761-18-3-789-Addy1 i1051-0761-18-3-789-McClain1 i1051-0761-18-3-789-Kaushal2 i1051-0761-18-3-789-Pribyl1 i1051-0761-18-3-789-Green1 i1051-0761-18-3-789-Bernot1 i1051-0761-18-3-789-Whitmire1 i1051-0761-18-3-789-Loheide1 i1051-0761-18-3-789-Wohl1 Grimm N. B. (i1051-0761-18-3-789-Grimm1) 2005; 24 i1051-0761-18-3-789-Sweeney1 i1051-0761-18-3-789-Bohlke2 i1051-0761-18-3-789-Bohlke1 i1051-0761-18-3-789-Boulton1 i1051-0761-18-3-789-Roberts1 i1051-0761-18-3-789-Malard1 i1051-0761-18-3-789-Hassett1 i1051-0761-18-3-789-Trudell1 i1051-0761-18-3-789-Kellogg1 i1051-0761-18-3-789-Kemp1 i1051-0761-18-3-789-Hill1 i1051-0761-18-3-789-Hill2 i1051-0761-18-3-789-Istok1 i1051-0761-18-3-789-Vitousek1 i1051-0761-18-3-789-Gold1 i1051-0761-18-3-789-Kasahara1 i1051-0761-18-3-789-Schroth1 i1051-0761-18-3-789-Howarth1 i1051-0761-18-3-789-Peterjohn1 i1051-0761-18-3-789-Wolman1 i1051-0761-18-3-789-Winter1 i1051-0761-18-3-789-Seitzinger1 i1051-0761-18-3-789-Stanley1 i1051-0761-18-3-789-Lemon1 i1051-0761-18-3-789-Gucker2 i1051-0761-18-3-789-Howarth2 i1051-0761-18-3-789-Gucker1 i1051-0761-18-3-789-Wollheim1 i1051-0761-18-3-789-Bukaveckas1 i1051-0761-18-3-789-Davidson1 i1051-0761-18-3-789-Jantz1 i1051-0761-18-3-789-Pinay1 i1051-0761-18-3-789-Groffman5 i1051-0761-18-3-789-Haggerty1 i1051-0761-18-3-789-Groffman6 i1051-0761-18-3-789-Sobczak1 i1051-0761-18-3-789-Paul1 i1051-0761-18-3-789-Peterson1 i1051-0761-18-3-789-Groffman1 i1051-0761-18-3-789-Mulholland1 i1051-0761-18-3-789-Groffman2 i1051-0761-18-3-789-Fennessy1 i1051-0761-18-3-789-Groffman3 i1051-0761-18-3-789-Groffman4 i1051-0761-18-3-789-Myrold1 i1051-0761-18-3-789-Brown1 i1051-0761-18-3-789-Boyer1 i1051-0761-18-3-789-Henshaw1 i1051-0761-18-3-789-Boesch1 i1051-0761-18-3-789-Tockner1 i1051-0761-18-3-789-Alexander1 i1051-0761-18-3-789-Bernhardt1 i1051-0761-18-3-789-Palmer1 i1051-0761-18-3-789-Hedin1 i1051-0761-18-3-789-Smith1 |
| References_xml | – volume: 403 start-page: 758 year: 2000 end-page: 761 article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico publication-title: Nature – volume: 30 start-page: 303 year: 2001 end-page: 320 article-title: Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture publication-title: Journal of Environmental Quality – volume: 36 start-page: 664 year: 2007 end-page: 680 article-title: Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions publication-title: Journal of Environmental Quality – year: 2005 – volume: 32 start-page: 1144 year: 2003 end-page: 1149 article-title: Denitrification potential in urban riparian zones publication-title: Journal of Environmental Quality – volume: 63 start-page: 120 year: 2006 end-page: 133 article-title: Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 32 start-page: 333 year: 2001 end-page: 365 article-title: Streams in the urban landscape publication-title: Annual Review of Ecology and Systematics – volume: 41 start-page: W10301 year: 2005 article-title: River restoration publication-title: Water Resources Research – volume: 27 start-page: 285 year: 1997 end-page: 317 article-title: The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate publication-title: Critical Reviews in Environmental Science and Technology – volume: 26 start-page: 38 year: 2007 end-page: 53 article-title: Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams publication-title: Journal of the North American Benthological Society – volume: 62 start-page: 309 year: 2003 end-page: 327 article-title: Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach publication-title: Biogeochemistry – volume: 48 start-page: 1120 year: 2003 end-page: 1128 article-title: Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming publication-title: Limnology and Oceanography – volume: 308 start-page: 636 year: 2005 end-page: 637 article-title: Ecology—synthesizing U.S. river restoration efforts publication-title: Science – year: 1979 – volume: 26 start-page: 867 year: 1981 end-page: 879 article-title: Nitrous oxide in freshwaters of the Great Lakes Basin publication-title: Limnology and Oceanography – volume: 28 start-page: 896 year: 2005 end-page: 908 article-title: Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh publication-title: Estuaries – volume: 8 start-page: 442 year: 2005 end-page: 453 article-title: Nitrogen retention, removal, and saturation in lotic ecosystems publication-title: Ecosystems – volume: 3 start-page: 259 year: 2005 end-page: 267 article-title: Restoring watersheds project by project: trends in Chesapeake Bay tributary restoration publication-title: Frontiers in Ecology and the Environment – volume: 68 start-page: 71 year: 2004 end-page: 105 article-title: Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology publication-title: Biogeochemistry – volume: 6 start-page: 315 year: 2003 end-page: 321 article-title: Down by the riverside: urban riparian ecology publication-title: Frontiers in Ecology and the Environment – volume: 31 start-page: 1017 year: 2002 end-page: 1024 article-title: In situ push-pull method to determine ground water denitrification in riparian zones publication-title: Journal of Environmental Quality – volume: 303 start-page: 1 year: 2005 end-page: 29 article-title: Eutrophication of Chesapeake Bay: historical trends and ecological interactions publication-title: Marine Ecology Progress Series – volume: 36 start-page: 1219 year: 2000 end-page: 1236 article-title: Re-equilibration of stream channels in urban watersheds publication-title: Journal of the American Water Resources Association – volume: 36 start-page: 808 year: 2005 end-page: 825 article-title: Urbanization and the loss of resource lands in the Chesapeake Bay watershed publication-title: Environmental Management – volume: 52 start-page: 632 year: 2007 end-page: 650 article-title: Hyporheic rehabilitation in rivers: restoring vertical connectivity publication-title: Freshwater Biology – volume: 41 start-page: 1570 year: 2007 end-page: 1576 article-title: Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream publication-title: Environmental Science and Technology – volume: 34 start-page: 524 year: 2005 end-page: 533 article-title: In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands publication-title: Journal of Environmental Quality – start-page: 1047 year: 1994 end-page: 1065 – volume: 49 start-page: 809 year: 2004 end-page: 820 article-title: Stream denitrification and total nitrate uptake rates measured using a field N tracer addition approach publication-title: Limnology and Oceanography – volume: 34 start-page: 2062 year: 2005 end-page: 2071 article-title: Rapid removal of nitrate and sulfate in freshwater wetland sediments publication-title: Journal of Environmental Quality – volume: 292 start-page: 86 year: 2001 end-page: 90 article-title: Control of nitrogen export from watersheds by headwater streams publication-title: Science – volume: 35 start-page: 75 year: 1996 end-page: 139 article-title: Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human infuences publication-title: Biogeochemistry – volume: 16 start-page: 1091 year: 2006 end-page: 2122 article-title: Methods for measuring denitrification: diverse approaches to a difficult problem publication-title: Ecological Applications – volume: 49 start-page: 385 year: 1967 end-page: 395 article-title: A cycle of sedimentation and erosion in urban river channels publication-title: Geografiska Annaler Series A: Physical Geography – volume: 51 start-page: 22 year: 2005 end-page: 35 article-title: Assessment of nitrification potential in ground water using short term, single-well injection experiments publication-title: Microbial Ecology – volume: 27 start-page: 146 year: 1998 end-page: 155 article-title: Patchiness in groundwater nitrate removal in a riparian forest publication-title: Journal of Environmental Quality – start-page: 536 year: 2003 end-page: 541 – volume: 25 start-page: 656 year: 2002 end-page: 676 article-title: Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals publication-title: Estuaries – volume: 33 year: 2006 end-page: L06410 article-title: Relationship between river size and nutrient removal publication-title: Geophysical Research Letters – volume: 35 start-page: 619 year: 1997 end-page: 631 article-title: Single-well, “push-pull” test for in situ determination of microbial activities publication-title: Ground Water – volume: 83 start-page: 251 year: 1986 end-page: 268 article-title: An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer publication-title: Journal of Hydrology – volume: 51 start-page: 1443 year: 2006 end-page: 1453 article-title: Regulation of nutrient uptake in eutrophic lowland streams publication-title: Limnology and Oceanography – start-page: 45 year: 2007 end-page: 58 – volume: 42 start-page: 285 year: 1998 end-page: 310 article-title: Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream publication-title: Biogeochemistry – volume: 74 start-page: 303 year: 2005 end-page: 321 article-title: Fate and transport of dissolved organic nitrogen in minimally disturbed streams of Colorado, U.S.A publication-title: Biogeochemistry – volume: 44 start-page: 275 year: 2006 end-page: 283 article-title: Models to determine first-order rate coefficients from single-well push-pull tests publication-title: Ground Water – volume: 30 start-page: 581 year: 1993 end-page: 591 article-title: Spatial and temporal patterns of denitrification in a riparian forest publication-title: Journal of Applied Ecology – volume: 57–58 start-page: 199 year: 2002 end-page: 237 article-title: Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A publication-title: Biogeochemistry – year: 1996 – volume: 33 start-page: 1209 year: 1988 end-page: 1214 article-title: The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water publication-title: Limnology and Oceanography – volume: 24 start-page: 613 year: 2005 end-page: 625 article-title: Nitrogen processing within geomorphic features in urban streams publication-title: Journal of the North American Benthological Society – volume: 15 start-page: 1851 year: 2005 end-page: 1863 article-title: Rural land-use trends in the conterminous United States, 1950–2000 publication-title: Ecological Applications – volume: 43 year: 2007 end-page: W07414 article-title: Riparian hydroecology: a coupled model of the observed interactions between groundwater flow and meadow vegetation patterning publication-title: Water Resources Research – volume: 6 start-page: 301 year: 2003 end-page: 312 article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems publication-title: Ecosystems – volume: 41 start-page: 521 year: 1999 end-page: 535 article-title: Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria) publication-title: Freshwater Biology – volume: 49 start-page: 651 year: 1985 end-page: 657 article-title: Diffusional constraints on denitrification in soil publication-title: Soil Science Society of America Journal – volume: 36 start-page: 314 year: 1998 end-page: 324 article-title: Simplified method of “push-pull” test data analysis for determining in situ reaction rate coefficients publication-title: Ground Water – volume: 47 start-page: 621 year: 2002 end-page: 640 article-title: A landscape perspective of surface–subsurface hydrological exchanges in river corridors publication-title: Freshwater Biology – start-page: 1011 year: 1982 end-page: 1025 – volume: 24 start-page: 626 year: 2005 end-page: 642 article-title: N retention and transformation in urban streams publication-title: Journal of the North American Benthological Society – volume: 52 start-page: 1201 year: 1988 end-page: 1203 article-title: Measurement of nitrous oxide dissolved in soil solution publication-title: Soil Science Society of America Journal – volume: 25 start-page: 743 year: 1996 end-page: 755 article-title: Nitrate removal in stream riparian zones publication-title: Journal of Environmental Quality – volume: 16 start-page: 299 year: 2006 end-page: 312 article-title: Land use change and nitrogen enrichment of a Rocky Mountain watershed publication-title: Ecological Applications – volume: 7 start-page: 737 year: 1997 end-page: 750 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecological Applications – volume: 36 start-page: 4547 year: 2002 end-page: 4552 article-title: Soil nitrogen cycling processes in urban riparian zones publication-title: Environmental Science and Technology – volume: 101 start-page: 14132 year: 2004 end-page: 14137 article-title: Riparian deforestation, stream narrowing, and loss of stream ecosystem services publication-title: Proceedings of the National Academy of Sciences (USA) – volume: 49 start-page: 821 year: 2004 end-page: 838 article-title: Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, mid-continent United States publication-title: Limnology and Oceanography – year: 2006 – volume: 42 start-page: W03S07 year: 2006 article-title: Hydroecology and river restoration: ripe for research and synthesis publication-title: Water Resources Research – volume: 73 start-page: 439 year: 2005 end-page: 455 article-title: Whole-system estimation of denitrification in a plains river: a comparison of two methods publication-title: Biogeochemistry – volume: 25 start-page: 1309 year: 1996 end-page: 1316 article-title: Microbial nitrate processing in shallow groundwater in a riparian forest publication-title: Journal of Environmental Quality – volume: 57 start-page: 137 year: 2002 end-page: 169 article-title: Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A publication-title: Biogeochemistry – volume: 85 start-page: 2818 year: 2004 end-page: 2827 article-title: Stream morphology controls ammonium retention in tropical headwaters publication-title: Ecology – volume: 79 start-page: 684 year: 1998 end-page: 703 article-title: Thermodynamics constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces publication-title: Ecology – volume: 52 start-page: 693 year: 2002 end-page: 701 article-title: A geomorphic perspective on nutrient retention following dam removal publication-title: BioScience – volume: 65 start-page: 1466 year: 1984 end-page: 1475 article-title: Nutrient dynamics in an agricultural watershed: observations on the role a riparian forest publication-title: Ecology – ident: i1051-0761-18-3-789-Loheide1 doi: 10.1029/2006WR005233 – ident: i1051-0761-18-3-789-Brown1 doi: 10.1890/03-5220 – ident: i1051-0761-18-3-789-Kaushal2 doi: 10.1890/05-0134 – ident: i1051-0761-18-3-789-Boulton1 doi: 10.1111/j.1365-2427.2006.01710.x – ident: i1051-0761-18-3-789-Henshaw1 doi: 10.1111/j.1752-1688.2000.tb05722.x – ident: i1051-0761-18-3-789-Peterson1 doi: 10.1126/science.1056874 – ident: i1051-0761-18-3-789-Green1 doi: 10.1023/B:BIOG.0000025742.82155.92 – ident: i1051-0761-18-3-789-Groffman4 doi: 10.2134/jeq2003.1144 – ident: i1051-0761-18-3-789-Wohl1 doi: 10.1029/2005WR003985 – ident: i1051-0761-18-3-789-Gucker1 doi: 10.1890/04-0171 – ident: i1051-0761-18-3-789-Fennessy1 doi: 10.1080/10643389709388502 – ident: i1051-0761-18-3-789-Gold1 doi: 10.2134/jeq1998.00472425002700010021x – ident: i1051-0761-18-3-789-Sweeney1 doi: 10.1073/pnas.0405895101 – ident: i1051-0761-18-3-789-Groffman3 doi: 10.1021/es020649z – ident: i1051-0761-18-3-789-Boyer1 doi: 10.1023/A:1015709302073 – ident: i1051-0761-18-3-789-Seitzinger1 doi: 10.1023/A:1015745629794 – ident: i1051-0761-18-3-789-Howarth2 doi: 10.1007/BF02179825 – ident: i1051-0761-18-3-789-Alexander1 doi: 10.1038/35001562 – ident: i1051-0761-18-3-789-Groffman2 doi: 10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2 – ident: i1051-0761-18-3-789-Pinay1 doi: 10.2307/2404238 – ident: i1051-0761-18-3-789-Groffman5 doi: 10.1899/04-026.1 – ident: i1051-0761-18-3-789-Groffman6 doi: 10.2134/jeq1996.00472425002500060020x – ident: i1051-0761-18-3-789-Jantz1 doi: 10.1007/s00267-004-0315-3 – ident: i1051-0761-18-3-789-Hill2 doi: 10.1023/A:1005932528748 – ident: i1051-0761-18-3-789-Bohlke2 doi: 10.2134/jeq2006.0084 – ident: i1051-0761-18-3-789-Smith1 doi: 10.1007/s00248-004-0159-7 – ident: i1051-0761-18-3-789-Palmer1 doi: 10.1029/2005WR004354 – ident: i1051-0761-18-3-789-Mulholland1 doi: 10.4319/lo.2004.49.3.0809 – ident: i1051-0761-18-3-789-Haggerty1 doi: 10.1111/j.1745-6584.1998.tb01097.x – ident: i1051-0761-18-3-789-Roberts1 doi: 10.1899/0887-3593(2007)26[38:EOUDAI]2.0.CO;2 – ident: i1051-0761-18-3-789-Kaushal1 doi: 10.1007/s10533-004-4723-5 – ident: i1051-0761-18-3-789-Myrold1 doi: 10.2136/sssaj1985.03615995004900030025x – ident: i1051-0761-18-3-789-Tockner1 doi: 10.1046/j.1365-2427.1999.00399.x – ident: i1051-0761-18-3-789-Addy1 doi: 10.1007/BF02696018 – ident: i1051-0761-18-3-789-Kellogg1 doi: 10.2134/jeq2005.0524 – ident: i1051-0761-18-3-789-Hassett1 doi: 10.1890/1540-9295(2005)003[0259:RWPBPT]2.0.CO;2 – ident: i1051-0761-18-3-789-Bukaveckas1 doi: 10.1021/es061618x – ident: i1051-0761-18-3-789-Winter1 doi: 10.4319/lo.1988.33.5.1209 – ident: i1051-0761-18-3-789-Howarth1 doi: 10.1007/BF02804898 – ident: i1051-0761-18-3-789-Bohlke1 doi: 10.4319/lo.2004.49.3.0821 – ident: i1051-0761-18-3-789-Gucker2 doi: 10.4319/lo.2006.51.3.1443 – ident: i1051-0761-18-3-789-Boesch1 doi: 10.2134/jeq2001.302303x – ident: i1051-0761-18-3-789-Kasahara1 doi: 10.1139/f05-199 – ident: i1051-0761-18-3-789-Whitmire1 doi: 10.2134/jeq2004.0483 – ident: i1051-0761-18-3-789-Wollheim1 doi: 10.1029/2006GL025845 – ident: i1051-0761-18-3-789-Kemp1 doi: 10.3354/meps303001 – ident: i1051-0761-18-3-789-Hill1 doi: 10.2134/jeq1996.00472425002500040014x – ident: i1051-0761-18-3-789-McClain1 doi: 10.1007/s10021-003-0161-9 – ident: i1051-0761-18-3-789-Hedin1 doi: 10.1890/0012-9658(1998)079[0684:TCONAO]2.0.CO;2 – ident: i1051-0761-18-3-789-Hall1 doi: 10.4319/lo.2003.48.3.1120 – ident: i1051-0761-18-3-789-Groffman1 doi: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 – ident: i1051-0761-18-3-789-Addy2 doi: 10.2134/jeq2002.1017 – ident: i1051-0761-18-3-789-Peterjohn1 doi: 10.2307/1939127 – ident: i1051-0761-18-3-789-Sobczak1 doi: 10.1023/A:1021192631423 – ident: i1051-0761-18-3-789-Davidson1 doi: 10.2136/sssaj1988.03615995005200040060x – ident: i1051-0761-18-3-789-Pribyl1 doi: 10.1007/s10533-004-0565-4 – volume: 24 start-page: 626 year: 2005 ident: i1051-0761-18-3-789-Grimm1 publication-title: Journal of the North American Benthological Society doi: 10.1899/04-027.1 – ident: i1051-0761-18-3-789-Schroth1 doi: 10.1111/j.1745-6584.2005.00107.x – ident: i1051-0761-18-3-789-Trudell1 doi: 10.1016/0022-1694(86)90155-1 – ident: i1051-0761-18-3-789-Paul1 doi: 10.1146/annurev.ecolsys.32.081501.114040 – ident: i1051-0761-18-3-789-Bernot1 doi: 10.1007/s10021-003-0143-y – ident: i1051-0761-18-3-789-Bernhardt1 doi: 10.1126/science.1109769 – ident: i1051-0761-18-3-789-Istok1 doi: 10.1111/j.1745-6584.1997.tb00127.x – ident: i1051-0761-18-3-789-Vitousek1 doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 – ident: i1051-0761-18-3-789-Lemon1 doi: 10.4319/lo.1981.26.5.0867 – ident: i1051-0761-18-3-789-Malard1 doi: 10.1046/j.1365-2427.2002.00906.x – ident: i1051-0761-18-3-789-Stanley1 doi: 10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2 – ident: i1051-0761-18-3-789-Wolman1 doi: 10.2307/520904 |
| SSID | ssj0000222 |
| Score | 2.4047687 |
| Snippet | Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United... |
| SourceID | proquest pubmed crossref wiley jstor fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 789 |
| SubjectTerms | Average linear density chemistry Chesapeake Bay Cities Conservation of Natural Resources Conservation of Natural Resources - methods denitrification Ecosystem eutrophication floodplains Groundwater Groundwater flow habitat conservation hydrochemistry Hydrogeology Maryland methods nitrate nitrogen Nitrates Nitrates - chemistry Nitrogen Nitrogen - chemistry Piezometers prevention & control Riparian areas Rivers Rivers - chemistry stream restoration Streams surface water urban areas urbanization USA Water Pollutants, Chemical Water Pollutants, Chemical - chemistry Water Pollution, Chemical Water Pollution, Chemical - prevention & control Watersheds |
| Title | Effects of stream restoration on denitrification in an urbanizing watershed |
| URI | https://www.jstor.org/stable/40062186 https://onlinelibrary.wiley.com/doi/abs/10.1890%2F07-1159.1 https://www.ncbi.nlm.nih.gov/pubmed/18488635 https://www.proquest.com/docview/20903053 https://www.proquest.com/docview/47727472 https://www.proquest.com/docview/70758342 |
| Volume | 18 |
| WOSCitedRecordID | wos000255437500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-5582 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000222 issn: 1051-0761 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tAyQuvMuGx2IhDlwCifOwLU5hm7ARS1i1qai4WLbjICTUou0uEv-ecZK2Wml7QEg5-DCWHI9n5ht7HgCvtYkjZhPmJyFrXQuzyBdt0vqUp2h_mEVM0pXMP2NVxedzcb4H79e5MH19iM2Fm5OMTl87AVe670LCRRcVx3xEM-Ituj6HLqkKPa_D8aSYnW0Vcf-IgAgCPWZ014fCQjj93WbyNXO036rlOi7xJsR5HcB2Fqi4919rvw93B-BJsv6kPIA9u3gIt_tWlH9wlJthNMq3uW84YRD-1SP4hJg2P6mn5EtBpvUkzz4TZF89XHMR_MZ5VdaTshiyk0lZkawis8mHrCq_ldVH8jVD9Dw9zcePYVbk9cmpP_Ri8A2aL-FHNLE0bqO2NZTxJjUiMSyIY6oTjXrCJDyIleNC48oDCaVjaphOg8a2oWkVj0ZwsFgu7BGQVIXaslSxpEHnnFvdGER9eECYQDinlQdv1iyRZihU7vpl_JTOYcENlAGTbvtk6MGrDemvvjrHTURHyFepvqPWlLMpdW-1AReo6rgHo47Zm8mxyykNeerByzX3Jcqbe0RRC7u8WknqLrZQc-2miNFhQSeN7qZgiNN4FCPFk_5gbRfPUaEiBvTA787P7r-SeXZOu4KEEePi6T_SP4M7feCLC0F6DgeXF1f2Bdwyvy9_rC6OYZ_N-fEgTn8BO2gQsw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8aHQgufJeFr1mIA5dA4jixLXEJa0KjdWFqUzFxsRLHmSahFq0bEv89z0naatJ6QEg5-PCe5Ph9_d6z_QzwvtIs4Cbkbujzxj5hFriyCRuXigjjDzeISdqW-ROe5-LsTJ7uwef1XZiuP8Sm4GYto_XX1sBtQbq1ciHbY3HcRTgjP2Lus8-igIsB7I-m6Xyy9cTdLgJCCEyZMV_vOwsh-6cN8414dKcpl-uDibdBzpsItg1B6aP_m_xjeNhDTxJ3uvIE9sziKdzrHqP8g6NE96Nhsr39hgy9-a-ewTGi2uSomJFvKZkV0yQ-ISjAoi90EfxGSZ4V0yzt7yeTLCdxTubTL3Ge_cjyr-R7jPh5Nk5Gz2GeJsXR2O1fY3A1BjDpBjQ0lDVB02jKRR1pGWruMUarsEJPoUPhsZJjllvbBkGyrBjVvIq82jS-bkoRDGGwWC7MAZCo9CvDo5KHNabnwlS1RtyHKsIlArqqdODDWiZK963K7YsZP5VNWXABlceVXT7lO_BuQ_qr689xG9EBClaV5-g31XxG7W6tJyQ6O-HAsJX2hpnZW6W-iBw4XItfocXZbZRyYZbXK0VtaQt9124KhikLpml0NwVHpCYChhQvOs3aTl6gS0UU6IDbKtDuv1JJfErbloSo-_LlP9Ifwv1xcTJRkyw_fgUPumMw9kDSaxhcXV6bN3BX_766WF2-7a3qL0iTE7s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdGB4gL32XhaxbiwCWQOHZsS1zCmrBoJVRtKiYuVuLY0yTUTuuGxH_Pc5K2mrQeEFIOPrwnOX5-z7-f7feM0Pta04gbxn0WcuueMIt8aZn1iYhh_eEGMElbMn_Mi0KcnsrJHvq8zoXp6kNsNtycZ7Tx2jm4uWhs6-VCttfiuA9wRn4E7rNPmWR0gPZH02w-3kbi7hQBIARQZuDrfWUhUP-0Ub6xHt2x1XJ9MfE2yHkTwbZLUPbo_zr_GD3soSdOurnyBO2ZxVN0r3uM8g-0Ut23huk2-w0UevdfPUMngGrTo3KGv2d4Vk7T5BsGA5b9RheGb5QWeTnNsz4_GecFTgo8n35JivxnXnzFPxLAz7PjdPQczbO0PDr2-9cYfA0LmPQjwgyhNrJWEy6aWEumeUApqVkNkUIzEdCKA8ttXIEgWdWUaF7HQWNsqG0loiEaLJYLc4BwXIW14XHFWQP0XJi60YD7YIpwsCKrKw99WNtE6b5UuXsx45dylAUGUAVcueFToYfebUQvuvoctwkdgGFVdQZxU81nxJ3WBkJCsBMeGrbW3ihTl1UaithDh2vzK_A4d4xSLczyeqWI29qC2LVbggJlAZpGdktwQGoioiDxoptZ284LCKmAAj3ktxNo91-pNJmQtiRhxIV8-Y_yh-j-ZJSpcV6cvEIPulsw7j7SazS4urw2b9Bd_fvqfHX5tneqv6-qEzY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFFECTS+OF+STREAM+RESTORATION+ON+DENITRIFICATION+IN+AN+URBANIZING+WATERSHED&rft.jtitle=Ecological+applications&rft.au=Kaushal%2C+Sujay+S.&rft.au=Groffman%2C+Peter+M.&rft.au=Mayer%2C+Paul+M.&rft.au=Striz%2C+Elise&rft.date=2008-04-01&rft.issn=1051-0761&rft.volume=18&rft.issue=3&rft.spage=789&rft.epage=804&rft_id=info:doi/10.1890%2F07-1159.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1890_07_1159_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon |