Effects of stream restoration on denitrification in an urbanizing watershed

Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecological applications Ročník 18; číslo 3; s. 789 - 804
Hlavní autoři: Kaushal, Sujay S., Groffman, Peter M., Mayer, Paul M., Striz, Elise, Gold, Arthur J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Ecological Society of America 01.04.2008
Témata:
ISSN:1051-0761, 1939-5582
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 micrograms N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 micrograms N·kg⁻¹·d⁻¹(mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 micrograms N·kg⁻¹·d⁻¹. Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg ${\rm{NO}}_{\rm{3}} ^{\rm{ - }} {\rm{ - N}}$ could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
AbstractList Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could increase rates of denitrification at the riparian‐zone–stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 μg N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 μg N·kg⁻¹·d⁻¹ (mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 μg N·kg⁻¹·d⁻¹. Concentrations of nitrate‐N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically “connected” streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high “nonconnected” banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO₃⁻‐N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian‐zone–stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate‐N in the restored reach were also considerable. Mass removal of nitrate‐N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to “reconnect” stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate‐N sources to streams.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ ¹⁵N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 micrograms N·(kg sediment)⁻¹·d⁻¹. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 micrograms N·kg⁻¹·d⁻¹(mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 micrograms N·kg⁻¹·d⁻¹. Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg ${\rm{NO}}_{\rm{3}} ^{\rm{ - }} {\rm{ - N}}$ could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ super(15)N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 mu g N-(kg sediment) super(-1) times super(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 plus or minus 12.6 mu g N times kg super(-1) times d super(-1) (mean plus or minus SE) as compared to the unrestored reach at 34.8 plus or minus 8.0 mu g N times kg super(-1) times d super(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO sub(3)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could increase rates of denitrification at the riparian‐zone–stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 μg N·(kg sediment)−1·d−1. Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 ± 12.6 μg N·kg−1·d−1 (mean ± SE) as compared to the unrestored reach at 34.8 ± 8.0 μg N·kg−1·d−1. Concentrations of nitrate‐N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically “connected” streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high “nonconnected” banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3−‐N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian‐zone–stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate‐N in the restored reach were also considerable. Mass removal of nitrate‐N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to “reconnect” stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate‐N sources to streams.
Author Striz, Elise
Gold, Arthur J.
Groffman, Peter M.
Kaushal, Sujay S.
Mayer, Paul M.
Author_xml – sequence: 1
  givenname: Sujay S.
  surname: Kaushal
  fullname: Kaushal, Sujay S.
– sequence: 2
  givenname: Peter M.
  surname: Groffman
  fullname: Groffman, Peter M.
– sequence: 3
  givenname: Paul M.
  surname: Mayer
  fullname: Mayer, Paul M.
– sequence: 4
  givenname: Elise
  surname: Striz
  fullname: Striz, Elise
– sequence: 5
  givenname: Arthur J.
  surname: Gold
  fullname: Gold, Arthur J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18488635$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNUbPt04QdQZ1VwMe3Nv7nJspRnFQsK2nXIZJKaMi9Tk3mU9tOb59QuRGkIJCS_czjcc0j20pQ8Ia8pHFOl4QSwpVTqY_qMHFDNdSulYnv1DpK2gB3dJ4elXENdjLEXZJ8qoVTH5QH5vA7Bu7k0U2jKnL3dNNmXecp2jlNq6h58inOOIbrlKabGpmabe5vifUxXza2dfS4__PCSPA92LP7Vw7kilx_W388-thdfzj-dnV60TiDVLWfSMxF4CI6hGjqnpUMQgvWyBw5OKhAWgeGA2KG2vWAO-w4GH6gLVvEVOVp8b_L0c1vTmk0szo-jTX7aFoOAUnHBngQFIkOBT4MMdE0meQXfPoDbfuMHc5PjxuY782egFThZAJenUrIPxsX59-DmbONoKJhdZQbQ7CoztCre_6V4NP0HKxb2No7-7v-gWZ9-ZQCKKo5KV9mbRXa9a_ZRJgA6RmvsFXm3_Ac7GXuVYzGX3xhQXi00Alf8F44ktjo
CitedBy_id crossref_primary_10_1016_j_ecss_2020_106995
crossref_primary_10_1029_2011WR010641
crossref_primary_10_1139_cjfas_2013_0300
crossref_primary_10_1111_j_1752_1688_2010_00418_x
crossref_primary_10_1002_eap_1941
crossref_primary_10_5194_hess_20_3419_2016
crossref_primary_10_1371_journal_pone_0212690
crossref_primary_10_1080_08920753_2017_1237240
crossref_primary_10_3390_challe12020032
crossref_primary_10_3389_fmicb_2023_1161043
crossref_primary_10_1080_03632415_2013_836500
crossref_primary_10_1111_jawr_12225
crossref_primary_10_1016_j_scitotenv_2023_164911
crossref_primary_10_1002_ehs2_1247
crossref_primary_10_1016_j_ecoleng_2016_10_036
crossref_primary_10_1016_j_scitotenv_2015_05_121
crossref_primary_10_1007_s10533_011_9585_z
crossref_primary_10_1007_s11252_012_0266_z
crossref_primary_10_3390_w10091249
crossref_primary_10_1007_s11270_009_0064_2
crossref_primary_10_1890_11_0381_1
crossref_primary_10_3390_f14112205
crossref_primary_10_1007_s10533_009_9375_z
crossref_primary_10_1029_2011WR011720
crossref_primary_10_1007_s10533_013_9926_1
crossref_primary_10_1002_jeq2_20101
crossref_primary_10_1007_s10661_024_12570_w
crossref_primary_10_3398_064_071_0404
crossref_primary_10_3390_w12112981
crossref_primary_10_1002_eap_2107
crossref_primary_10_1016_j_ejsobi_2017_03_005
crossref_primary_10_1016_j_jenvman_2010_08_022
crossref_primary_10_1016_j_scitotenv_2025_179184
crossref_primary_10_1007_s10750_014_2167_z
crossref_primary_10_3390_w13151996
crossref_primary_10_1029_2021JG006552
crossref_primary_10_1016_j_envpol_2022_119118
crossref_primary_10_1002_ecs2_2284
crossref_primary_10_1007_s10533_014_9971_4
crossref_primary_10_1002_hyp_15128
crossref_primary_10_2134_jeq2017_01_0006
crossref_primary_10_1007_s11252_023_01370_8
crossref_primary_10_1111_jawr_12193
crossref_primary_10_1016_j_watres_2023_120174
crossref_primary_10_1002_hyp_14670
crossref_primary_10_1007_s10533_012_9708_1
crossref_primary_10_1656_045_017_0301
crossref_primary_10_1002_ecs2_2549
crossref_primary_10_1007_s10533_020_00670_x
crossref_primary_10_1007_s10533_014_9979_9
crossref_primary_10_1007_s10640_021_00575_9
crossref_primary_10_1007_s10021_015_9902_9
crossref_primary_10_1007_s12237_008_9129_5
crossref_primary_10_1007_s10533_014_0014_y
crossref_primary_10_1016_j_scitotenv_2018_12_023
crossref_primary_10_3390_w12092458
crossref_primary_10_1093_femsec_fiw198
crossref_primary_10_1890_10_0854_1
crossref_primary_10_1007_s11252_011_0166_7
crossref_primary_10_1093_biosci_biv120
crossref_primary_10_1002_hyp_14324
crossref_primary_10_1016_j_ecolmodel_2016_05_018
crossref_primary_10_2134_jeq2015_06_0330
crossref_primary_10_3390_w8040151
crossref_primary_10_1899_08_169_1
crossref_primary_10_1111_rec_12134
crossref_primary_10_1007_s10533_016_0181_0
crossref_primary_10_1007_s11252_012_0226_7
crossref_primary_10_1111_j_1526_100X_2008_00438_x
crossref_primary_10_1111_rec_12010
crossref_primary_10_1007_s00267_012_9970_y
crossref_primary_10_1007_s10533_013_9900_y
crossref_primary_10_1016_j_ecoleng_2013_07_068
crossref_primary_10_1016_j_ecoleng_2018_01_011
crossref_primary_10_1890_14_1102_1
crossref_primary_10_1007_s10661_019_7443_y
crossref_primary_10_3390_w12061568
crossref_primary_10_1007_s10533_014_9968_z
crossref_primary_10_1016_j_agee_2014_11_002
crossref_primary_10_1007_s10533_022_00975_z
crossref_primary_10_2134_jeq2008_0220
crossref_primary_10_3390_w7084063
crossref_primary_10_1016_j_ecoleng_2017_08_006
crossref_primary_10_1016_j_agee_2014_03_026
crossref_primary_10_1007_s10666_009_9218_2
crossref_primary_10_1016_j_rse_2010_05_004
crossref_primary_10_1007_s10533_008_9277_5
crossref_primary_10_1111_rec_14327
crossref_primary_10_1007_s10533_017_0336_7
crossref_primary_10_1016_j_advwatres_2021_104087
crossref_primary_10_1016_j_ecoleng_2011_09_001
crossref_primary_10_1029_2022WR033991
crossref_primary_10_1111_j_1752_1688_2011_00631_x
crossref_primary_10_1016_j_ecoleng_2010_03_015
crossref_primary_10_1080_02755947_2011_598384
crossref_primary_10_1080_10643389_2013_829769
crossref_primary_10_1016_S1002_0160_14_60038_2
crossref_primary_10_1016_j_ecoleng_2020_106040
crossref_primary_10_1029_2018JG004436
crossref_primary_10_1111_j_1752_1688_2011_00635_x
crossref_primary_10_1007_s00248_023_02179_w
crossref_primary_10_1016_j_ecoleng_2013_07_059
crossref_primary_10_1016_j_ecoleng_2015_05_024
crossref_primary_10_1890_12_0458_1
crossref_primary_10_1007_s10533_014_0016_9
crossref_primary_10_1196_annals_1439_014
crossref_primary_10_1007_s13157_023_01768_2
crossref_primary_10_1016_j_ecolind_2018_09_013
crossref_primary_10_1111_1752_1688_13073
crossref_primary_10_1196_annals_1439_012
crossref_primary_10_5194_bg_10_1193_2013
crossref_primary_10_1002_hyp_10821
crossref_primary_10_1007_s11104_016_3038_3
crossref_primary_10_1007_s12237_008_9106_z
crossref_primary_10_1007_s10021_012_9630_3
crossref_primary_10_1002_wrcr_20492
crossref_primary_10_1007_s10021_016_0103_y
crossref_primary_10_5194_soil_3_95_2017
crossref_primary_10_1002_hyp_11236
crossref_primary_10_1016_j_apgeochem_2020_104632
crossref_primary_10_1080_10643389_2017_1318618
crossref_primary_10_1016_j_ecss_2013_04_015
crossref_primary_10_1002_wat2_1355
crossref_primary_10_1016_j_scitotenv_2012_10_085
crossref_primary_10_1007_s11270_015_2434_2
crossref_primary_10_1029_2020WR028518
crossref_primary_10_1890_10_0653_1
crossref_primary_10_1007_s10533_021_00784_w
crossref_primary_10_1007_s11252_010_0134_7
crossref_primary_10_1007_s10533_021_00866_9
crossref_primary_10_1016_j_marpolbul_2012_10_020
crossref_primary_10_1002_rra_3990
crossref_primary_10_1002_lno_10613
crossref_primary_10_1016_j_scitotenv_2016_11_166
crossref_primary_10_1007_s10533_014_9958_1
crossref_primary_10_1007_s10533_020_00659_6
crossref_primary_10_1016_j_jclepro_2019_117721
crossref_primary_10_1111_rec_14070
crossref_primary_10_3389_fenvs_2023_1122485
crossref_primary_10_3389_fmicb_2017_02304
crossref_primary_10_2134_jeq2013_12_0481
crossref_primary_10_1002_2014WR016874
crossref_primary_10_2134_jeq2013_07_0303
crossref_primary_10_1016_j_ecolecon_2022_107654
crossref_primary_10_1016_j_ecoleng_2025_107733
crossref_primary_10_1016_j_ecoleng_2010_02_006
crossref_primary_10_1016_j_seares_2009_12_004
crossref_primary_10_1007_s11273_015_9445_z
crossref_primary_10_1899_08_186_1
crossref_primary_10_1111_jawr_12205
crossref_primary_10_1088_1748_9326_abe007
crossref_primary_10_1016_j_ecoleng_2019_08_002
crossref_primary_10_1371_journal_pone_0261714
crossref_primary_10_1007_s11252_021_01199_z
crossref_primary_10_2134_jeq2009_0012
crossref_primary_10_1111_1752_1688_12922
crossref_primary_10_1039_C0EM00055H
crossref_primary_10_1007_s10533_014_0003_1
crossref_primary_10_2489_jswc_72_2_168
crossref_primary_10_2134_jeq2010_0335
crossref_primary_10_3390_w8040116
crossref_primary_10_1002_rra_2639
crossref_primary_10_1007_s00248_011_9833_8
crossref_primary_10_1007_s10533_018_0423_4
crossref_primary_10_1007_s11356_020_12319_1
crossref_primary_10_1111_j_1526_100X_2011_00824_x
crossref_primary_10_3389_frwa_2023_1306481
crossref_primary_10_3390_w12082164
crossref_primary_10_1061__ASCE_HE_1943_5584_0002171
crossref_primary_10_1007_s10021_021_00687_9
crossref_primary_10_1111_j_1752_1688_2010_00420_x
crossref_primary_10_1007_s10750_011_0619_2
crossref_primary_10_1016_j_ecoleng_2025_107748
crossref_primary_10_3390_soilsystems7020036
crossref_primary_10_1093_biosci_biae083
crossref_primary_10_1007_s13157_020_01279_4
crossref_primary_10_1890_10_0618_1
crossref_primary_10_1016_j_scitotenv_2020_138793
crossref_primary_10_1002_hyp_10210
crossref_primary_10_1007_s00027_009_0118_y
crossref_primary_10_1021_es800264f
crossref_primary_10_5194_bg_12_7331_2015
crossref_primary_10_1007_s10533_018_0431_4
crossref_primary_10_1088_1748_9326_abc914
crossref_primary_10_1111_rec_13394
crossref_primary_10_1007_s11252_021_01182_8
crossref_primary_10_1007_s00267_014_0270_6
crossref_primary_10_1007_s10533_014_9999_5
crossref_primary_10_2134_jeq2018_01_0009
Cites_doi 10.1029/2006WR005233
10.1890/03-5220
10.1890/05-0134
10.1111/j.1365-2427.2006.01710.x
10.1111/j.1752-1688.2000.tb05722.x
10.1126/science.1056874
10.1023/B:BIOG.0000025742.82155.92
10.2134/jeq2003.1144
10.1029/2005WR003985
10.1890/04-0171
10.1080/10643389709388502
10.2134/jeq1998.00472425002700010021x
10.1073/pnas.0405895101
10.1021/es020649z
10.1023/A:1015709302073
10.1023/A:1015745629794
10.1007/BF02179825
10.1038/35001562
10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2
10.2307/2404238
10.1899/04-026.1
10.2134/jeq1996.00472425002500060020x
10.1007/s00267-004-0315-3
10.1023/A:1005932528748
10.2134/jeq2006.0084
10.1007/s00248-004-0159-7
10.1029/2005WR004354
10.4319/lo.2004.49.3.0809
10.1111/j.1745-6584.1998.tb01097.x
10.1899/0887-3593(2007)26[38:EOUDAI]2.0.CO;2
10.1007/s10533-004-4723-5
10.2136/sssaj1985.03615995004900030025x
10.1046/j.1365-2427.1999.00399.x
10.1007/BF02696018
10.2134/jeq2005.0524
10.1890/1540-9295(2005)003[0259:RWPBPT]2.0.CO;2
10.1021/es061618x
10.4319/lo.1988.33.5.1209
10.1007/BF02804898
10.4319/lo.2004.49.3.0821
10.4319/lo.2006.51.3.1443
10.2134/jeq2001.302303x
10.1139/f05-199
10.2134/jeq2004.0483
10.1029/2006GL025845
10.3354/meps303001
10.2134/jeq1996.00472425002500040014x
10.1007/s10021-003-0161-9
10.1890/0012-9658(1998)079[0684:TCONAO]2.0.CO;2
10.4319/lo.2003.48.3.1120
10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
10.2134/jeq2002.1017
10.2307/1939127
10.1023/A:1021192631423
10.2136/sssaj1988.03615995005200040060x
10.1007/s10533-004-0565-4
10.1899/04-027.1
10.1111/j.1745-6584.2005.00107.x
10.1016/0022-1694(86)90155-1
10.1146/annurev.ecolsys.32.081501.114040
10.1007/s10021-003-0143-y
10.1126/science.1109769
10.1111/j.1745-6584.1997.tb00127.x
10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
10.4319/lo.1981.26.5.0867
10.1046/j.1365-2427.2002.00906.x
10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2
10.2307/520904
ContentType Journal Article
Copyright Copyright 2008 Ecological Society of America
2008 by the Ecological Society of America
Copyright_xml – notice: Copyright 2008 Ecological Society of America
– notice: 2008 by the Ecological Society of America
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
7TV
7U6
7UA
C1K
F1W
H95
L.G
7S9
L.6
7X8
DOI 10.1890/07-1159.1
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
Chemistry
EISSN 1939-5582
EndPage 804
ExternalDocumentID 18488635
10_1890_07_1159_1
EAP2008183789
40062186
US201300897038
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Maryland
ANW, USA, Maryland, Baltimore
GeographicLocations_xml – name: Maryland
– name: ANW, USA, Maryland, Baltimore
GroupedDBID ---
-ET
-~X
.-4
..I
0R~
1OB
1OC
29G
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHHS
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABAWQ
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACHIC
ACHJO
ACNCT
ACPOU
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AI.
AIDAL
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ANHSF
AQVQM
AS~
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
DCZOG
DDYGU
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F5P
FBQ
FVMVE
GTFYD
HGD
HGLYW
HQ2
HTVGU
HVGLF
H~9
IAG
IAO
IEA
IEP
IGH
IOF
IPSME
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MVM
MXFUL
MXSTM
NHB
NXSMM
O9-
P0-
P2P
P2W
PALCI
RJQFR
ROL
RSZ
SA0
SAMSI
SUPJJ
TN5
UKR
V62
VH1
VOH
WBKPD
WH7
WOHZO
WXSBR
XIH
XSW
Y6R
YV5
YXE
YYM
YYP
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
ABYAD
ACTWD
AEUQT
DOOOF
EQZMY
JSODD
VQA
AAYXX
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
7TV
7U6
7UA
C1K
F1W
H95
L.G
7S9
L.6
7X8
ID FETCH-LOGICAL-c4719-325e24f3ffc278d6c95c70442b5b030c5804a7027d77679ab42c7b60def1cfa83
IEDL.DBID DRFUL
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255437500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-0761
IngestDate Fri Sep 05 07:52:22 EDT 2025
Fri Sep 05 17:31:41 EDT 2025
Tue Oct 07 10:14:02 EDT 2025
Thu Apr 03 07:07:54 EDT 2025
Tue Nov 18 21:27:22 EST 2025
Sat Nov 29 03:26:29 EST 2025
Wed Jan 22 16:52:08 EST 2025
Thu Jul 03 21:22:36 EDT 2025
Thu Apr 03 09:45:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4719-325e24f3ffc278d6c95c70442b5b030c5804a7027d77679ab42c7b60def1cfa83
Notes Corresponding Editor: J. S. Baron.
Present address: University of Maryland, Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, Maryland 20688 USA. E‐mail
5
kaushal@cbl.umccs.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://digitalcommons.uri.edu/nrs_facpubs/431
PMID 18488635
PQID 20903053
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_70758342
proquest_miscellaneous_47727472
proquest_miscellaneous_20903053
pubmed_primary_18488635
crossref_citationtrail_10_1890_07_1159_1
crossref_primary_10_1890_07_1159_1
wiley_primary_10_1890_07_1159_1_EAP2008183789
jstor_primary_40062186
fao_agris_US201300897038
PublicationCentury 2000
PublicationDate April 2008
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: April 2008
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2008
Publisher Ecological Society of America
Publisher_xml – name: Ecological Society of America
References 2002; 52
2006; 33
1984; 65
2002; 57
2004; 68
1988; 33
1999; 41
1996; 35
2005; 28
1998; 42
2007; 36
1979
2005; 24
1997; 7
2002; 47
2006; 63
1986; 83
2001; 292
2000; 403
2003; 6
2005; 303
1993; 30
2005; 73
2005; 74
2003; 48
2005; 308
1982
1996; 25
2005; 34
2007; 26
2005; 36
1998; 27
2004; 101
2002; 36
2004; 85
2006; 51
2002; 31
2002; 57–58
2004; 49
2006; 16
2005; 41
2007
1996
2006
1997; 27
1981; 26
2005
1994
1988; 52
2003
2007; 52
1967; 49
2003; 32
1985; 49
2002; 25
2006; 42
2000; 36
2006; 44
2005; 8
1997; 35
2005; 51
2005; 3
2007; 41
2005; 15
2007; 43
2003; 62
2001; 30
1998; 36
1998; 79
2001; 32
i1051-0761-18-3-789-Hall1
i1051-0761-18-3-789-Addy2
i1051-0761-18-3-789-Kaushal1
i1051-0761-18-3-789-Addy1
i1051-0761-18-3-789-McClain1
i1051-0761-18-3-789-Kaushal2
i1051-0761-18-3-789-Pribyl1
i1051-0761-18-3-789-Green1
i1051-0761-18-3-789-Bernot1
i1051-0761-18-3-789-Whitmire1
i1051-0761-18-3-789-Loheide1
i1051-0761-18-3-789-Wohl1
Grimm N. B. (i1051-0761-18-3-789-Grimm1) 2005; 24
i1051-0761-18-3-789-Sweeney1
i1051-0761-18-3-789-Bohlke2
i1051-0761-18-3-789-Bohlke1
i1051-0761-18-3-789-Boulton1
i1051-0761-18-3-789-Roberts1
i1051-0761-18-3-789-Malard1
i1051-0761-18-3-789-Hassett1
i1051-0761-18-3-789-Trudell1
i1051-0761-18-3-789-Kellogg1
i1051-0761-18-3-789-Kemp1
i1051-0761-18-3-789-Hill1
i1051-0761-18-3-789-Hill2
i1051-0761-18-3-789-Istok1
i1051-0761-18-3-789-Vitousek1
i1051-0761-18-3-789-Gold1
i1051-0761-18-3-789-Kasahara1
i1051-0761-18-3-789-Schroth1
i1051-0761-18-3-789-Howarth1
i1051-0761-18-3-789-Peterjohn1
i1051-0761-18-3-789-Wolman1
i1051-0761-18-3-789-Winter1
i1051-0761-18-3-789-Seitzinger1
i1051-0761-18-3-789-Stanley1
i1051-0761-18-3-789-Lemon1
i1051-0761-18-3-789-Gucker2
i1051-0761-18-3-789-Howarth2
i1051-0761-18-3-789-Gucker1
i1051-0761-18-3-789-Wollheim1
i1051-0761-18-3-789-Bukaveckas1
i1051-0761-18-3-789-Davidson1
i1051-0761-18-3-789-Jantz1
i1051-0761-18-3-789-Pinay1
i1051-0761-18-3-789-Groffman5
i1051-0761-18-3-789-Haggerty1
i1051-0761-18-3-789-Groffman6
i1051-0761-18-3-789-Sobczak1
i1051-0761-18-3-789-Paul1
i1051-0761-18-3-789-Peterson1
i1051-0761-18-3-789-Groffman1
i1051-0761-18-3-789-Mulholland1
i1051-0761-18-3-789-Groffman2
i1051-0761-18-3-789-Fennessy1
i1051-0761-18-3-789-Groffman3
i1051-0761-18-3-789-Groffman4
i1051-0761-18-3-789-Myrold1
i1051-0761-18-3-789-Brown1
i1051-0761-18-3-789-Boyer1
i1051-0761-18-3-789-Henshaw1
i1051-0761-18-3-789-Boesch1
i1051-0761-18-3-789-Tockner1
i1051-0761-18-3-789-Alexander1
i1051-0761-18-3-789-Bernhardt1
i1051-0761-18-3-789-Palmer1
i1051-0761-18-3-789-Hedin1
i1051-0761-18-3-789-Smith1
References_xml – volume: 403
  start-page: 758
  year: 2000
  end-page: 761
  article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico
  publication-title: Nature
– volume: 30
  start-page: 303
  year: 2001
  end-page: 320
  article-title: Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture
  publication-title: Journal of Environmental Quality
– volume: 36
  start-page: 664
  year: 2007
  end-page: 680
  article-title: Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions
  publication-title: Journal of Environmental Quality
– year: 2005
– volume: 32
  start-page: 1144
  year: 2003
  end-page: 1149
  article-title: Denitrification potential in urban riparian zones
  publication-title: Journal of Environmental Quality
– volume: 63
  start-page: 120
  year: 2006
  end-page: 133
  article-title: Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 32
  start-page: 333
  year: 2001
  end-page: 365
  article-title: Streams in the urban landscape
  publication-title: Annual Review of Ecology and Systematics
– volume: 41
  start-page: W10301
  year: 2005
  article-title: River restoration
  publication-title: Water Resources Research
– volume: 27
  start-page: 285
  year: 1997
  end-page: 317
  article-title: The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate
  publication-title: Critical Reviews in Environmental Science and Technology
– volume: 26
  start-page: 38
  year: 2007
  end-page: 53
  article-title: Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams
  publication-title: Journal of the North American Benthological Society
– volume: 62
  start-page: 309
  year: 2003
  end-page: 327
  article-title: Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach
  publication-title: Biogeochemistry
– volume: 48
  start-page: 1120
  year: 2003
  end-page: 1128
  article-title: Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming
  publication-title: Limnology and Oceanography
– volume: 308
  start-page: 636
  year: 2005
  end-page: 637
  article-title: Ecology—synthesizing U.S. river restoration efforts
  publication-title: Science
– year: 1979
– volume: 26
  start-page: 867
  year: 1981
  end-page: 879
  article-title: Nitrous oxide in freshwaters of the Great Lakes Basin
  publication-title: Limnology and Oceanography
– volume: 28
  start-page: 896
  year: 2005
  end-page: 908
  article-title: Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh
  publication-title: Estuaries
– volume: 8
  start-page: 442
  year: 2005
  end-page: 453
  article-title: Nitrogen retention, removal, and saturation in lotic ecosystems
  publication-title: Ecosystems
– volume: 3
  start-page: 259
  year: 2005
  end-page: 267
  article-title: Restoring watersheds project by project: trends in Chesapeake Bay tributary restoration
  publication-title: Frontiers in Ecology and the Environment
– volume: 68
  start-page: 71
  year: 2004
  end-page: 105
  article-title: Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology
  publication-title: Biogeochemistry
– volume: 6
  start-page: 315
  year: 2003
  end-page: 321
  article-title: Down by the riverside: urban riparian ecology
  publication-title: Frontiers in Ecology and the Environment
– volume: 31
  start-page: 1017
  year: 2002
  end-page: 1024
  article-title: In situ push-pull method to determine ground water denitrification in riparian zones
  publication-title: Journal of Environmental Quality
– volume: 303
  start-page: 1
  year: 2005
  end-page: 29
  article-title: Eutrophication of Chesapeake Bay: historical trends and ecological interactions
  publication-title: Marine Ecology Progress Series
– volume: 36
  start-page: 1219
  year: 2000
  end-page: 1236
  article-title: Re-equilibration of stream channels in urban watersheds
  publication-title: Journal of the American Water Resources Association
– volume: 36
  start-page: 808
  year: 2005
  end-page: 825
  article-title: Urbanization and the loss of resource lands in the Chesapeake Bay watershed
  publication-title: Environmental Management
– volume: 52
  start-page: 632
  year: 2007
  end-page: 650
  article-title: Hyporheic rehabilitation in rivers: restoring vertical connectivity
  publication-title: Freshwater Biology
– volume: 41
  start-page: 1570
  year: 2007
  end-page: 1576
  article-title: Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream
  publication-title: Environmental Science and Technology
– volume: 34
  start-page: 524
  year: 2005
  end-page: 533
  article-title: In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands
  publication-title: Journal of Environmental Quality
– start-page: 1047
  year: 1994
  end-page: 1065
– volume: 49
  start-page: 809
  year: 2004
  end-page: 820
  article-title: Stream denitrification and total nitrate uptake rates measured using a field N tracer addition approach
  publication-title: Limnology and Oceanography
– volume: 34
  start-page: 2062
  year: 2005
  end-page: 2071
  article-title: Rapid removal of nitrate and sulfate in freshwater wetland sediments
  publication-title: Journal of Environmental Quality
– volume: 292
  start-page: 86
  year: 2001
  end-page: 90
  article-title: Control of nitrogen export from watersheds by headwater streams
  publication-title: Science
– volume: 35
  start-page: 75
  year: 1996
  end-page: 139
  article-title: Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human infuences
  publication-title: Biogeochemistry
– volume: 16
  start-page: 1091
  year: 2006
  end-page: 2122
  article-title: Methods for measuring denitrification: diverse approaches to a difficult problem
  publication-title: Ecological Applications
– volume: 49
  start-page: 385
  year: 1967
  end-page: 395
  article-title: A cycle of sedimentation and erosion in urban river channels
  publication-title: Geografiska Annaler Series A: Physical Geography
– volume: 51
  start-page: 22
  year: 2005
  end-page: 35
  article-title: Assessment of nitrification potential in ground water using short term, single-well injection experiments
  publication-title: Microbial Ecology
– volume: 27
  start-page: 146
  year: 1998
  end-page: 155
  article-title: Patchiness in groundwater nitrate removal in a riparian forest
  publication-title: Journal of Environmental Quality
– start-page: 536
  year: 2003
  end-page: 541
– volume: 25
  start-page: 656
  year: 2002
  end-page: 676
  article-title: Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals
  publication-title: Estuaries
– volume: 33
  year: 2006
  end-page: L06410
  article-title: Relationship between river size and nutrient removal
  publication-title: Geophysical Research Letters
– volume: 35
  start-page: 619
  year: 1997
  end-page: 631
  article-title: Single-well, “push-pull” test for in situ determination of microbial activities
  publication-title: Ground Water
– volume: 83
  start-page: 251
  year: 1986
  end-page: 268
  article-title: An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 1443
  year: 2006
  end-page: 1453
  article-title: Regulation of nutrient uptake in eutrophic lowland streams
  publication-title: Limnology and Oceanography
– start-page: 45
  year: 2007
  end-page: 58
– volume: 42
  start-page: 285
  year: 1998
  end-page: 310
  article-title: Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream
  publication-title: Biogeochemistry
– volume: 74
  start-page: 303
  year: 2005
  end-page: 321
  article-title: Fate and transport of dissolved organic nitrogen in minimally disturbed streams of Colorado, U.S.A
  publication-title: Biogeochemistry
– volume: 44
  start-page: 275
  year: 2006
  end-page: 283
  article-title: Models to determine first-order rate coefficients from single-well push-pull tests
  publication-title: Ground Water
– volume: 30
  start-page: 581
  year: 1993
  end-page: 591
  article-title: Spatial and temporal patterns of denitrification in a riparian forest
  publication-title: Journal of Applied Ecology
– volume: 57–58
  start-page: 199
  year: 2002
  end-page: 237
  article-title: Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A
  publication-title: Biogeochemistry
– year: 1996
– volume: 33
  start-page: 1209
  year: 1988
  end-page: 1214
  article-title: The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water
  publication-title: Limnology and Oceanography
– volume: 24
  start-page: 613
  year: 2005
  end-page: 625
  article-title: Nitrogen processing within geomorphic features in urban streams
  publication-title: Journal of the North American Benthological Society
– volume: 15
  start-page: 1851
  year: 2005
  end-page: 1863
  article-title: Rural land-use trends in the conterminous United States, 1950–2000
  publication-title: Ecological Applications
– volume: 43
  year: 2007
  end-page: W07414
  article-title: Riparian hydroecology: a coupled model of the observed interactions between groundwater flow and meadow vegetation patterning
  publication-title: Water Resources Research
– volume: 6
  start-page: 301
  year: 2003
  end-page: 312
  article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems
  publication-title: Ecosystems
– volume: 41
  start-page: 521
  year: 1999
  end-page: 535
  article-title: Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria)
  publication-title: Freshwater Biology
– volume: 49
  start-page: 651
  year: 1985
  end-page: 657
  article-title: Diffusional constraints on denitrification in soil
  publication-title: Soil Science Society of America Journal
– volume: 36
  start-page: 314
  year: 1998
  end-page: 324
  article-title: Simplified method of “push-pull” test data analysis for determining in situ reaction rate coefficients
  publication-title: Ground Water
– volume: 47
  start-page: 621
  year: 2002
  end-page: 640
  article-title: A landscape perspective of surface–subsurface hydrological exchanges in river corridors
  publication-title: Freshwater Biology
– start-page: 1011
  year: 1982
  end-page: 1025
– volume: 24
  start-page: 626
  year: 2005
  end-page: 642
  article-title: N retention and transformation in urban streams
  publication-title: Journal of the North American Benthological Society
– volume: 52
  start-page: 1201
  year: 1988
  end-page: 1203
  article-title: Measurement of nitrous oxide dissolved in soil solution
  publication-title: Soil Science Society of America Journal
– volume: 25
  start-page: 743
  year: 1996
  end-page: 755
  article-title: Nitrate removal in stream riparian zones
  publication-title: Journal of Environmental Quality
– volume: 16
  start-page: 299
  year: 2006
  end-page: 312
  article-title: Land use change and nitrogen enrichment of a Rocky Mountain watershed
  publication-title: Ecological Applications
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecological Applications
– volume: 36
  start-page: 4547
  year: 2002
  end-page: 4552
  article-title: Soil nitrogen cycling processes in urban riparian zones
  publication-title: Environmental Science and Technology
– volume: 101
  start-page: 14132
  year: 2004
  end-page: 14137
  article-title: Riparian deforestation, stream narrowing, and loss of stream ecosystem services
  publication-title: Proceedings of the National Academy of Sciences (USA)
– volume: 49
  start-page: 821
  year: 2004
  end-page: 838
  article-title: Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, mid-continent United States
  publication-title: Limnology and Oceanography
– year: 2006
– volume: 42
  start-page: W03S07
  year: 2006
  article-title: Hydroecology and river restoration: ripe for research and synthesis
  publication-title: Water Resources Research
– volume: 73
  start-page: 439
  year: 2005
  end-page: 455
  article-title: Whole-system estimation of denitrification in a plains river: a comparison of two methods
  publication-title: Biogeochemistry
– volume: 25
  start-page: 1309
  year: 1996
  end-page: 1316
  article-title: Microbial nitrate processing in shallow groundwater in a riparian forest
  publication-title: Journal of Environmental Quality
– volume: 57
  start-page: 137
  year: 2002
  end-page: 169
  article-title: Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A
  publication-title: Biogeochemistry
– volume: 85
  start-page: 2818
  year: 2004
  end-page: 2827
  article-title: Stream morphology controls ammonium retention in tropical headwaters
  publication-title: Ecology
– volume: 79
  start-page: 684
  year: 1998
  end-page: 703
  article-title: Thermodynamics constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces
  publication-title: Ecology
– volume: 52
  start-page: 693
  year: 2002
  end-page: 701
  article-title: A geomorphic perspective on nutrient retention following dam removal
  publication-title: BioScience
– volume: 65
  start-page: 1466
  year: 1984
  end-page: 1475
  article-title: Nutrient dynamics in an agricultural watershed: observations on the role a riparian forest
  publication-title: Ecology
– ident: i1051-0761-18-3-789-Loheide1
  doi: 10.1029/2006WR005233
– ident: i1051-0761-18-3-789-Brown1
  doi: 10.1890/03-5220
– ident: i1051-0761-18-3-789-Kaushal2
  doi: 10.1890/05-0134
– ident: i1051-0761-18-3-789-Boulton1
  doi: 10.1111/j.1365-2427.2006.01710.x
– ident: i1051-0761-18-3-789-Henshaw1
  doi: 10.1111/j.1752-1688.2000.tb05722.x
– ident: i1051-0761-18-3-789-Peterson1
  doi: 10.1126/science.1056874
– ident: i1051-0761-18-3-789-Green1
  doi: 10.1023/B:BIOG.0000025742.82155.92
– ident: i1051-0761-18-3-789-Groffman4
  doi: 10.2134/jeq2003.1144
– ident: i1051-0761-18-3-789-Wohl1
  doi: 10.1029/2005WR003985
– ident: i1051-0761-18-3-789-Gucker1
  doi: 10.1890/04-0171
– ident: i1051-0761-18-3-789-Fennessy1
  doi: 10.1080/10643389709388502
– ident: i1051-0761-18-3-789-Gold1
  doi: 10.2134/jeq1998.00472425002700010021x
– ident: i1051-0761-18-3-789-Sweeney1
  doi: 10.1073/pnas.0405895101
– ident: i1051-0761-18-3-789-Groffman3
  doi: 10.1021/es020649z
– ident: i1051-0761-18-3-789-Boyer1
  doi: 10.1023/A:1015709302073
– ident: i1051-0761-18-3-789-Seitzinger1
  doi: 10.1023/A:1015745629794
– ident: i1051-0761-18-3-789-Howarth2
  doi: 10.1007/BF02179825
– ident: i1051-0761-18-3-789-Alexander1
  doi: 10.1038/35001562
– ident: i1051-0761-18-3-789-Groffman2
  doi: 10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2
– ident: i1051-0761-18-3-789-Pinay1
  doi: 10.2307/2404238
– ident: i1051-0761-18-3-789-Groffman5
  doi: 10.1899/04-026.1
– ident: i1051-0761-18-3-789-Groffman6
  doi: 10.2134/jeq1996.00472425002500060020x
– ident: i1051-0761-18-3-789-Jantz1
  doi: 10.1007/s00267-004-0315-3
– ident: i1051-0761-18-3-789-Hill2
  doi: 10.1023/A:1005932528748
– ident: i1051-0761-18-3-789-Bohlke2
  doi: 10.2134/jeq2006.0084
– ident: i1051-0761-18-3-789-Smith1
  doi: 10.1007/s00248-004-0159-7
– ident: i1051-0761-18-3-789-Palmer1
  doi: 10.1029/2005WR004354
– ident: i1051-0761-18-3-789-Mulholland1
  doi: 10.4319/lo.2004.49.3.0809
– ident: i1051-0761-18-3-789-Haggerty1
  doi: 10.1111/j.1745-6584.1998.tb01097.x
– ident: i1051-0761-18-3-789-Roberts1
  doi: 10.1899/0887-3593(2007)26[38:EOUDAI]2.0.CO;2
– ident: i1051-0761-18-3-789-Kaushal1
  doi: 10.1007/s10533-004-4723-5
– ident: i1051-0761-18-3-789-Myrold1
  doi: 10.2136/sssaj1985.03615995004900030025x
– ident: i1051-0761-18-3-789-Tockner1
  doi: 10.1046/j.1365-2427.1999.00399.x
– ident: i1051-0761-18-3-789-Addy1
  doi: 10.1007/BF02696018
– ident: i1051-0761-18-3-789-Kellogg1
  doi: 10.2134/jeq2005.0524
– ident: i1051-0761-18-3-789-Hassett1
  doi: 10.1890/1540-9295(2005)003[0259:RWPBPT]2.0.CO;2
– ident: i1051-0761-18-3-789-Bukaveckas1
  doi: 10.1021/es061618x
– ident: i1051-0761-18-3-789-Winter1
  doi: 10.4319/lo.1988.33.5.1209
– ident: i1051-0761-18-3-789-Howarth1
  doi: 10.1007/BF02804898
– ident: i1051-0761-18-3-789-Bohlke1
  doi: 10.4319/lo.2004.49.3.0821
– ident: i1051-0761-18-3-789-Gucker2
  doi: 10.4319/lo.2006.51.3.1443
– ident: i1051-0761-18-3-789-Boesch1
  doi: 10.2134/jeq2001.302303x
– ident: i1051-0761-18-3-789-Kasahara1
  doi: 10.1139/f05-199
– ident: i1051-0761-18-3-789-Whitmire1
  doi: 10.2134/jeq2004.0483
– ident: i1051-0761-18-3-789-Wollheim1
  doi: 10.1029/2006GL025845
– ident: i1051-0761-18-3-789-Kemp1
  doi: 10.3354/meps303001
– ident: i1051-0761-18-3-789-Hill1
  doi: 10.2134/jeq1996.00472425002500040014x
– ident: i1051-0761-18-3-789-McClain1
  doi: 10.1007/s10021-003-0161-9
– ident: i1051-0761-18-3-789-Hedin1
  doi: 10.1890/0012-9658(1998)079[0684:TCONAO]2.0.CO;2
– ident: i1051-0761-18-3-789-Hall1
  doi: 10.4319/lo.2003.48.3.1120
– ident: i1051-0761-18-3-789-Groffman1
  doi: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
– ident: i1051-0761-18-3-789-Addy2
  doi: 10.2134/jeq2002.1017
– ident: i1051-0761-18-3-789-Peterjohn1
  doi: 10.2307/1939127
– ident: i1051-0761-18-3-789-Sobczak1
  doi: 10.1023/A:1021192631423
– ident: i1051-0761-18-3-789-Davidson1
  doi: 10.2136/sssaj1988.03615995005200040060x
– ident: i1051-0761-18-3-789-Pribyl1
  doi: 10.1007/s10533-004-0565-4
– volume: 24
  start-page: 626
  year: 2005
  ident: i1051-0761-18-3-789-Grimm1
  publication-title: Journal of the North American Benthological Society
  doi: 10.1899/04-027.1
– ident: i1051-0761-18-3-789-Schroth1
  doi: 10.1111/j.1745-6584.2005.00107.x
– ident: i1051-0761-18-3-789-Trudell1
  doi: 10.1016/0022-1694(86)90155-1
– ident: i1051-0761-18-3-789-Paul1
  doi: 10.1146/annurev.ecolsys.32.081501.114040
– ident: i1051-0761-18-3-789-Bernot1
  doi: 10.1007/s10021-003-0143-y
– ident: i1051-0761-18-3-789-Bernhardt1
  doi: 10.1126/science.1109769
– ident: i1051-0761-18-3-789-Istok1
  doi: 10.1111/j.1745-6584.1997.tb00127.x
– ident: i1051-0761-18-3-789-Vitousek1
  doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
– ident: i1051-0761-18-3-789-Lemon1
  doi: 10.4319/lo.1981.26.5.0867
– ident: i1051-0761-18-3-789-Malard1
  doi: 10.1046/j.1365-2427.2002.00906.x
– ident: i1051-0761-18-3-789-Stanley1
  doi: 10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2
– ident: i1051-0761-18-3-789-Wolman1
  doi: 10.2307/520904
SSID ssj0000222
Score 2.4047687
Snippet Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 789
SubjectTerms Average linear density
chemistry
Chesapeake Bay
Cities
Conservation of Natural Resources
Conservation of Natural Resources - methods
denitrification
Ecosystem
eutrophication
floodplains
Groundwater
Groundwater flow
habitat conservation
hydrochemistry
Hydrogeology
Maryland
methods
nitrate nitrogen
Nitrates
Nitrates - chemistry
Nitrogen
Nitrogen - chemistry
Piezometers
prevention & control
Riparian areas
Rivers
Rivers - chemistry
stream restoration
Streams
surface water
urban areas
urbanization
USA
Water Pollutants, Chemical
Water Pollutants, Chemical - chemistry
Water Pollution, Chemical
Water Pollution, Chemical - prevention & control
Watersheds
Title Effects of stream restoration on denitrification in an urbanizing watershed
URI https://www.jstor.org/stable/40062186
https://onlinelibrary.wiley.com/doi/abs/10.1890%2F07-1159.1
https://www.ncbi.nlm.nih.gov/pubmed/18488635
https://www.proquest.com/docview/20903053
https://www.proquest.com/docview/47727472
https://www.proquest.com/docview/70758342
Volume 18
WOSCitedRecordID wos000255437500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-5582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000222
  issn: 1051-0761
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tAyQuvMuGx2IhDlwCifOwLU5hm7ARS1i1qai4WLbjICTUou0uEv-ecZK2Wml7QEg5-DCWHI9n5ht7HgCvtYkjZhPmJyFrXQuzyBdt0vqUp2h_mEVM0pXMP2NVxedzcb4H79e5MH19iM2Fm5OMTl87AVe670LCRRcVx3xEM-Ituj6HLqkKPa_D8aSYnW0Vcf-IgAgCPWZ014fCQjj93WbyNXO036rlOi7xJsR5HcB2Fqi4919rvw93B-BJsv6kPIA9u3gIt_tWlH9wlJthNMq3uW84YRD-1SP4hJg2P6mn5EtBpvUkzz4TZF89XHMR_MZ5VdaTshiyk0lZkawis8mHrCq_ldVH8jVD9Dw9zcePYVbk9cmpP_Ri8A2aL-FHNLE0bqO2NZTxJjUiMSyIY6oTjXrCJDyIleNC48oDCaVjaphOg8a2oWkVj0ZwsFgu7BGQVIXaslSxpEHnnFvdGER9eECYQDinlQdv1iyRZihU7vpl_JTOYcENlAGTbvtk6MGrDemvvjrHTURHyFepvqPWlLMpdW-1AReo6rgHo47Zm8mxyykNeerByzX3Jcqbe0RRC7u8WknqLrZQc-2miNFhQSeN7qZgiNN4FCPFk_5gbRfPUaEiBvTA787P7r-SeXZOu4KEEePi6T_SP4M7feCLC0F6DgeXF1f2Bdwyvy9_rC6OYZ_N-fEgTn8BO2gQsw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8aHQgufJeFr1mIA5dA4jixLXEJa0KjdWFqUzFxsRLHmSahFq0bEv89z0naatJ6QEg5-PCe5Ph9_d6z_QzwvtIs4Cbkbujzxj5hFriyCRuXigjjDzeISdqW-ROe5-LsTJ7uwef1XZiuP8Sm4GYto_XX1sBtQbq1ciHbY3HcRTgjP2Lus8-igIsB7I-m6Xyy9cTdLgJCCEyZMV_vOwsh-6cN8414dKcpl-uDibdBzpsItg1B6aP_m_xjeNhDTxJ3uvIE9sziKdzrHqP8g6NE96Nhsr39hgy9-a-ewTGi2uSomJFvKZkV0yQ-ISjAoi90EfxGSZ4V0yzt7yeTLCdxTubTL3Ge_cjyr-R7jPh5Nk5Gz2GeJsXR2O1fY3A1BjDpBjQ0lDVB02jKRR1pGWruMUarsEJPoUPhsZJjllvbBkGyrBjVvIq82jS-bkoRDGGwWC7MAZCo9CvDo5KHNabnwlS1RtyHKsIlArqqdODDWiZK963K7YsZP5VNWXABlceVXT7lO_BuQ_qr689xG9EBClaV5-g31XxG7W6tJyQ6O-HAsJX2hpnZW6W-iBw4XItfocXZbZRyYZbXK0VtaQt9124KhikLpml0NwVHpCYChhQvOs3aTl6gS0UU6IDbKtDuv1JJfErbloSo-_LlP9Ifwv1xcTJRkyw_fgUPumMw9kDSaxhcXV6bN3BX_766WF2-7a3qL0iTE7s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdGB4gL32XhaxbiwCWQOHZsS1zCmrBoJVRtKiYuVuLY0yTUTuuGxH_Pc5K2mrQeEFIOPrwnOX5-z7-f7feM0Pta04gbxn0WcuueMIt8aZn1iYhh_eEGMElbMn_Mi0KcnsrJHvq8zoXp6kNsNtycZ7Tx2jm4uWhs6-VCttfiuA9wRn4E7rNPmWR0gPZH02w-3kbi7hQBIARQZuDrfWUhUP-0Ub6xHt2x1XJ9MfE2yHkTwbZLUPbo_zr_GD3soSdOurnyBO2ZxVN0r3uM8g-0Ut23huk2-w0UevdfPUMngGrTo3KGv2d4Vk7T5BsGA5b9RheGb5QWeTnNsz4_GecFTgo8n35JivxnXnzFPxLAz7PjdPQczbO0PDr2-9cYfA0LmPQjwgyhNrJWEy6aWEumeUApqVkNkUIzEdCKA8ttXIEgWdWUaF7HQWNsqG0loiEaLJYLc4BwXIW14XHFWQP0XJi60YD7YIpwsCKrKw99WNtE6b5UuXsx45dylAUGUAVcueFToYfebUQvuvoctwkdgGFVdQZxU81nxJ3WBkJCsBMeGrbW3ihTl1UaithDh2vzK_A4d4xSLczyeqWI29qC2LVbggJlAZpGdktwQGoioiDxoptZ284LCKmAAj3ktxNo91-pNJmQtiRhxIV8-Y_yh-j-ZJSpcV6cvEIPulsw7j7SazS4urw2b9Bd_fvqfHX5tneqv6-qEzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFFECTS+OF+STREAM+RESTORATION+ON+DENITRIFICATION+IN+AN+URBANIZING+WATERSHED&rft.jtitle=Ecological+applications&rft.au=Kaushal%2C+Sujay+S.&rft.au=Groffman%2C+Peter+M.&rft.au=Mayer%2C+Paul+M.&rft.au=Striz%2C+Elise&rft.date=2008-04-01&rft.issn=1051-0761&rft.volume=18&rft.issue=3&rft.spage=789&rft.epage=804&rft_id=info:doi/10.1890%2F07-1159.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1890_07_1159_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon